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Abstract

Variable digital filters are widely used in a number of applications of signal processing
because of their capability of self-tuning frequency characteristics such as the cutoff frequency
and the bandwidth. This chapter introduces recent advances on variable digital filters, focus-
ing on the problems of design and realization, and application to adaptive filtering. In the
topic on design and realization, we address two major approaches: one is the frequency
transformation and the other is the multi-dimensional polynomial approximation of filter
coefficients. In the topic on adaptive filtering, we introduce the details of adaptive band-
pass/band-stop filtering that include the well-known adaptive notch filtering.

Keywords: variable digital filter, frequency transformation, polynomial approximation,
adaptive notch filtering, adaptive band-pass/band-stop filtering

1. Introduction

Digital filter is well known as one of the essential and fundamental components in signal

processing devices. In addition, many signal processing applications such as digital audio

equipment and telecommunication systems sometimes require simultaneous realization of

digital filtering and real-time control of filter characteristics. Such requirements can be fulfilled

by means of variable digital filters (VDFs). Research on VDFs emerged in the 1970s and since

then, many results have been reported. Among them, details of the results until the 1990s are

widely reviewed in [1].

The problems that should be solved in development of VDFs are essentially the same as those in

digital filters of fixed characteristics. Hence, research topics onVDFs aswell as fixed characteristic

filters are broadly classified into three categories [2]: the approximation problem, the realization

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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problem, and the implementation problem. Moreover, in the field of VDFs, application-oriented

results have also been actively reported. One of the famous applications is adaptive notch filters,

which have been studied since the 1980s and the details will be reviewed in this chapter.

In the sequel, fundamentals of VDFs are first reviewed. Then, recent results on VDFs are

introduced and discussed with focus on the approximation problem, the realization problem,

and the applications. Such topics include some results proposed by the authors of this chapter.

2. Fundamentals of VDFs

2.1. Definition

VDFs are defined as the frequency selective digital filters (e.g., low-pass filters and band-pass

filters) of which frequency characteristics can be changed in real time by means of controlling

some parameters. A popular example of such VDFs is shown in Figure 1, which is the variable

low-pass filter (VLPF) of which cutoff frequency can be changed by controlling the single param-

eter η. Another example shown in Figure 2 is the variable band-pass filter (VBPF), where the

bandwidth is fixed and the pass-band center frequency can be changed by the single parameter ξ.

It should be noted that VDFs are different from “filters with variable (adjustable) coefficients”

which are used in adaptive filtering. Details of the differences are as follows:

• In the case of general adaptive filtering, all filter coefficients are changed by an adaptive

algorithm. On the other hand, most of the coefficients of a VDF are fixed or given as some

functions of a few variable parameters. For example, in the VLPF of Figure 1, only the single

parameter η can be changed, and the other coefficients are fixed or given as functions of η.

• VDFs are different from general adaptive filters with respect to the mechanism of chang-

ing the frequency characteristics. In VDFs, the characteristics are changed but the fre-

quency selectivity such as the low-pass and the band-pass shape is preserved. In other

words, VDFs control the frequency characteristics under the constraint of preservation of

frequency selectivity. On the other hand, general adaptive filters do not require this con-

straint. This means that such adaptive filters converge to optimal ones of which character-

istics do not necessarily possess frequency selectivity.

Figure 1. Example of VLPF.
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2.2. How to obtain VDFs

This subsection reviews the procedure to obtain VDFs. The required procedure is basically the

same as that in the case of fixed characteristic filters, where three important problems must be

considered as shown in Figure 3: approximation, realization, and implementation [2]. In this

chapter, we pay special attention to the approximation problem and the realization problem.

The approximation problem is to obtain an input-output characterization such as transfer

function from a prescribed specification of a VDF. The realization problem is to determine a

structure (i.e., an appropriate set of adders and multipliers or an appropriate list of primitive

operations for filtering) corresponding to the input-output characterization.

In the approximation problem for VDFs, the required task is to describe an input-output

relationship (e.g., transfer function) of the VDF in such a manner that the description includes

variable parameters. For example, consider the approximation problem for the VLPF shown in

Figure 1. If one wishes to obtain this VLPF as an FIR filter, the approximation problem is to

describe the transfer function in the form of

H z; ηð Þ ¼
XN

k¼0

hk ηð Þz�k (1)

and it is also necessary to describe each coefficient hk ηð Þ as a function of η. Therefore, the

approximation problem for this VLPF is to determine a set of functions hk ηð Þf g 0 ≤ k ≤Nð Þ.

