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Abstract

This chapter introduces efficiency frontier and benchmarking concepts to evaluate the
efficiency performance of wireless networks for multicast energy. These concepts are
efficiency models based on the data envelopment analysis (DEA) technique. The DEA
framework allows network administrators to evaluate the technical efficiency and deter-
mine how the inefficient wireless networks will attain a targeted efficiency frontier. In
order to achieve efficiency frontier and benchmark by a wireless network, this chapter
presents several models including the envelopment and the slack. The envelopment
model evaluates the technical efficiency scores of each wireless network, while the slack
model shows how the inefficient wireless network achieves efficiency frontier. The bench-
mark model evaluates the efficiency reference set and the lambda values of each network.
The efficiency frontier algorithm has shown that many of the wireless networks sampled
are inefficient. However, the algorithm has capability to help the inefficient wireless
networks to achieve efficiency frontier and benchmark with their peers that are fully
efficient.

Keywords: efficiency frontier, network coding, modeling, wireless networks,
multicast energy

1. Introduction

Technical efficiency evaluation and expectation are new kinds of thinking for many evaluators

especially in the field of network coding [1, 2]. The current approach to coded packet evalua-

tions is largely dependent on average measurement [3]. This type of approach is only good to

demonstrate the impact of a program but inadequate to evaluate the technical efficiency and

benchmark [4]. One of the major factors in the evaluation of efficiency is the limited resources

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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and decisions on how to allocate such resources. This requires a special consideration in

evaluation processes [5, 6].

In literature, the essence of minimum energy multicast is to optimize high-energy transmission

over the network. This was achieved using the minimum energy multicast algorithm. How-

ever, the minimum energy multicast problem is NP-hard [7]. The alternative solutions using

polynomial time-based heuristics approach were considered [8–10]. One of these solutions is

the multicast incremental power algorithm. As an improvement to this technique, the mini-

mum energy multicast problem in ad hoc wireless networks is solvable as a linear program,

assuming network coding technique [11]. Compared with conventional routing solutions,

network coding technique does not only promise a potentially lower multicast energy but also

enables finding the optimal solution in polynomial time. Other energy efficiency algorithms

presented in the literature for energy efficiency were all designed to achieve similar goals using

the effective performance evaluation approach [12–14].

In this chapter, a network coding algorithm is studied and its performance is investigated for

the data evaluation analysis (DEA) technique. The DEA methodology is necessary because the

coded packet is not a fully efficient technique for energy efficiency [15]. The DEA, which was

used to study the relative efficiency and productivity of systems in economic and operational

research (OR) disciplines, is a nonparametric method that relies on linear programming tech-

niques for optimizing discrete units of observation called the decision-making units (DMUs)

[16]. The DEA method is different from other because it adopts the frontier analysis approach

to evaluate efficiency rather than averages and standard deviation [16]. Therefore, our system

model is based on frontier analysis that consists of several models including envelopment and

benchmarking. These models are considered for evaluating the technical efficiency of multicast

energy and performing the benchmark in wireless network nodes without affecting the overall

network performance.

The remainder of this chapter is presented in sections: Section 2 provides necessary back-

ground information on the minimum energy multicast and Section 3 presents the network

coding performance that is based on average multicar energy. Section 4 and 5 discuss the

efficiency frontier method and benchmarking model, respectively. In Section 6, efficiency

frontier implementation and results analyzed are discussed while Section 7 concludes the

chapter.

2. Background

This section begins with the discussion of energy-efficient multicast following the various

multicasting techniques used to minimize the wireless multicast energy.

2.1. Energy-efficient multicast

Researchers have worked on energy-efficient networking for several years especially with the

growth of the wireless networks such as wireless sensor networks, mesh networks, and ad hoc
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wireless networks. Many studies have explored the topic of energy efficiency of these networks

[17–19]. Some of the studies that were investigated in literature include routing, coding, cross-

layer designs, MAC protocols, spectrum allocation, resource allocation, and scheduling. The

scope of this chapter is to present the actual efficiency of multicast energy in wireless networks.

So it discusses energy efficiency in the routing. An approach to energy efficiency is the

exploration of the broadcast nature of the wireless links. Wireless links are either omnidirec-

tional or directed over a large area to ensure that transmissions are received by more than one

node. This feature has effects on multicast networks, and it is known as wireless multicast

advantage (WMA) [20, 21]. In routing, the problem of performing energy-efficient multicast

considering WMA is NP-complete [22]. Thus the problem of minimum energy broadcast and

multicast is solved in wire-line cases by various minimum weight-spanning tree algorithms

but the solutions are generally suboptimal [23]. However, alternative approach using the

network coding method was employed [24–27].

