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1. Introduction  

Embedded systems typically consist of application specific hardware parts and 
programmable parts, e.g. processors like DSPs, core processors or ASIPs. In comparison to 
the hardware parts, the software parts are much easier to develop and modify. Thus, 
software is less expensive in terms of costs and development time. Hardware, however, 
provides better performance. For this reason, a system designer's goal is to design a system 
fulfilling all system constraints. The co-design phase, during which the system specification 
is partitioned onto hardware and programmable parts of the target architecture, is called 
Hardware/Software partitioning. This phase represents one key issue during the design 
process of heterogeneous systems. Some early co-design approaches [Marrec et al. 1998, 
Cloute et al. 1999] carried out the HW/SW partitioning task manually. This manual 
approach is limited to small design problems with small number of constituent modules. 
Additionally, automatic Hardware/Software partitioning is of large interest because the 
problem itself is a very complex optimization problem.  
Varieties of Hardware/Software partitioning approaches are available in the literature. 
Following Nieman [1998], these approaches can be distinguished by the following aspects: 
1. The complexity of the supported partitioning problem, e.g. whether the target 

architecture is fixed or optimized during partitioning. 
2. The supported target architecture, e.g. single-processor or multi-processor, ASIC or 

FPGA-based hardware. 
3. The application domain, e.g. either data-flow or control-flow dominated systems. 
4. The optimization goal determined by the chosen cost function, e.g. hardware 

minimization under timing (performance) constraints, performance maximization 
under resource constraints, or low power solutions. 

5. The optimization technique, including heuristic, probabilistic or exact methods, 
compared by computation time and the quality of results. 

6. The optimization aspects, e.g. whether communication and/or hardware sharing are 
taken into account. 

7. The granularity of the pieces for which costs are estimated for partitioning, e.g. granules 
at the statement, basic block, function, process or task level. 

8. The estimation method itself, whether the estimations are computed by special 
estimation tools or by analyzing the results of synthesis tools and compilers. 
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9. The cost metrics used during partitioning, including cost metrics for hardware 
implementations (e.g. execution time, chip area, pin requirements, power consumption, 
testability metrics), software cost metrics (e.g. execution time, power consumption, 
program and data memory usage) and interface metrics (e.g. communication time or 
additional resource-power costs). 

10. The number of these cost metrics, e.g. whether only one hardware solution is 
considered for each granule or a complete Area/Time curve. 

11. The degree of automation. 
12. The degree of user-interaction to exploit the valuable experience of the designer. 
13. The ability for Design-Space-Exploration (DSE) enabling the designer to compare 

different partitions and to find alternative solutions for different objective functions in 
short computation time. 

In this Chapter, we investigate the application of the Particle Swarm Optimization (PSO) 
technique for solving the Hardware/Software partitioning problem. The PSO is attractive 
for the Hardware/Software partitioning problem as it offers reasonable coverage of the 
design space together with O(n) main loop's execution time, where n is the number of 
proposed solutions that will evolve to provide the final solution.  
This Chapter is an extended version of the authors’ 2006 paper [Abdelhalim et al. 2006]. The 
organization of this chapter is as follows: In Section 2, we introduce the HW/SW 
partitioning problem. Section 3 introduces the Particle Swarm Optimization formulation for 
HW/SW Partitioning problem followed by a case study. Section 4 introduces the technique 
extensions, namely, hardware implementation alternatives, HW/SW communications 
modeling, and fine tuning algorithm. Finally, Section 5 gives the conclusions of our work. 