Similarly, if one wishes to obtain IIR-type VLPF, it is necessary to describe the transfer function

in the form of

Figure 2. Example of VBPF.

Figure 3. Procedure to obtain VDF.

Recent Advances in Variable Digital Filters
http://dx.doi.org/10.5772/intechopen.79198

25



H z; ηð Þ ¼

P

M

k¼0 bk ηð Þz�k

1þ
P

N

m¼1 am ηð Þz�m
(2)

and to determine the filter coefficients as the functions am ηð Þf g 1 ≤m ≤Nð Þ and bk ηð Þf g

1 ≤ k ≤Mð Þ.

3. Research topics on VDFs

This section introduces research topics on VDFs from the viewpoints of the approximation

problem and the realization problem. Two methods have been widely used for approximation

and realization of VDFs: one is based on the variable transformation of transfer functions and

the other is based on the multi-dimensional (M-D) polynomial approximation of filter coeffi-

cients. In the sequel details of these two methods are reviewed and some recent results on

these two methods are introduced.

3.1. VDFs based on variable transformation of transfer functions

In this method, we first need to design the transfer function of “prototype filter,” which is

usually low pass, and its coefficients are fixed (i.e., variable parameters are not included in this

transfer function). Next, we apply a variable transformation to this prototype transfer function

and obtain a desired VDF, where the variable transformation makes use of a function which

includes variable parameters that are associated with the components to be changed in fre-

quency characteristics. Many approaches exist for variable transformations, and the most

famous approach is the frequency transformation [3]. The frequency transformation makes

use of all-pass functions for the variable transformation. Although details of the frequency

transformation are well reviewed in [1], this chapter will also review this topic with some

additional discussions. This is because many results using the frequency transformation have

been still reported in recent years and some of such results include the authors’ works.

Now, consider again the VLPF shown in Figure 1. If frequency transformation is used to obtain

this VLPF, the first step is to prepare the transfer function of a prototype low-pass filter. Such a

transfer function is denoted by Hp zð Þ. Then, applying the following frequency transformation

to Hp zð Þ, we can obtain the desired VLPF with the transfer function H z; ηð Þ:

H z; ηð Þ ¼ Hp zð Þ
�

�

z�1 T z;ηð Þ

T z; ηð Þ ¼
z�1 � η

1� ηz�1

(3)

where T z; ηð Þ is the first-order all-pass function. By changing the value of η in H z; ηð Þ, we can

control the cutoff frequency of the VLPF. If η > 0, the cutoff frequency becomes lower than that

of the prototype filter. The converse holds if η < 0. Stability of this VLPF is guaranteed if the
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prototype filter is stable and ∣η∣ < 1 is satisfied. Also, note that ∣T ejω; η
� �

∣ ¼ 1 holds for any η

and ω because T z; ηð Þ is all-pass.

We next discuss the realization problem for this VLPF. From the realization point of view, Eq. (3)

means that a block diagram of this VLPF can be obtained by replacing each delay element z�1 in

the prototype filter with the all-pass filter T z; ηð Þ. However, in most cases, such replacement

causes delay-free loops and results in H z; ηð Þ with unrealizable block diagram. To explain this

problem, consider a second-order IIR prototype filter with the transfer function given by

Hp zð Þ ¼
b0 þ b1z

�1 þ b2z
�2

1þ a1z�1 þ a2z�2
(4)

and the block diagram given by the direct form as in Figure 4(a). Applying the aforementioned

replacement of delay elements with T z; ηð Þ yields the VLPF of which the block diagram

corresponds to Figure 4(b). It is now clear that Figure 4(b) includes delay-free loops, and

hence it is impossible to implement this block diagram. It is well known that delay-free loops

can be avoided by means of mathematical manipulations of transfer function or difference

equation. However, such manipulations are not good solutions in the case of VDF realization.