2.2. Minimum-energy multicast

The main optimization problem for energy efficiency broadcast and multicast routing in ad

hoc wireless networks is to minimize the total transmission power assigned to all nodes [15].

This is widely recognized as one of the performance challenges in wireless networking. The

minimum energy multicast problem in ad hoc wireless networks is solvable using several

approaches. A popular approach is the minimum shortest path tree (MSPT) algorithm that

has been applied to solve minimum energy network problems [22]. This algorithm builds

minimum energy networks and measures the cost (energy) of an edge based on certain levels

[23]. However, this problem is known to be NP-hard [7]. An alternative approach such as

minimum spanning tree that is based on the greedy heuristic algorithm was proposed [9]. The

method used can compute minimum energy in polynomial time, thereby reducing the cost

(energy) on multicast tree twice than that of SMPT. However, the solutions provided by this

approach are suboptimal. In order to improve the solutions, a large number of approximation

algorithms were proposed for energy-efficient multicast in wireless networks including a

unique method to improve the energy efficiency of multicast trees using pruned or greedy

heuristics [21]. In the literature, the performances of three greedy heuristics algorithms,

multicast incremental power (MIP) algorithm, multicast least-unicast-cost (MLU) algorithm,

and multicast link-based MST (MLiMST) algorithm, were analyzed [22]. It has been shown

that MIP algorithm has best performance for all network nodes that are considered. However,

the MIP approach is also suboptimal. Thus, the network coding technique has been considered

for improved performance [25].

3. Network coding performance

In this section, the performance of a network coded algorithm is investigated and the results

serve as imputes for the frontier analysis. We consider a flow-based approach that addresses

networks with costs such as energy using a linear programming technique [26]. The cost is a
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function of coding subgraph z. We represent the cost function with ξ. This approach assumes

that all nodes in the network are capable of coding with a focus on the problem of minimizing

network resource such as multicast energy. We represent this function with z which is the

coding subgraph. We then consider a formulated multicast problem connection, which is a

triplet S;T; Rtf gð Þt∈T , where S is the source of the connection, T is the set of network receivers,

and Rt is the set of rates at which the flow is being injected to the sinks. Furthermore, the

multicast connections using the random linear network coding (RLNC) algorithm that has

been proved in the literature to address such problems are considered. The optimization

formulation for this problem is given as:

minξ zð Þ

subject to

z∈Z

X

j∈K

xtiJjð Þ ≤ ziJKbiJK, ∀ i; Jð Þ∈H, K⊂ J, t∈T, xt ∈ Ft

minξ zð Þ

subject to

z∈Z

X

j∈ J

xtiJjð Þ ≤ ziJ , ∀ i; Jð Þ∈H, t∈T, xt ∈Ft

where xtiJjð Þ represents the average rate of the packets that are injected on the hyper arc link and

received by exactly the set of nodes J, which occurs with the average rate ziJ and that allocated

to a particular connection. Ft is the bounded polyhedron of points

xt satisfying the conservation of flow constraints. We consider a lossless network with

multicast applications and made some assumptions [27]. For example, it is assumed that when

nodes transmit, they reach all other nodes in certain regions, with cost increasing as the region

expands. These assumptions have helped the problem to reduce in the case of linear separable

cost and separable constraints. Therefore, a fixed cost such as energy can easily be evaluated

while the constraints set for Z are dropped. Readers are referred to [28] for more details about

this formation. A well-known RLNC algorithm, which is appropriate to deploy network

coding in a real multicast network, is considered for the simulation of this optimization

problem. The details and the pseudocode for the RLNC algorithm are presented in [29].

The authors have considered various network parameters which include the network sizes, the

radius of connectivity, the dimension for the nodes, the source nodes, and the receiving nodes.