2. HW/SW Partitioning 

The most important challenge in the embedded system design is partitioning; i.e. deciding 
which components (or operations) of the system should be implemented in hardware and 
which ones in software. The granularity of each component can be a single instruction, a 
short sequence of instructions, a basic block or a function (procedure). To clarify the 
HW/SW partitioning problem, let us represent the system by a Data Flow Graph (DFG) that 
defines the sequencing of the operations starting from the input capture to the output 
evaluation. Each node in this DFG represents a component (or operation). Implementing a 
given component in HW or in SW implies different delay/ area/ power/ design-time/ 
time-to-market/ … design costs.  The HW/SW partitioning problem is, thus, an 
optimization problem where we seek to find the partition ( an  assignment vector of each 
component to HW or SW) that minimizes a user-defined global cost function (or functions) 
subject to given area/ power/ delay …constraints.  Finding an optimal HW/SW partition is 
hard because of the large number of possible solutions for a given granularity of the 
“components” and the many different alternatives for these granularities. In other words, 
the HW/SW partitioning problem is hard since the design (search) space is typically huge. 
The following survey overviews the main algorithms used to solve the HW/SW partitioning 
problem. However, this survey is by no means comprehensive.  
Traditionally, partitioning was carried out manually as in the work of Marrec et al. [1998] 
and Cloute et al. [1999]. However, because of the increase of complexity of the systems, 
many research efforts aimed at automating the partitioning as much as possible. The 
suggested partition approaches differ significantly according to the definition they used to 
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the problem. One of the main differences is whether to include other tasks (such as scheduling 
where starting times of the components should be determined) as in Lopez-Vallejo et al [2003] 
and in Mie et al. [2000], or just map components to hardware or software only as in the work 
of Vahid [2002] and Madsen et al [1997]. Some formulations assign communication events to 
links between hardware and/or software units as in Jha and Dick [1998]. The system to be 
partitioned is generally given in the form of task graph, the graph nodes are determined by the 
model granularity, i.e. the semantic of a node. The node could represent a single instruction, 
short sequence of instructions [Stitt et al. 2005], basic block [Knudsen et al. 1996], a function or 
procedure [Ditzel 2004, and Armstrong et al. 2002]. A flexible granularity may also be used 
where a node can represent any of the above [Vahid 2002; Henkel and Ernst 2001]. Regarding 
the suggested algorithms, one can differentiate between exact and heuristic methods. The 
proposed exact algorithms include, but are not limited to, branch-and-bound [Binh et al 1996], 
dynamic programming [Madsen et al. 1997], and integer linear programming [Nieman  1998; 
Ditzel 2004]. Due to the slow performance of the exact algorithms, heuristic-based algorithms 
are proposed. In particular, Genetic algorithms are widely used [Nieman  1998; Mann 2004] as 
well as simulated annealing [Armstrong et al 2002; Eles et al. 1997], hierarchical clustering 
[Eles et al. 1997], and Kernighan-Lin based algorithms such as in [Mann 2004]. Less popular 
heuristics are used such as Tabu search [Eles et al. 1997] and greedy algorithms [Chatha and 
Vemuri 2001]. Some researchers used custom heuristics, such as Maximum Flow-Minimum 
Communications (MFMC) [Mann 2004], Global Criticality/Local Phase (GCLP) [Kalavade and 
Lee 1994], process complexity [Adhipathi 2004], the expert system presented in [Lopez-Vallejo 
et al. 2003], and Balanced/Unbalanced partitioning (BUB) [Stitt 2008]. 
The ideal Hardware/Software partitioning tool produces automatically a set of high-quality 
partitions in a short, predictable computation time. Such tool would also allow the designer to 
interact with the partitioning algorithm. 
De Souza et al. [2003] propose the concepts of ”quality requisites” and a method based on 
Quality Function Deployment (QFD) as references to represent both the advantages and 
disadvantages of existing HW/SW partitioning methods,  as well as, to define a set of features 
for an optimized partitioning algorithm. They classified the algorithms according to the 
following criterion: 
1. Application domain: whether they are "multi-domain" (conceived for more than one or 

any application domain, thus not considering particularities of these domains and being 
technology-independent) or "specific domain" approaches. 

2. The target architecture type. 
3. Consideration for the HW-SW communication costs. 
4. Possibility of choosing the best implementation alternative of HW nodes. 
5. Possibility of sharing HW resources among two or more nodes. 
6. Exploitation of HW-SW parallelism. 
7. Single-mode or multi-mode systems with respect to the clock domains. 
In this Chapter, we present the use of the Particle Swarm Optimization techniques to solve the 
HW/SW partitioning problem. The aforementioned criterions will be implicitly considered 
along the algorithm presentation. 

3. Particle swarm optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization technique 
developed by Eberhart and Kennedy  in 1995 [Kennedy and Eberhart 1995; Eberhart and 
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Kennedy 1995; Eberhart and Shi 2001]. The PSO algorithm is inspired by social behavior of 
bird flocking, animal hording, or fish schooling. In PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles. PSO 
has been successfully applied in many areas. A good bibliography of PSO applications could 
be found in the work done by Poli [2007]. 