For example, applying z�1  T z; ηð Þ to Hp zð Þ given by Eq. (4) and then performing mathemat-

ical manipulations, we obtain the transfer function of the second-order VLPF as follows:

H z; ηð Þ ¼
b00 ηð Þ þ b01 ηð Þ þ b02 ηð Þ

1þ a01 ηð Þ þ a02 ηð Þ

a01 ηð Þ ¼
�2ηþ a1 1þ η2

� �

� 2a2η

1� a1ηþ a2η2

a02 ηð Þ ¼
η2 � a1ηþ a2
1� a1ηþ a2η2

b00 ηð Þ ¼
b0 � b1ηþ b2η

2

1� a1ηþ a2η2

b01 ηð Þ ¼
�2b0ηþ b1 1þ η2

� �

� 2b2η

1� a1ηþ a2η2

b02 ηð Þ ¼
b0η

2 � b1ηþ b2
1� a1ηþ a2η2

:

(5)

If we implement the VLPF using this description, the computational cost significantly increases

because the filter coefficients a01 ηð Þ, a02 ηð Þ, b00 ηð Þ, b01 ηð Þ and b02 ηð Þ must be recalculated according

to the change of η. In particular, the filter coefficients in Eq. (5) are rational polynomials that

require divisions for recalculation of filter coefficients, causing very high implementation cost.

One of the popular methods to overcome this problem is the Taylor approximation-based

description [4]. This method applies the first-order Taylor series approximation to all of the

rational polynomials of filter coefficients in VDFs, under the assumption that the absolute
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values of all variable parameters are small. For example, in the case of Eq. (5), it is assumed

that ∣η∣≪ 1 and the filter coefficients are approximated to

a
0
1 ηð Þ ≈ a1 þ a

2
1 � 2� 2a2

� �

η

a
0
2 ηð Þ ≈ a2 þ a1a2 � a1ð Þη

b
0
0 ηð Þ ≈ b0 þ a1b0 � b1ð Þη

b
0
1 ηð Þ ≈ b1 þ a1b1 � 2b0 � 2b2ð Þη

b
0
2 ηð Þ ≈ b2 þ a1b2 � b1ð Þη:

(6)

These new coefficients do not require divisions, and hence the VLPF can be realized in terms of

additions and multiplications, as shown in Figure 5. In addition, this realization does not

Figure 4. Problem in realization of VLPF based on the frequency transformation: (a) second-order prototype filter, and

(b) VLPF given by applying z�1  T z; ηð Þ to the prototype filter.
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require recalculation of filter coefficients even if the value of η is changed. This is because all of

the multipliers except for η in this block diagram are realized as fixed coefficients.

Although the VLPFs based on the Taylor approximation provide an effective realization

method, they have a serious drawback that the range of variable cutoff frequency is quite

limited. This limitation is due to the assumption of ∣η∣≪ 1, which means that the approxima-

tion error becomes larger as the cutoff frequency of the VLPFs goes far from that of the

prototype filter. In addition, the VLPFs may become unstable if the value of ∣η∣ is inappropriately

large. In order to overcome these problems, some alternative methods are proposed [4–6]. All of

these methods make use of low sensitivity structures for realization of block diagrams for the

prototype filter. Then the replacement z�1  T z; ηð Þ and the Taylor approximation are applied

to such block diagrams, leading to the desired VDFs. Although the methods given by [4–6] can

be applied to the limited classes of transfer functions, the Taylor approximation error becomes

smaller than the standard VDFs based on the direct form. This approach is also extended to the

2-D VDFs [7].

There are some other approaches for the reduction of the Taylor approximation error. In [8],

the approach based on wave digital filters is presented. Although this approach requires the

knowledge of analog filter theory, very high precision is attained in the resultant VDFs, and

hence the variable cutoff frequency can be controlled in relatively wide range. In [9], state-

space representation is used for construction of the block diagram of the prototype filter, and

series approximations are applied to avoid the significant increase of the implementation cost

of frequency transformation-based VDFs. This approach does not need any restriction that

appeared in the conventional methods, and hence the method of [9] can be applied to arbitrary

transfer functions and arbitrary state-space structures. Furthermore, in [10], the VDFs based on

the combination of frequency transformation and coefficient decimation are proposed, and it is

Figure 5. Second-order VLPF based on the frequency transformation and first-order Taylor series approximation.
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shown through FPGA implementation and performance evaluation that the proposed method

attains very low cost for hardware implementation.