Randomly generated nodes were simulated and the average energy of the multicast networks

was evaluated using the RLNC algorithm. The effective performance of the network coding

algorithm presented has shown the limitation of the algorithm and the evaluation approach in
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terms of efficiency performance [30]. It is important to understand that “effectiveness” is

mainly concerned with achieving a set goal. For instance, network effectiveness is the ability

of such a network to attain its predetermined goals. For instance, one of the goals of the RLNC

algorithm is to minimize energy such that the results or outcome is better than the previous

algorithms [31, 32]. This evaluation approach is concerned on the right way of minimizing

multicast energy rather than how well the multicast energy is being minimized. Thus, effi-

ciency is concerned with how well the multicast energy is minimized. This is achieved by

quantitatively evaluating the ratio of output to input. With efficiency evaluation, the perfor-

mance is based on the combination of both inputs and outputs rather than focusing on the

outcome results (outputs) only. For example, in [33], the results presented based on average

performance show that the performance of the RLNC algorithm in minimizing energy was

degraded as the number of sinks increased but improved as the network size increased. This

result has been shown to perform better than the existing algorithm when compared. How-

ever, it is an effective performance and cannot determine the efficiency of the algorithms.

4. Efficient frontier method

Data envelopment analysis (DEA) is a nonparametric method that relies on the linear pro-

gramming technique for optimization using frontier analysis. It is used to measure the relative

efficiency of peer decision-making units (DMUs) that have multiple inputs and outputs [34].

Unlike network coding evaluation method that is based on average performance evaluation,

the frontier method is used to evaluate the technical efficiency of DMUs. Besides, the efficiency

frontier technique is capable of improving the input resources as well augment the output

results while the performance remained the same. In case of input resources, the multicast

energy of a wireless network is considered to be minimized, while the number of sinks

remained the same. Also, in the case of output augmentation, the number of sinks can be

increased, while the multicast energy is kept constant. Furthermore, the efficiency frontier

method evaluates the performance of a wireless network by comparing its efficiency with the

best observed performance in the data set. Thus, efficiency frontier represents the best

observed performance among the networks [35].

4.1. Illustrating efficient frontier

This concept of efficiency frontier is best explained with a simple case of one input and one

output. Let us consider the data in Table 1 where the technical efficiency of each set of eight

wireless networks (DMUs) is evaluated. A data value for each DMU is provided. We plot

the data in Table 1 with input on the x axis (the horizontal axis) and the output on the y axis

(the vertical axis) to obtain Figure 1. This figure shows the technical efficiency of each DMU.

The figure also shows the picture of efficient frontier. The wireless network with efficiency

frontier is the one that floats on top of data observations.

Figure 1 shows the wireless network E on the efficiency frontier with an efficiency of 1. The

line that spans from the origin through the wireless network (DMU E) is known as efficiency
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frontier [36]. The inefficient wireless networks are located beneath the efficient frontier. These

inefficient wireless networks can be moved unto the efficient frontier using an orientation

approach [36]. There are two fundamental directions to achieve this move: The input-oriented

and the output-oriented approaches. The input-oriented approach will be applied to reduce

the multicast energy while the number of receives is fixed at their current levels. The output-

oriented approach is outside the scope of this chapter. Using input orientation and considering

the wireless network F, which is an example of inefficient network, a projection to point E can

be performed. This is the targeted position for wireless network F to become efficient. In the

real world, most problems are multidimensional in nature with many input and output vari-

ables. As a result, the efficiency frontier using DEA solver that is based on the linear program-

ing technique is considered for the evaluation of efficiency frontier in this chapter.

4.2. Efficient frontier system model and procedure

A wireless network (DMU) that lies on the efficiency frontier is said to attain its targeted

energy level. The main problem that this chapter addresses is that many networks multicast

their messages using average energy rather than targeted energy. A wireless network admin-

istrator, especially at this stage of technological development, cannot base network evaluation

on average performance. Therefore, one of the problems is that given the different set of

wireless networks with a node (source) multicast to some selected group of nodes (receivers)

using average energy, how can we qualitatively evaluate performance so that they attain

targeted energy? This problem is impossible to answer without the efficiency frontier method.

DMU A B C D E F G H

Output 4 6 6 8 10 10 12 16

Input 2 3 4 6 10 4 6 10

Table 1. Data of simple efficiency ratio to evaluate efficient frontier.

Figure 1. DMU on efficient frontier versus inefficient DMUs.
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The existing approach was to calculate the average energy multicast and then rank them

according to the lowest. The lowest average energy multicast is considered the most effective

network. However, the lowest average energy multicast does not mean it is the most efficient

[37]. We state that any wireless network that multicasts messages to a selected group of nodes

using targeted or projected energy is said to attain efficiency frontier. Performance according

to the efficiency frontier is possible if a network makes use of the combination of its multiple

inputs and multiple output resources correctly.