3.1 PSO algorithm 

As stated before, PSO simulates the behavior of bird flocking. Suppose the following 
scenario: a group of birds is randomly searching for food in an area. There is only one piece 
of food in the area being searched. Not all the birds know where the food is. However, 
during every iteration, they learn via their inter-communications, how far the food is. 
Therefore, the best strategy to find the food is to follow the bird that is nearest to the food.  
PSO learned from this bird-flocking scenario, and used it to solve optimization problems. In 
PSO, each single solution is a "bird" in the search space. We call it "particle". All of particles 
have fitness values which are evaluated by the fitness function (the cost function to be 
optimized), and have velocities which direct the flying of the particles. The particles fly 
through the problem space by following the current optimum particles. 
PSO is initialized with a group of random particles (solutions) and then searches for optima 
by updating generations. During every iteration, each particle is updated by following two 
"best" values. The first one is the position vector of the best solution (fitness) this particle has 
achieved so far. The fitness value is also stored. This position is called pbest. Another "best" 
position that is tracked by the particle swarm optimizer is the best position, obtained so far, 
by any particle in the population. This best position is the current global best and is called 
gbest.  
After finding the two best values, the particle updates its velocity and position according to 
equations (1) and (2) respectively. 
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where i
kv is the velocity of ith particle at the kth iteration, i

kx  is current the solution (or 

position) of the ith particle. r1 and r2 are random numbers generated uniformly between 0 
and 1. c1 is the self-confidence (cognitive) factor and c2 is the swarm confidence (social) 
factor. Usually c1 and c2 are in the range from 1.5 to 2.5. Finally, w is the inertia factor that 
takes linearly decreasing values downward from 1 to 0 according to a predefined number of 
iterations as recommended by Haupt and Haupt [2004].  
The 1st term in equation (1) represents the effect of the inertia of the particle, the 2nd term 
represents the particle memory influence, and the 3rd term represents the swarm (society) 
influence. The flow chart of the procedure is shown in Fig. 1. 
The velocities of the particles on each dimension may be clamped to a maximum velocity 
Vmax, which is a parameter specified by the user. If the sum of accelerations causes the 
velocity on that dimension to exceed Vmax, then this velocity is limited to Vmax [Haupt and 
Haupt 2004]. Another type of clamping is to clamp the position of the current solution to a 
certain range in which the solution has valid value, otherwise the solution is meaningless 
[Haupt and Haupt 2004]. In this Chapter, position clamping is applied with no limitation on 
the velocity values. 
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Figure 1. PSO Flow chart 

3.2 Comparisons between GA and PSO 

The Genetic Algorithm (GA) is an evolutionary optimizer (EO) that takes a sample of 
possible solutions (individuals) and employs mutation, crossover, and selection as the 
primary operators for optimization. The details of GA are beyond the scope of this chapter, 
but interested readers can refer to Haupt and Haupt [2004]. In general, most of evolutionary 
techniques have the following steps:  

1. Random generation of an initial population. 
2. Reckoning of a fitness value for each subject. This fitness value depends directly on 

the distance to the optimum. 
3. Reproduction of the population based on fitness values.  
4. If requirements are met, then stop. Otherwise go back to step 2. 

From this procedure, we can learn that PSO shares many common points with GA. Both 
algorithms start with a group of randomly generated population and both algorithms have 
fitness values to evaluate the population, update the population and search for the optimum 
with random techniques, and finally, check for the attainment of a valid solution.  
On the other hand, PSO does not have genetic operators like crossover and mutation. Particles 
update themselves with the internal velocity. They also have memory, which is important to 
the algorithm (even if this memory is very simple as it stores only pbesti  and gbestk positions). 
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Also, the information sharing mechanism in PSO is significantly different: In GAs, 
chromosomes share information with each other. So the whole population moves like one 
group towards an optimal area even if this move is slow. In PSO, only gbest gives out the 
information to others. It is a one-way information sharing mechanism. The evolution only 
looks for the best solution. Compared with GA, all the particles tend to converge to the best 
solution quickly in most cases as shown by Eberhart and Shi [1998] and Hassan et al. [2004]. 
When comparing the run-time complexity of the two algorithms, we should exclude the 
similar operations (initialization, fitness evaluation, and termination) form our comparison. 
We exclude also the number of generations, as it depends on the optimization problem 
complexity and termination criteria (our experiments in Section 3.4.2 indicate that PSO needs 
lower number of generations than GA to reach a given solution quality). Therefore, we focus 
our comparison to the main loop of the two algorithms. We consider the most time-consuming 
processes (recombination in GA as well as velocity and position update in PSO). 
For GA, if the new generation replaces the older one, the recombination complexity is O(q), 
where q is group size for tournament selection. In our case, q equals the Selection rate*n, 
where n is the size of population. However, if the replacement strategy depends on the 
fitness of the individual, a sorting process is needed to determine which individuals to be 
replaced by which new individuals. This sorting is important to guarantee the solution 
quality. Another sorting process is needed any way to update the rank of the individuals at 
the end of each generation. Note that the quick sorting complexity ranges from O(n2) to 
O(nlog

2
 n) [Jensen 2003, Harris and Ross 2006].  