As discussed above, the problem of delay-free loops is an important issue in the approxima-

tion/realization of frequency transformation-based VDFs. It should be noted that, however,

this problem does not always happen. In general, this problem happens if the all-pass function

in the frequency transformation has a nonzero constant term in the numerator. This case

corresponds to the VDFs with variable bandwidth. In other words, the problem of delay-free

loops does not happen when the VDFs have fixed bandwidth, as shown in Figure 2.

We conclude this subsection with a summary of the merits and the drawbacks of the frequency

transformation-based VDFs. The merits are as follows:

• Variable characteristics can be easily obtained because the theory of controlling cutoff

frequency is based on the simple variable transformations.

• If Taylor approximation is not carried out, the frequency transformation preserves many

useful properties on the shape of magnitude responses. For example, when a prototype

low-pass filter is the Butterworth filter that possesses the monotonic and maximally flat

magnitude response, the VDFs given by applying frequency transformations to this pro-

totype filter also possess the monotonic and maximally flat magnitude responses.

• The aforementioned merit facilitates the design of adaptive band-pass or band-stop filters

because the cost function for adaptive filtering becomes unimodal, leading to an adaptive

algorithm that converges to the globally optimal solution. Details will be discussed in the

next section.

• Compared with the VDFs based on the M-D polynomial approximation, the frequency

transformation-based VDFs require much less computational cost in the filtering.

Next, the drawbacks are summarized as follows:

• As stated earlier, if the bandwidth needs to be variable in VDFs, the frequency transfor-

mation causes delay-free loops and this problem must be appropriately solved.

• If one wishes to obtain VDFs with multiple passbands or stopbands such as VBPFs,

VBSFs, and variable multi-band filters, it is necessary to use high-order all-pass functions

for the frequency transformation. As a result, the order of VDFs becomes higher than that

of the prototype filter. For example, the order of the frequency transformation-based

VBPFs and VBSFs becomes doubled as compared with the order of the prototype filter.

• Linear-phase VDFs cannot be obtained because the all-pass functions to be used in the

frequency transformation are IIR filters. Even if a prototype filter is FIR, applying the

frequency transformations simply results in IIR-type VDFs.

• Realization of variable characteristics is quite limited. To be specific, the frequency trans-

formation can provide only the VDFs with variable cutoff frequencies. In other words,

other components such as the transition bandwidth and the stopband attenuation cannot

be controlled.
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3.2. VDFs based on M-D polynomial approximation of filter coefficients

To the authors’ best knowledge, the VDFs based on the M-D polynomial approximation of

filter coefficients have been most actively studied [11–23] in the field of VDFs. One of the

significant benefits of this approach over the frequency transformation-based VDFs is that

many kinds of variable characteristics as well as variable cutoff frequencies can be attained.

For example, this approach can provide VLPFs with variable transition bandwidth and vari-

able stopband attenuation, as shown in Figure 6. In addition, since this approach is applicable

to FIR filters as well as IIR filters, linear-phase characteristics and variable group delay can be

attained in VDFs.

The first step to obtain this type of VDFs is to determine a set of K variable parameters

ψ1;ψ2;⋯;ψ
K

� �

which correspond to the desired variable components of frequency characteris-

tics such as cutoff frequency, transition bandwidth, and stopband attenuation. Such variable

parameters are referred to as spectral parameters. After this step, filter coefficients of the desired

VDFs are described as M-D polynomials with respect to these variable parameters. For example,

the transfer function of an N-th order VDF with K variable parameters is described by

H z;ψ1;ψ2;⋯;ψ
K

� �

¼

X

N

n¼0

hn ψ1;ψ2;⋯;ψ
K

� �

z�n (7)

and each filter coefficient hn ψ1;ψ2;⋯;ψ
K

� �

is described in terms of the followingM-Dpolynomial:

hn ψ1;ψ2;⋯;ψ
K

� �

¼

X

Mψ1

mψ1
¼0

X

Mψ2

mψ2
¼0

⋯

X

MψK

mψK
¼0

cn mψ1
;mψ2

;⋯mψK

� �

ψ
mψ1

1 ψ
mψ2

2 ⋯ψ
mψK

K : (8)

The approximation problem for this kind of VDFs is to determine the set of coefficients

cn mψ1
;mψ2

;⋯mψK

� �� �

for 0 ≤n ≤N. Here, it should be noted that Mψ1
,Mψ2

,⋯,MψK
denote the

orders of the M-D polynomials that, respectively, correspond to the variables ψ1,ψ2,⋯,ψ
K
.