Figure 2 presents the flowchart that is used to solve this problem. The flowchart consists of

different steps. The first step, which is envelopment model, evaluates the technical efficiency

scores of a wireless network. Subsequently, the second step, which is the slack model calculates

and classifies the efficient wireless into full or weak networks. The last step is the projection

model that determines how the weakly efficient wireless network will be fully efficient so that

they also attain efficiency frontier. These procedures are computed using the DEA solver and

the efficiency frontier results are compared with the average energy computed using the

network coding algorithm. The differences in multicast energy are recorded. If there is no

difference, it means that the average energy used by RLNC is fully efficient. Otherwise, it is

Figure 2. Algorithm of the targeted multicast energy based on efficiency frontier approach.
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inefficient or weakly efficient. However, as discussed, the efficiency frontier method provides

mechanisms for making the inefficient wireless network to achieve efficiency. The models

considered are based on Charnes, Cooper, and Rhodes (CCR) with assumption of constant

returns to scale (CRS) [38].

4.3. The envelopment model

This chapter considers the minimization of multicast energy using efficiency frontier method

that relies on the linear programing (LP) technique of the DEA. The LP is an approach to

evaluate a set of weights that yields the maximum efficiency. An appropriate envelopment

DEA model that evaluates energy efficiency was presented in [39] and is given below:

θ
∗

¼ min θ

subject to

Xn

j¼1

λjxij ≤θxi0, i ¼ 1, 2,…, m;

Xn

j¼1

λjyrj ≥ yr0, r ¼ 1, 2,…, s;

λj ≥ 0, j ¼ 1, 2,…, n,

(1)

where λj are unknown weights with j ¼ 1, 2,…, n and they correspond to the DMU numbers.

DMU0 is one of the n DMUs under evaluation, and θxi0 and yr0 are the i
th input and rth output

for DMU0, respectively.

The following conditions are required for the calculation of efficiency scores: If θ∗

¼ 1 , then

the DMU under evaluation is a frontier point (fully or weakly efficient). Otherwise if θ∗

< 1,

then the DMU under evaluation is inefficient. To address inefficiency, the DMU can either

increase its output levels or decrease its input levels to achieve efficiency [40]. The θ
∗ repre-

sents the efficiency score of DMUo based on input-orientation. This means that the model is

able to minimize energy while maintaining the current output levels.

4.4. The slack model

The slack model is needed to push the weak efficient or inefficient wireless networks to their

real efficiency frontier so that targeted energy is achieved. The linear programming formulated

for slack model is given as [40, 41]:

max
Xm

i¼1

s�j þ

Xs

r¼1

sþr

subject to
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X

n

j¼1

λjxij þ s�j ¼ θ
∗xio, i ¼ 1, 2,…,m;

X

n

j¼1

λjyrj � sþr ¼ yr0, r ¼ 1, 2,…, s;

j ≥ 0 j ¼ 1, 2,…, n

(2)

where s�j and sþr represent input and output slacks, respectively. The superscripts (�) and (+)

represent input reduction and output augmentation, respectively. The condition for fully

(100%) efficient is if and only if both (a) θ∗ = 1 and (b) all slacks s
�∗ð Þ
i ¼ s

þ∗ð Þ
r ¼ 0. The targeted

multicast energy can be calculated using the following expressions:

X∗

i0 ¼ θ
∗xio � S�∗i , i ¼ 1, 2,…, m

Y∗

r0 ¼ yro þ Sþ∗r , r ¼ 1, 2,…, s

(

(3)

This is calculated by multiplying the average multicast energy with an optimal efficiency score

(θ∗), and slack amounts are subtracted.

5. Benchmarking model

In this section, a variable-benchmark model is considered for minimum energy multicast. The

variable benchmark allows a new wireless network to be evaluated against a set of given

benchmarks or standards. Also, it is formulated upon input-oriented CCR/CRS model. The

model extends the envelopment and slack models discussed in the previous section. The

benchmark model determined the efficiency reference set (ERS) and the amount required by

each wireless network to catch up with their peers. The remainder of this section presents the

mathematical function and the requirements for benchmark evaluation.