In the other hand, for PSO, the velocity and position update processes complexity is O(n) as 
there is no need for pre-sorting. The algorithm operates according to equations (1) and (2) 
on each individual (particle) [Rodriguez et al. 2008]. 
From the above discussion, GA's complexity is larger than that of PSO.  Therefore, PSO is 
simpler and faster than GA. 

3.3 Algorithm Implementation  

The PSO algorithm is written in the MATLAB program environment. The input to the 
program is a design that consists of the number of nodes.  Each node is associated with cost 
parameters. For experimental purpose, these parameters are randomly generated. The used 
cost parameters are: 
A Hardware implementation cost: which is the cost of implementing that node in hardware 
(e.g. number of gates, area, or number of logic elements).  This hardware cost is uniformly 
and randomly generated in the range from 1 to 99 [Mann 2004]. 
A Software implementation cost: which is the cost of implementing that node in software 
(e.g. execution delay or number of clock cycles). This software cost is uniformly and 
randomly generated in the range from 1 to 99 [Mann 2004]. 
A Power implementation cost: which is the power consumption if the node is implemented 
in hardware or software. This power cost is uniformly and randomly generated in the range 
from 1 to 9. We use a different range for Power consumption values to test the addition of 
other cost terms with different range characteristics. 
Consider a design consisting of m nodes. A possible solution (particle) is a vector of m 
elements, where each element is associated to a given node. The elements assume a “0” 
value (if node is implemented in software) or a “1” value (if the node is implemented in 
hardware).  There are n initial particles; the particles (solutions) are initialized randomly. 
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The velocity of each node is initialized in the range from (-1) to (1), where negative velocity 
means moving the particle toward 0 and positive velocity means moving the particle toward 
1. 
For the main loop, equations (1), (2) are evaluated in each loop. If the particle goes outside 
the permissible region (position from 0 to 1), it will be kept on the nearest limit by the 
aforementioned clamping technique.  
The cost function is called for each particle, the used cost function is a normalized weighted 
sum of the hardware, software, and power cost of each particle according to equation (3). 

 
⎭
⎬
⎫

⎩
⎨
⎧

γ+β+α=
tcosallPOWER

tcosPOWER

tcosallSW

tcosSW

tcosallHW

tcosHW
*100Cost  (3) 

where allHWcost (allSWcost) is the Maximum Hardware (Software) cost when all nodes 
are mapped to Hardware (Software), and allPOWERcost is the average of the power cost of  

all-Hardware solution and all-Software solution. α, β, and γ are weighting factors. They are 
set by the user according to his/her critical design parameters. For the rest of this chapter, 
all the weighting factors are considered equal unless otherwise mentioned. The 
multiplication by 100 is for readability only.  
The HWCost (SWCost) term represent the cost of the partition implemented in hardware 
(software), it could represent the area and the delay of the partition (the area and the delay 
of the software partition). However, the software cost has a fixed (CPU area) term that is 
independent on the problem size. 
The weighted sum of normalized metrics is a classical approach to transform Multi-objective 
Optimization problems into a single objective optimization [Donoso and Fabregat 2007] 
The PSO algorithm proceeds according to the flow chart shown in Fig. 1. For simplicity, the 
cost value could be considered as the inverse of the fitness where good solutions have low 
cost values. 
According to equations (1) and (2), the particle nodes values could take any value between 0 
and 1. However, as a discrete, i.e. binary, partitioning problem, the nodes values must take 
values of 1 or 0.  Therefore, the position value is rounded to the nearest integer [Hassan et al. 
2004]. 
The main loop is terminated when the improvement in the global best solution gbest for the 

last number iterations is less than a predefined value (ε). The number of these iterations and 

the value of (ε) are user controlled parameters. 
For GA parameters, the most important parameters are: 

• Selection rate which is the percentage of the population members that are kept 
unchanged while the others go under the crossover operators.  

• Mutation rate which is the percentage of the population that undergo the gene 
alteration process after each generation.  

• The mating technique which determines the mechanism of generating new 
children form the selected parents. 

3.4 Results 

3.4.1 Algorithms parameters 

The following experiments are performed on a Pentium-4 PC with 3GHz processor speed, 1 
GB RAM and WinXP operating system. The experiments were performed using MATLAB 7 
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program. The PSO results are compared with the GA. Common parameters between the two 
algorithms are as follows: 

No. of particles (Population size) n = 60, design size m = 512 nodes, ε = 100 * eps, where eps 
is defined in MATLAB as a very small (numerical resolution) value and equals 2.2204*10-16 
[Hanselman and Littlefield 2001]. 
For PSO, c1 = c2 = 2, w starts at 1 and decreases linearly until reaching 0 after 100 iterations. 
Those values are suggested in [Shi and Eberhart 1998; Shi and Eberhart 1999; Zheng et al. 
2003].  
To get the best results for GA, the parameters values are chosen as suggested in [Mann 2004; 
Haupt and Haupt 2004] where Selection rate = 0.5,  Mutation rate = 0.05 , and The mating is 
performed using randomly selected single point crossover. 
The termination criterion is the same for both PSO and GA. The algorithm stops after 50 
unchanged iterations, but at least 100 iterations must be performed to avoid quick 
stagnation.  