In order to obtain the set cn mψ1
;mψ2

;⋯mψK

� �� �

, the standard approach is based on the

Figure 6. Example of VLPF based on the M-D polynomial approximation of filter coefficients.
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minimization of an error function with respect to approximation of a prescribed ideal

characteristic of the desired VDF and a curve fitting method to describe the desired M-D

polynomials.

In realization of the VDFs given as above, Farrow structure [24] is widely used. To explain this,

consider a simple VDF with a single variable parameter ψ1. The transfer function of this VDF is

given by

H z;ψ1

� �

¼
X

N

n¼0

hn ψ1

� �

z�n

¼
X

N

n¼0

X

Mψ1

mψ1
¼0

cn mψ1

� �

ψ
mψ1

1 z�n

(9)

which can be rewritten as

H z;ψ1

� �

¼
X

Mψ1

mψ1
¼0

X

N

n¼0

cn mψ1

� �

z�n

 !

ψ
mψ1

1 : (10)

Now, by using the following definition

Hmψ1
zð Þ ¼

X

N

n¼0

cn mψ1

� �

z�n, 0 ≤mψ1
≤Mψ1

, (11)

the description of the VDF H z;ψ1

� �

becomes

H z;ψ1

� �

¼
X

Mψ1

mψ1
¼0

Hmψ1
zð Þψ

mψ1

1 : (12)

Using this description, we can realize H z;ψ1

� �

by means of the Farrow structure as shown in

Figure 7. The block diagram of Figure 7 is interpreted as the parallel combination of the set of

N-th order FIR filters with fixed coefficients and the weights ψ1. Since these N-th order FIR

Figure 7. Realization of M-D polynomial approximation-based VDF based on the Farrow structure.
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filters do not include ψ1, recalculation of their coefficients according to the change of ψ1 is not

required. In this sense, the Farrow structure is suitable for the implementation of M-D polyno-

mial approximation-based VDFs.

A drawback of the M-D polynomial approximation-based VDFs is the high computational cost

in the filtering because the filter coefficients are described by M-D polynomials. In addition,

this approach limits the range of variable characteristics. As in the case of frequency transfor-

mation with Taylor approximation, this limitation comes from the M-D polynomial approxi-

mation. Furthermore, since this approach requires a number of filters with fixed coefficients,

their hardware implementation may cause an increase of characteristic degradations that

comes from finite wordlength effects such as coefficient sensitivity and roundoff noise. How-

ever, such degradations can be suppressed by using high accuracy filter structures, and this

approach has been recently proposed by the authors [23].

3.3. VDFs based on other approaches

In addition to the aforementioned two approaches, many other methods have also been

presented in the literature. In [25], VDFs with variable bandwidth without delay-free loops

can be achieved at low cost by means of cascade connection of a single subfilter. In [26–28], by

applying the frequency response masking and the fast filterbank to design of VDFs, significant

reduction of implementation cost over the VDFs with the Farrow structure is attained.

Also, VDFs for adaptive filtering have been widely studied. One of the famous methods in

such VDFs is the variable notch filters with second-order IIR transfer functions. All of these

variable notch filters successfully provide the variable characteristics by simple mechanism

without delay-free loops or increase of computational cost. Other adaptive-filter-oriented

VDFs include notch filters with variable attenuation at the notch frequency, comb filters with

variable bandwidth, and variable attenuation. Details of these topics will be addressed in the

next section.

4. Research topics on VDFs for adaptive filtering

In this section, we first pay attention to adaptive notch filters (ANFs) that are the special case of

adaptive band-stop or band-pass filters. The ANFs are the most famous application of VDFs to

adaptive signal processing, and many results on the ANFs have been reported since the 1980s.

In addition to the ANFs, this section also introduces some other types of VDFs that are applied

to adaptive filtering.