In the process of developing a benchmark, once the efficiency frontier is established, we can

compare a set of new wireless networks with the reference efficiency frontier. The idea is that

whenever a new wireless network outperforms the identified efficiency frontier, a new effi-

ciency frontier is generated by the DEA solver. This means that the benchmark for a wireless

network is different from other new wireless networks depending on network condition and

variables used. The benchmark model contributes to how a wireless network learns the best

way to utilize the available resources [42]. The benchmark model first evaluates the efficiency

reference set (ERS) and the amount required by each wireless network to catch up with their

peers. This magnitude is called the lambdas.

In order to formulate variable benchmark, the envelopment model is modified for the bench-

mark optimization problem as follows:
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Minimise αCCR=CRS

subject to

X

j∈E∗

λjxij ≤α
CCR=CRSxnewi

X

j∈E∗

λjyrj ≥ y
new
r

λj ≥ 0, j∈E∗,

(4)

where αCCR=CRS represents the optimal value to model, and Ε
∗ represents the set of benchmarks

identified by the DEA. The new observation is represented by DMUnew with inputs

xnewi i ¼ 1; 2;…;mð Þ and outputs ynewr r ¼ 1; 2;…; sð Þ. The superscript of CCR/CRS indicates that

the benchmark composed by benchmark DMUs in set E∗ is based on CCR/CRS model. Model

represents the performance of DMUnew with respect to benchmark DMUs in set E∗, when

outputs are fixed at their current levels. Furthermore, model is capable of yielding a bench-

mark for DMUnew. Thus the ith input and the rth output for the benchmark can be expressed

as:

X

j∈E∗

λ
∗

j xij ith inputð Þ

X

j∈E∗

λ
∗

j yrj rth ouputð Þ

8

>

>

>

<

>

>

>

:

(5)

The expression (5) indicates that although the DMUs associated with set E∗ are given, the

resulting benchmark may be different for each new DMU under evaluation. Thus, there is a

variable-benchmark scenario.

6. Implementation, results, and discussions

This section begins with brief overview of the software used for the implementation of the

algorithm presented in Section 4 and 5. It then discusses and analyses the results obtained from

the models.

6.1. DEA solver for efficient frontier analysis

The frontier analysis is evaluated using the DEA software, which is the tool that was specially

packaged to solve the envelopment model and other types of DEA models. The efficiency

frontier analysis relies on the DEA library, which includes the Solver and LPsolver (linear

programming solver) program to perform optimizations. This work makes use of DEAOS for

the implementation of the efficiency frontier models. The DEAOS is a web-based software. The
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readers are referred to [43] for details about the DEAOS package and user’s documentation.

The DEA implementation procedures were discussed in [40].

6.2. Technical efficiency performance

The DEA solver compares each DMU with all other DMUs and identifies those DMUs that are

operating inefficiently. It also evaluates the magnitude of inefficiency of the DMUs that are

suboptimal. The efficient DMUs are those that attain efficient frontier and are identified by a

DEA efficiency rating of θ = 1. The inefficient DMUs are identified by the efficiency score of

less than 1 (θ < 1). Column 1 of Table 2 is the results of the average multicast energy computed

by the RLNC reports. This result was presented in [43]. Column 2 of Tables 2 and 3 report the

results of DEA technical efficiency and inefficiency scores of 54 wireless networks, respectively.

From Table 2, only DMU9, DMU18, DMU27, and DMU45 have the efficiency score of θ = 1 (i.e.,

100%) and thus they are identified as efficient. Other DMUs have efficiency scores of less than

1 (θ < 1) but greater than 0 and are identified as inefficient. It is possible for inefficient DMUs to

improve their technical efficiency scores by reducing certain inputs using input orientation.

For example, DMU1 can improve its technical efficiency score by reducing certain inputs up to

73.4% (100–26.6). Similarly, DMU2 can do so with approximately 63.1% of input reduction.

However, DMU36 is closer to an efficiency frontier and needs only a 2.4% reduction of its input

resources. This is achieved using the slack model.

6.3. Evaluation of slacks and targeted multicast energy

Column 4 of Table 2 presents the targeted results using slack and projection. In the slack

model, none of the efficient DMUs have a slack, meaning that slacks exist only for those DMUs

identified as inefficient. The slacks are obtained after proportional reductions in inputs. The

slack is essential whenever a wireless network cannot reach the targeted multicast energy.

Then, slacks are required to project such wireless networks to the targeted multicast energy

which is their efficient frontier. The general rule is that a DMU with at least a slack input value

is needed to be projected into the frontier, but a DMU that has zero slack for all the inputs does

not need any projection because it already reached targeted efficient frontier. The targeted

multicast energy is calculated by multiplying the average multicast energy with the technical

efficiency score, and the slack values are subtracted. This calculation is used to achieve the

target set for multicast energy.