3.4.2 Algorithm results 

Figures 2 and 3 shows the best cost as well as average population cost of GA and PSO 
respectively.  
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Figure 2. GA Solution   

As shown in the figures, the initialization is the same, but at the end, the best cost of GA is 
143.1 while for PSO it is 131.6.  This result represents around 8% improvement in the result 
quality in favor of PSO. Another advantage of PSO is its performance (speed), as it 
terminates after 0.609 seconds while GA terminates after 0.984 seconds. This result 
represents around 38% improvement in performance in favor of PSO. 
The results vary slightly from one run to another due to the random initialization.  Hence, 
decisions based on a single run are doubtful. Therefore, we ran the two algorithms 100 times 
for the same input and took the average of the final costs. We found the average best cost of 
GA is 143 and it terminates after 155 seconds, while for the PSO the average best cost was 
131.6 and it terminates after 110.6 seconds. Thus, there are 8% improvement in the result 
quality and 29% speed improvement. 
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Figure 3. PSO Solution  

3.4.3 Improved Algorithms. 

To further enhance the quality of the results, we tried cascading two runs of the same 
algorithm or of different algorithms. There are four possible cascades of this type: GA 
followed by another GA run (GA-GA algorithm), GA followed by PSO run (GA – PSO 
algorithm), PSO followed by GA run (PSO-GA algorithm), and finally PSO followed by 
another PSO run (PSO-PSO algorithm). For these cascaded algorithms, we kept the 
parameters values the same as in the Section 3.4.1.  
Only the last combination, PSO-PSO algorithm proved successful.  For GA-GA algorithm, 
the second GA run is initialized with the final results of the first GA run. This result can be 
explained as follows. When the population individuals are similar, the crossover operator 
yields no improvements and the GA technique depends on the mutation process to escape 
such cases, and hence, it slowly escapes local minimums. Therefore, cascading several GA 
runs takes a very long time to yield significant improvement in results. 
The PSO-GA algorithm did not fair any better. This negative result can be explained as 
follows. At the end of the first PSO run, the whole swarm particles converge around a 
certain point (solution) as shown in Fig. 3. Thus, the GA is initialized with population 
members of close fitness with small or no diversity. In fact, this is a poor initialization of the 
GA, and hence it is not expected to improve the PSO results of the first step of this algorithm 
significantly. Our numerical results confirmed this conclusion 
The GA-PSO algorithm was not also successful. Figures 4 and 5 depict typical results for this 
algorithm. PSO starts with the final solutions of the GA stage (The GA best output cost is 
~143, and the population final average is ~147) and continues the optimization until it 
terminates with a best output cost equals ~132. However, this best output cost value is 
achieved by PSO alone as shown in Fig. 3. This final result could be explained as the PSO 
behavior is not strongly dependent on the initial particles position obtained by GA due to 
the random velocities assigned to the particles at the beginning of PSO phase. Notice that, in 
Fig. 5, the cost increases at the beginning due to the random velocities that force the particles 
to move away from the positions obtained by GA phase. 
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Figure 4. GA output of GA-PSO 
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Figure 5. PSO output of GA-PSO 

3.4.4 Re-exited PSO algorithm. 

As the PSO proceeds, the effect of the inertia factor (w) is decreased until reaching 0. 

Therefore, 
i

1kv + at the late iterations depends only on the particle memory influence and the 

swarm influence (2nd and 3rd terms in equation (1)). Hence, the algorithm may give non-
global optimum results. A hill-climbing algorithm is proposed, this algorithm is based on 
the assumption that if we take the run's final results (particles positions) and start allover 
again with (w) = 1 and re-initialize the velocity (v) with new random values, and keeping 
the pbest and gbest vectors in the particles memories, the results can be improved. We 
found that the result quality is improved with each new round until it settles around a 
certain value. Fig. 6 plots the best cost in each round. The curve starts with cost ~133 and 
settles at round number 30 with cost value ~116.5 which is significantly below the results 
obtained in the previous two subsections (about 15% quality improvement). The program 
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performed 100 rounds, but it could be modified to stop earlier by using a different 
termination criterion (i.e.  if the result remains unchanged for a certain number of rounds). 
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Figure 6. Successive improvements in Re-excited PSO 