4.1. ANF based on all-pass filter

As shown in Figure 8, an ANF plays a central role in automatic detection and suppression of

an unknown sinusoid immersed in a wide-band signal such as white noise. In order to detect

and suppress the sinusoid, the ANF is controlled by an adaptive algorithm in such a manner

that the notch frequency ω0 of the ANF converges to the unknown frequency ωs of the
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sinusoid. Hence, the ANF can be considered as the VDF with variable notch frequency, and the

value of ω0 at the steady state becomes the estimate of the frequency ωs of the sinusoid.

Therefore, ANFs are used not only for the detection/suppression of a sinusoid, but also for

the frequency estimation.

Although the ANF shown in Figure 8 is intended to suppress a sinusoid, the ANF is also

capable of enhancement of the sinusoid and suppression of the white noise. This can be

achieved by using a peaking filter, which is also called a resonator or an inverse notch filter,

as an adaptive filter instead of using a notch filter. Alternatively, the notch filter can also be

used: in this case, the sinusoid can be enhanced by subtracting the output of the notch filter

from the input signal.1 Such systems together with the ones shown in Figure 8 are widely used

in many practical applications such as radar, sonar, telecommunication system with the sup-

pression of narrowband interference and howling suppressor in speech processing.

In the sequel, we explain the fundamentals of ANFs, that is, their problem statement and the

mechanism of control of the notch frequency. As shown in Figure 8, the problem statement of

ANFs usually describes the input signal as the sum of a sinusoid and a white noise. Hence, the

input signal, denoted by u nð Þ, is given by

u nð Þ ¼ A sin ωsnþ ϕ
� �

þ w nð Þ (13)

where A and ωs are, respectively, the amplitude and frequency of the unknown sinusoid, and ϕ

is the random initial phase uniformly distributed in 0; 2π½ Þ. The signal w nð Þ is a zero-mean white

noise, and it is uncorrerated to ϕ. Based on this setup, let y nð Þ be the output signal of the ANF.

Figure 8. Detection and suppression of sinusoid using ANF.

1

Note that this approach depends on the characteristic of a notch filter, and hence the use of an inappropriate notch filter

may result in failure of enhancement of a sinusoid. The reason of this lies in the fact that the signal which is obtained by

subtracting the output of a band-stop filter from the input is not necessarily equivalent to the output of a band-pass filter.

However, in the case of the ANF based on a second-order all-pass filter, the frequency characteristic of the notch filter

satisfies complementary properties that allow us to successfully obtain a signal equivalent to the band-pass-filtered signal

by subtracting the notch-filtered signal from the input.
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There are some methods to describe the transfer function of the notch filter for adaptive

filtering. In this chapter we focus on the one based on the second-order all-pass filter [29]. This

notch filter is described by the following transfer function

H z; η; ξð Þ ¼
1

2
1þ T z; η; ξð Þð Þ (14)

where T z; η; ξð Þ is the second-order all-pass filter of the form

T z; η; ξð Þ ¼
η� 1þ ηð Þξz�1 þ z

�2

1� 1þ ηð Þξz�1 þ ηz�2
: (15)

Hence Eq. (14) is described as

H z; η; ξð Þ ¼
1þ η

2

1� 2ξz�1 þ z
�2

1� 1þ ηð Þξz�1 þ ηz�2
: (16)

In this notch filter, the parameter η determines the 3-dB notch width, and the parameter ξ

determines the notch frequency ω0. This means that the notch filter given in this way can

control the notch width and the notch frequency independently. Also, it is interesting to note

that this notch filter can be interpreted as a VDF given by the frequency transformation [30]: it

is clear that this notch filter is obtained by applying the frequency transformation

z
�1  T z; η; ξð Þ to the prototype filter of the form

Hp zð Þ ¼
1

2
1þ z

�1
� �

: (17)

To be more precise, this notch filter has the same transfer function as that of the second-order

Butterworth band-stop filter [31]. Therefore this notch filter has unity gain at ω ¼ 0 and ω ¼ π,

and zero gain at ω0. In addition, the magnitude response of this notch filter is monotonically

decreasing in 0 < ω < ω0 and monotonically increasing in ω0 < ω < π.

Figure 9 shows the block diagram of ANF based on this notch filter. As stated earlier, when

the ANF attains steady state, the component of the sinusoid in the input u nð Þ is suppressed at

Figure 9. ANF based on the second-order all-pass filter.
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the output signal y nð Þ. Here, it should be noted that many adaptive algorithms assume that the

notch width is fixed, and that only the notch frequency ω0 is controlled to estimate the

frequency of the sinusoid. For this reason, we focus on how to control ω0.