6.4. Benchmarking for ERS and lambdas evaluation

The benchmark model addresses the benchmark problem. It is a model for establishing the

standard of excellence. The model is able to determine the efficiency reference set (ERS) and

lambdas of the inefficient wireless networks. Lambdas define the amount of inputs to be

reduced for an inefficient wireless network to catch up with their peers that are already

operating efficiently. We consider the same data set used for envelopment and slack model.

The implementation procedures for benchmarking are also similar. The same DEA solver is
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DMU Ave. energy (RLNC) Efficiency score (%) Inefficiency score (%) Targeted energy

DMU1 4.5 30 70 1.3

DMU2 5.5 40.1 59.9 2.2

DMU3 6.2 49.2 50.8 3.1

DMU4 6.8 58 42 4

DMU5 7.3 66.3 33.7 4.9

DMU6 7.2 78 22 5.6

DMU7 8.1 82.4 17.6 6.7

DMU8 8.8 90 10 7.6

DMU9 8.5 100 0 8.5

DMU10 5.2 27.5 72.5 1.4

DMU11 5.6 39.5 60.5 2.2

DMU12 6.3 48.7 51.3 3.1

DMU13 6.9 57.3 42.7 3.9

DMU14 7.1 67.1 32.9 4.8

DMU15 7.2 77.8 22.2 5.6

DMU16 7.7 84.4 15.6 6.5

DMU17 8.6 90 10 7.5

DMU18 8.3 100 0 8.3

DMU19 4.2 30.3 69.7 1.3

DMU20 5.3 36.5 63.5 1.9

DMU21 5.4 48.3 51.7 2.6

DMU22 6.1 54.5 45.5 3.3

DMU23 6.2 64.5 35.5 4

DMU24 6.4 73.4 26.6 4.7

DMU25 6.6 81.8 18.2 5.4

DMU26 7.3 90 10 6.1

DMU27 6.7 100 0 6.7

DMU28 3.6 34.9 65.1 1.3

DMU29 5.1 37.7 62.3 1.9

DMU30 5.6 46.8 53.2 2.6

DMU31 5.9 56.1 43.9 3.3

DMU32 6.1 65.3 34.7 4

DMU33 6.8 69.9 30.1 4.7

DMU34 6.6 81.2 18.8 5.4

DMU35 7.1 87 13 6.2

DMU36 7.1 96.8 3.2 6.9
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used for the benchmark model. The benchmark model is able to identify the ERS and calculate

the lambda values.

Table 3 is extracted from the DEA simulation output sheet. The network administrators whose

network is inefficient can observe the benchmark networks that they need to catch upwith. From

Table 3, the full efficient networkmay consider itself to be its own “benchmarks.” This is because

efficient network has already achieved 100% efficiency. So, benchmark for DMU9 is DMU9 and

for DMU18 is DMU18. The same applies to DMU27 and DMU45. However, for inefficient ad hoc

networks, their benchmarks are one or many of the efficient ad hoc networks. For example, a

benchmark for DMU2 and DMU3 are DMU9, DMU18 and DMU27. This means, DMU2 and

DMU3 must use a combination from DMU9, DMU18 and DMU27 to become efficient.

Another benchmark analysis is the lambda value. This benchmark analysis calculates the

amounts of benchmark needed from a DMU to achieve efficiency. These values are reported

as magnitude (lambda) next to each benchmark DMU on Table 3. For instance, as seen from

Table 3 and as shown in Figure 3, DMU16 will attempt to become like DMU18 (blue bar) more

than DMU27 (red bar) as observed from their respective lambda weights of DMU18 and

DMU27 (λ18 = 71.3 and λ27 = 8.7).