As the new algorithm depends on re-exciting new randomized particle velocities at the 
beginning of each round, while keeping the particle positions obtained so far, it allows 
another round of domain exploration. We propose to name this successive PSO algorithm as 
the Re-excited PSO algorithm. In nature, this algorithm looks like giving the birds a big 
push after they are settled in their best position. This push re-initializes the inertia and 
speed of the birds so they are able to explore new areas, unexplored before. Hence, if the 
birds find a better place, they will go there, otherwise they will return back to the place from 
where they were pushed.  
The main reason of the advantage of re-excited PSO over successive GA is as follows: The 
PSO algorithm is able to switch a single node from software to hardware or vice versa 
during a single iteration. Such single node flipping is difficult in GA as the change is done 
through crossover or mutation. However, crossover selects large number of nodes in one 
segment as a unit of operation. Mutation toggles the value of a random number of nodes. In 
either case, single node switching is difficult and slow. 
This re-excited PSO algorithm can be viewed as a variant of the re-start strategies for PSO 
published elsewhere. However, our re-excited PSO algorithm is not identical to any of these 
previously published re-starting PSO algorithms as discussed below. 
In Settles and Soule [2003], the restarting is done with the help of Genetic Algorithm 
operators, the goal is to create two new child particles whose position is between the parents 
position, but accelerated away from the current direction to increase diversity. The 
children’s velocity vectors are exchanged at the same node and the previous best vector is 
set to the new position vector, effectively restarting the children’s memory. Obviously, our 
restarting strategy is different in that it depends on pure PSO operators.  
In Tillett et al. [2005], the restarting is done by spawning a new swarm when stagnation 
occurs, i.e. the swarm spawns a new swarm if a new global best fitness is found. When a 
swarm spawns a new swarm, the spawning swarm (parent) is unaffected. To form the 
spawned (child) swarm, half of the children particles are randomly selected from the parent 
swarm and the other half are randomly selected from a random member of the swarm 
collection (mate). Swarm creation is suppressed when there are large numbers of swarms in 
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existence. Obviously, our restarting strategy is different in that it depends on a single 
swarm. 
In Pasupuleti and Battiti [2006], the Gregarious PSO or G-PSO, the population is attracted by 
the global best position and each particle is re-initialized with a random velocity if it is stuck 
close to the global best position. In this manner, the algorithm proceeds by aggressively and 
greedily scouting the local minima whereas Basic-PSO proceeds by trying to avoid them. 
Therefore, a re-initialization mechanism is needed to avoid the premature convergence of 
the swarm. Our algorithm differs than G-PSO in that the re-initialization strategy depends 
on the global best particle not on the particles that stuck close to the global best position 
which saves a lot of computations needed to compare each particle position with the global 
best one. 
Finally, the re-start method of Van den Bergh [2002], the Multi-Start PSO (MPSO), is the 
nearest to our approach, except that when the swarm converges to a local optima. The 
MPSO records the current position and re-initialize the positions of the particles. The 
velocities are not re-initialized as MPSO depends on a different version of the velocity 
equation that guarantees that the velocity term will never reach zero. The modified 
algorithm is called Guaranteed Convergence PSO (GCPSO). Our algorithm differs in that we 
use the velocity update equation defined in Equation (1) and our algorithm re-initializes the 
velocity and the inertia of the particles but not the positions at the restart.  

3.5 Quality and Speed Comparison between GA, PSO, and re-excited PSO 

For the sake of fair comparison, we assumed that we have different designs where their 
sizes range from 5 nodes to 1020 nodes. We used the same parameters as described in 
previous experiments and we ran the algorithms on each design size 10 times and took the 
average results. Another stopping criterion is added to the re-excited PSO where it stops 
when the best result is the same for the last 10 rounds. Fig. 7 represents the design quality 
improvement of PSO over GA, re-excited PSO over GA, and re-excited PSO over PSO. We 
noticed that when the design size is around 512, the improvement is about 8% which 
confirms the quality improvement results obtained in Section 3.4.2. 
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Figure 7. Quality improvement 
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Figure 8. Speed improvement 