The most standard method to control ω0 is based on the minimization of a cost function by

means of the gradient descent method. Although this is similar to general adaptive filters,

ANFs differ from the general adaptive filters in that the cost function to be used in ANFs is the

mean square output, that is, E y2 nð Þ
� �

. In other words, ANFs do not usually deal with the error

signal between a reference signal and the filter output.2 Since ANFs control ω0, the cost

function E y2 nð Þ
� �

must be formulated as a function of ω0. This can be successfully achieved

and, in addition, E y2 nð Þ
� �

becomes unimodal if the input signal is given as in Eq. (13) and the

ANF has monotonic magnitude response. Therefore, in such a case, the optimal notch fre-

quency that minimizes E y2 nð Þ
� �

can be successfully found by the gradient descent method. In

fact, the optimal value of ω0 coincides with ωs if the all-pass-based ANF is used [32–34]. Hence,

using the gradient of E y2 nð Þ
� �

with respect to ω0 in an adaptive algorithm allows ω0 to

converge to ωs, leading to detection/suppression of the sinusoid.

Remark 1 If the transfer function of the ANF is not based on the all-pass function, the optimal value of

ω0 may slightly deviate from ωs. In other words, the frequency estimation is biased. This topic will be

addressed in the next subsection.

However, the gradient descent method has a serious drawback that the convergence speed

becomes very slow when the initial value of ω0 is distant from ωs. To overcome this problem,

many strategies have been proposed. In [32–34], the normalized lattice structure is applied to

construct the notch filter, and the adaptive algorithm makes use of the state variable of the

normalized lattice structure instead of the information of the gradient. This approach is

called the Simplified Lattice Algorithm (SLA) and successfully accelerates the convergence

speed at low computational cost. Furthermore, in [35], the authors have extended the SLA

and proposed a new algorithm called the Affine Combination Lattice Algorithm (ACLA),

and it has been proved that the ACLA achieves faster convergence than the SLA. Other

approaches to improve the convergence speed include the methods based on the least square

algorithm with forgetting factor [36], parallel combination of multiple notch filters with

different notch width [37, 38], and construction of additional monotonically increasing

function for the gradient [39, 40].

There are many other important research topics on the ANFs. One of them is the theoretical

analysis of the behavior of ANFs at steady state. In [41], a steady-state analysis is presented for

ANFs based on the one-multiplier lattice structure. This analysis enables us to evaluate the

performance of ANFs such as the accuracy of frequency estimation. Also, in [42], the authors

propose a unified method on the steady-state analysis of frequency estimation MSE (mean

square error) for the SLA and the ACLA. As another research topic, in [43] fundamental

frequency estimation using inverse notch filter is proposed.

2

Although some literature refers to y nð Þ as the error signal, in the authors’ opinion this terminology is incorrect. This is

because the error in ANFs should be defined as the difference between the frequency of the sinusoid and its estimate, i.e.

ωs � ω0. This quantity clearly differs from y nð Þ.
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4.2. ANFs based on other approaches

Other types of ANFs have also been well studied. For example, the following second-order

notch filter [44] is very well known:

H z; r; að Þ ¼
1þ az�1 þ z�2

1þ arz�1 þ r2z�2
(18)

where a and r correspond to the parameters that, respectively, control the notch frequency and

the notch width. Hence, in this case, the parameter a is controlled by an adaptive algorithm to

estimate ωs. This notch filter is designed by the famous method called the constrained poles

and zeros (CPZ), and this notch filter has been most widely used for ANFs [44–51].

Since the transfer function of this notch filter is different from that of the all-pass-based notch

filter, the properties of these notch filters are also somewhat different. For example, the all-

pass-based notch filter has the unity peak gain, whereas the peak gain of the CPZ-based notch

filter depends on the notch width. This also makes the difference with respect to the value of

E y2 nð Þ
� �

, see [52] for the details. Another difference between these two notch filters is that the

all-pass-based ANFs provide unbiased frequency estimation, whereas the CPZ-based ANFs do

not. Although this fact shows a drawback of the CPZ-based ANFs, many adaptive algorithms

to reduce the bias have been proposed for the CPZ-based ANFs.