DMU Ave. energy (RLNC) Efficiency score (%) Inefficiency score (%) Targeted energy

DMU37 3.1 40.1 59.9 1.3

DMU38 4.6 41 59 1.9

DMU39 4.8 53 47 2.5

DMU40 4.8 66.2 33.8 3.2

DMU41 5.6 68 32 3.8

DMU42 5.6 79 21 4.4

DMU43 6.3 80.6 19.4 5

DMU44 6.3 90.1 9.9 5.7

DMU45 6.3 100 0 6.3

DMU46 3.6 34.8 65.2 1.3

DMU47 4.3 43.8 56.2 1.9

DMU48 5.1 49.7 50.3 2.5

DMU49 5.1 61.5 38.5 3.2

DMU50 5.5 69.3 30.7 3.8

DMU51 5.7 76.8 23.2 4.4

DMU52 6.4 78.7 21.3 5.1

DMU53 6.4 88.6 11.4 5.7

DMU54 6.5 97.6 2.4 6.3

Table 2. Results of the average multicast energy computed by network coding (RLNC) algorithm, the envelopment

model, (efficiency and inefficiency), and the projected multicast energy computed by DEA Solver.
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DMUs Efficiency reference set (ERS) Lambdas values (%)

DMU1 DMU18, DMU27 0.020 19.98

DMU2 DMU9, DMU18, DMU27 7.310 2.520 20.17

DMU3 DMU9, DMU18, DMU27 19.28 2.300 18.41

DMU4 DMU9, DMU18, DMU27 32.03 2.000 15.98

DMU5 DMU9, DMU18, DMU27 45.89 1.570 12.54

DMU6 DMU9, DMU18, DMU27 51.99 2.000 16.00

DMU7 DMU9, DMU18, DMU27 74.54 0.610 4.850

DMU8 DMU9 90.00

DMU9 DMU9 100.0

DMU10 DMU18, DMU27 5.000 15.00

DMU11 DMU18, DMU27 10.91 19.09

DMU12 DMU18, DMU27 22.69 17.31

DMU13 DMU18, DMU27 35.30 14.70

DMU14 DMU18, DMU27 45.86 14.14

DMU15 DMU18, DMU27 54.47 15.53

DMU16 DMU18, DMU27 71.28 8.720

DMU17 DMU9 90.00

DMU18 DMU18 100.0

DMU19 DMU45 20.00

DMU20 DMU27, DMU45 10.44 19.56

DMU21 DMU27, DMU45 15.14 24.86

DMU22 DMU27, DMU45 36.41 13.59

DMU23 DMU27, DMU45 46.63 13.37

DMU24 DMU27, DMU45 59.82 10.18

DMU25 DMU27, DMU45 74.70 5.300

DMU26 DMU27, DMU45 31.69 58.31

DMU27 DMU27 100.0

DMU28 DMU45 20.00

DMU29 DMU27, DMU45 6.970 23.03

DMU30 DMU27, DMU45 19.50 20.50

DMU31 DMU27, DMU45 31.77 18.23

DMU32 DMU27, DMU45 44.20 15.80

DMU33 DMU18, DMU27 0.360 69.64

DMU34 DMU27, DMU45 76.40 3.600

DMU35 DMU18, DMU27 8.970 81.03

DMU36 DMU18, DMU27 9.610 90.39

DMU37 DMU45 20.00
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DMUs Efficiency reference set (ERS) Lambdas values (%)

DMU38 DMU45 30.00

DMU39 DMU45 40.00

DMU40 DMU45 50.00

DMU41 DMU45 60.00

DMU42 DMU45 70.00

DMU43 DMU45 80.00

DMU44 DMU45 90.00

DMU45 DMU45 100.00

DMU46 DMU45 20.00

DMU47 DMU45 30.00

DMU48 DMU45 40.00

DMU49 DMU45 50.00

DMU50 DMU45 60.00

DMU51 DMU45 70.00

DMU52 DMU27, DMU45 5.290 74.71

DMU53 DMU27, DMU45 5.630 84.37

DMU54 DMU27, DMU45 9.660 90.34

Table 3. ERS and lambdas of input-oriented variable benchmark.

Figure 3. Benchmarks and lambdas of the input-oriented variable benchmark.
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7. Conclusion

This chapter studied the existing network coding algorithm and investigated the efficiency

performance of the multicast energy in wireless networks. The previous reports have shown

that network coding based on effective evaluation is sub-optimal because they were largely

calculated using central tendency performance such as average and standard deviation. While

effective performance is a good evaluation tool, it is not enough to measure the actual efficiency

of networks. In order to appropriately evaluate the network efficiency, a new algorithm based on

efficiency frontier was considered for the evaluation. With this approach, the targeted multicast

energy for wireless networks is achieved using envelopment, slack, and benchmarking models.

These models were formulated upon input-oriented CCR/CRS assumptions. The aim of this

chapter was to achieve economic efficiency by ensuring that wireless networks are multicast at

the targeted energy rather than average energy. Furthermore, this was achieved without sacrific-

ing the network performance.
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