Fig. 8 represents the performance (speed) improvement of PSO over GA (original and fitted 
curve, the curve fitting is done using MATLAB Basic Fitting tool). Re-excited PSO is not 
included as it depends on multi-round scheme where it starts a new round internally when 
the previous round terminates, while GA and PSO runs once and produces their outputs 
when a termination criterion is met.  
It is noticed that in a few number of points in Fig. 8, the speed improvement is negative 
which means that GA finishes before PSO, but the design quality in Fig. 7 does not show 
any negative values. Fig. 7 also shows that, on the average, PSO outperforms GA by a ratio 
of 7.8% improvements in the result quality and Fig. 8 shows that, on the average, PSO 
outperforms GA by a ratio 29.3% improvement in speed. 
On the other hand, re-excited PSO outperforms GA by an average ratio of 17.4% in design 
quality, and outperforms normal PSO by an average ratio of 10.5% in design quality. 
Moreover, Fig. 8 could be divided into three regions. The first region is the small size 
designs region (lower than 400 nodes) where the speed improvement is large (from 40% to 
60%). The medium size design region (from 400 to 600 nodes) depicts an almost linear 
decrease in the speed improvement from 40% to 10%. The large size design region (bigger 
than 600 nodes) shows an  almost constant (around 10%) speed improvement, with some 
cases where GA is faster than PSO. Note that most of the practical real life HW/SW 
partitioning problems belong to the first region where the number of nodes < 400. 

3.6 Constrained Problem Formulation  

3.6.1 Constraints definition and violation handling 

In embedded systems, the constraints play an important role in the success of a design, where 
hard constraints mean higher design effort and therefore a high need for automated tools to 
guide the designer in critical design decisions. In most of the cases, the constraints are mainly the 
software deadline times (for real-time systems) and the maximum available area for hardware. 
For simplicity, we will refer to them as software constraint and hardware constraint respectively. 
Mann [2004] divided the HW/SW partitioning problem into 5 sub-problems (P1 – P5). The 
unconstrained problem (P5) is discussed in Section 3.3. The P1 problem involves with both 
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Hardware and Software constraints. The P2 (P3) problem deals with hardware (software) 
constrained designs. Finally, the P4 problem minimizes HW/SW communications cost while 
satisfying hardware and software constraints. The constraints affect directly the cost 
function. Hence, equation (3) should be modified to account for constraints violations. 
In Lopez-Vallejo et al. [2003] three different techniques are suggested for the cost function 
correction and evaluation: 
Mean Square Error minimization: This technique is useful for forcing the solution to meet 
certain equality, rather than inequality, constraints. The general expression for Mean Square 
Error based cost function is: 

 
2

i

2

ii

ii
constraint

)constraint(cost
*k  MSE_cost

−
=  (4)  

where constrainti is the constraint on parameter i and ki is a weighting factor. The costi is the 
parameter cost function. costi is calculated using the associated term (i.e. area or delay) of 
the general cost function (3).  
Penalty Methods: These methods punish the solutions that produce medium or large 
constraints violations, but allow invalid solutions close to the boundaries defined by the 
constraints to be considered as good solutions [Lopez-Vallejo et al. 2003]. The cost function 
in this case is formulated as: 

 ∑ ∑+=
i ci

ci

i

i
i )x,ci(viol*k

tcosTotal

)x(tcos
*k)x(Cost  (5) 

where x is the solution vector to be evaluated, ki and kci are weighting factors (100 in our 
case). i denotes the design parameters such as: area, delay, power consumption, etc., ci 
denotes a constrained parameter, and viol(ci,x) is the correction function of the constrained 
parameters. viol(ci,x) could be expressed in terms of the percentage of violation defined by : 
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Lopez-Vallejo and Lopez et al. [2003] proposed to use the squared value of viol(ci,x).  
The penalty methods have an important characteristic in which there might be invalid 
solutions with better overall cost than valid ones. In other words, the invalid solutions are 
penalized but could be ranked better than valid ones.  
Barrier Techniques: These methods forbid the exploration of solutions outside the allowed 
design-space. The barrier techniques rank the invalid solutions worse than the valid ones. 
There are two common forms of the barrier techniques. The first form assigns a constant 
high cost to all invalid solutions (for example infinity). This form is unable to differentiate 
between near-barrier or far-barrier invalid solutions. it also needs to be initialized with at 
least one valid solution, otherwise all the costs are the same (i.e. ∞) and the algorithm fails. 
The other form, suggested in Mann [2004], assigns a constant-base barrier to all invalid 
solutions. This base barrier could be a constant larger than maximum cost produced by any 
valid solution. In our case for example, from equation (3), each cost term is normalized such 
that its maximum value is one. Therefore, a good choice of the constant-base penalty is "one" 
for each violation ("one" for hardware violation, "one" for software violation, and so on). 
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3.6.2 Constraints modeling 