In addition to the CPZ-based notch filters, there exist many other types of notch filters. In

[53, 54], the specific second-order transfer function is constructed in such a manner that it

corresponds to a lattice structure. In [55–58], the bilinear transformation to a second-order

analog filter is applied to the notch filter design. In [59], the frequency transformation is used

to design a notch filter, but the prototype filter used here is different from Eq. (17).

4.3. Adaptive filtering based on high-order VBPFs/VBSFs

All of the adaptive filters that were addressed in previous subsections are based on second-

order VDFs. On the other hand, there exist some results on high-order VDFs in adaptive signal

processing. Needless to say, second-order ANFs have a drawback that it is difficult to realize

sharp cutoff characteristics, causing insufficient frequency selectivity and relatively poor

signal-to-noise ratio (SNR) at the output signal. On the other hand, in [31], the authors improve

the output SNR by means of higher-order VBPFs or VBSFs instead of using second-order notch

filters in the adaptive filtering. As shown in Figure 10, high-order filters can realize sharper

cutoff characteristics than second-order filters and provide higher output SNR.

Compared with ANFs, little has been studied on the adaptive filtering based on the high-

order VDFs. To the authors’ best knowledge, the most significant work is found in [60–63],

where fourth-order Butterworth VBPF and VBSF are applied to adaptive filtering, and their

center frequencies are controlled by adaptive algorithms. Furthermore, the convergence

characteristics are also theoretically analyzed. In this work, it is also claimed that the use of

much higher-order VDFs for adaptive filtering is almost impossible because higher-order

transfer functions involve mathematically more complicated descriptions, and hence it is

conjectured that formulations of filter coefficients with variable characteristics and adaptive
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control of them become very complicated. However, in the authors’ recent work [31], we

have successfully realized adaptive filtering based on higher-order VBPFs/VBSFs, where we

have derived a gradient descent method-based adaptive algorithm for arbitrary-order

VBPFs/VBSFs in a simple form by means of frequency transformation in terms of the block

diagram as well as the mathematical description. As a result, it is demonstrated in [31] that

the use of higher-order VBPFs/VBSFs for adaptive filtering leads to higher output SNR than

the use of ANFs.

As stated above, adaptive band-pass/band-stop filtering based on high-order VBPFs/VSFs can

be realized in a simple manner. However, there are still many open problems such as mathe-

matical discussion of convergence of the adaptive algorithm, improvement of convergence

speed, and suppression of large quantization errors that are generated due to the nature of

high-order narrowband filters. Although the problem of quantization errors can be solved by

means of the state-space-based VBPFs/VBSFs [64], further investigations are need to cope with

the other problems.

4.4. Other VDFs for adaptive filtering

In addition to the ANFs and higher-order adaptive band-pass/band-stop filtering, many appli-

cations of other VDFs to adaptive filtering have been presented. In [65], adaptive filtering based

on the cascade connection of second-order all-pass filters is proposed. This method is shown to

be superior to the standard ANF-based methods for the detection of multiple sinusoids. Another

Figure 10. Example of adaptive band-pass filtering: (a) using second-order VBPF, and (b) using high-order VBPF.
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approach for the detection of multiple sinusoids is also proposed in [66–68], where comb filters

with variable bandwidth and variable notch gain are applied to adaptive filtering.

Furthermore, adaptive filtering based on VLPFs can be found in the literature [69]. It should be

noted that, in general, realization of adaptive low-pass filtering is much more difficult than

adaptive notch filtering or adaptive band-pass/band-stop filtering. The reason of this lies in the

difficulty in the problem setup that can describe a unimodal cost function. However in the

work of [69], a unimodal cost function is successfully obtained by considering the detection of

passband-edge frequency of a low-pass filtered signal and using the approach of weighted cost

function.

5. Conclusion

This chapter has reviewed recent research activities on VDFs with focus on the approximation

problem, the realization problem, and the applications to adaptive filtering. Since this chapter

has paid attention to 1-D VDFs with variable magnitude responses, the introduction of other

types of VDFs such as M-D VDFs and variable fractional-delay filters has been omitted. For a

similar reason, VDF applications other than adaptive filtering have also been omitted. Although

VDFs have been studied for a long time, many elegant results are still being proposed, and hence

the research on VDFs will continue to be an active area of investigation.
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