In order to determine the best method to be adopted, a comparison between the penalty 
methods (first order or second order percentage violation term) and the barrier methods 
(infinity vs. constant-base barrier) is performed. The details of the experiments are not 
shown here for the sake of brevity. 
Our experiments showed that combining the constant-base barrier method with any penalty 
method (first-order error or second-order error term) gives higher quality solutions and 
guarantees that no invalid solutions beat valid ones. Hence, in the following experiments, 
equation (7) will be used as the cost function form. Our experiments further indicate that the 
second-order error penalty method gives a slight improvement over first-order one.  
For double constraints problem (P1), generating valid initial solutions is hard and time 
consuming, and hence, the barrier methods should be ruled out for such problems. When 
dealing with single constraint problems (P2 and P3), one can use the Fast Greedy Algorithm 
(FGA) proposed by Mann [2004] to generate valid initial solutions. FGA starts by assigning 
all nodes to the unconstrained side. It then proceeds by randomly moving nodes to the 
constrained side until the constraint is violated.  

 ))ci(viol_Barrier)x,ci(viol_Penalty(k
tcosTotal

)x(tcos
*k)x(Cost

i ci
ci

i

i
i ++=∑ ∑  (7) 

3.6.3 Single constraint experiments 

As P2 and P3 are treated the same in our formulation, we consider the software constrained 
problem (P3) only. Two experiments were performed, the first one with relaxed constraint 
where the deadline (Maximum delay) is 40% of all-Software solution delay, the second one 
is a hard real-time system where the deadline is 15% of the all-Software solution delay. The 
parameters used are the same as in Section 3.4. Fast Greedy Algorithm is used to generate 
the initial solutions and re-excited PSO is performed for 10 rounds. In the cases of GA and 
normal PSO only, all results are based on averaging the results of 100 runs. 
For the first experiment; the average quality of the GA is ~ 137.6 while for PSO it is  ~ 131.3, 
and for re-excited PSO it is ~ 120. All final solutions are valid due to the initialization 
scheme used (Fast Greedy Algorithm). 
For the second experiment, the average quality of the solution of GA is ~ 147 while for PSO 
it is   ~ 137 and for re-excited PSO it is ~ 129. 
The results confirm our earlier conclusion that the re-excited PSO again outperforms normal 
PSO and GA,  and that the normal PSO again outperforms GA. 

3.6.4 Double constraints experiments 

When testing P1 problems, the same parameters as the single-constrained case are used 
except that FGA is not used for initialization. Two experiments were performed: balanced 
constraints where maximum allowable hardware area is 45% of the area of the all-Hardware 
solution and the maximum allowable software delay is 45% of the delay of the all-Software 
solution. The other one is an unbalanced-constraints problem where maximum allowable 
hardware area is 60% of area of the all-Hardware solution and the maximum allowable 
software delay is 20% of the delay of the all-Software solution. Note that these constraints 
are used to guarantee that at least a valid solution exists. 

www.intechopen.com



Particle Swarm Optimization 

 

64 

For the first experiment, the average quality of the solution of GA is ~ 158 and invalid 
solutions are obtained during the first 22 runs out of xx total runs. The best valid solution 
cost was 137. For PSO the average quality is ~ 131 with valid solutions during all the runs. 
The best valid solution cost was 128.6. Finally for the re-excited PSO; the final solution 
quality is 119.5. It is clear that re-excited PSO again outperforms both PSO and GA. 
For the second experiment; the average quality of the solution of GA is ~ 287 and no valid 
solution is obtained during the runs. Note that a constant penalty barrier of value 100 is 
added to the cost function in the case of a violation. For PSO the average quality is ~ 251 and 
no valid solution is obtained during the runs. Finally, for the re-excited PSO, the final 
solution quality is 125 (As valid solution is found in the seventh round). This shows the 
performance improvement of re-excited PSO over both PSO and GA. 
Hence, for the rest of this Chapter, we will use the terms PSO and re-excited PSO 
interchangeably to refer to the re-excited algorithm. 

3.7 Real-Life Case Study  

 

Figure 9. CDFG for JPEG encoding system [Lee et al. 2007c] 
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To further validate the potential of PSO algorithm for HW/SW partitioning problem we 
need to test it on a real-life case study, with a realistic cost function terrain. We also wanted 
to verify our PSO generated solutions against a published “benchmark” design. The 
HW/SW cost matrix for all the modules of such real life case study should be known. We 
carried out a comprehensive literature search in search for such case study. Lee et al. [2007c] 
provided such details for a case study of the well-known Joint Picture Expert Group (JPEG) 
encoder system. The hardware implementation is written in "Verilog" description language, 
while the software is written in "C" language. The Control-Data Flow Graph (CDFG) for this 
implementation is shown in Fig. 9. The authors pre-assumed that the RGB to YUV converter 
is implemented in SW and will not be subjected to the partitioning process. For more details 
regarding JPEG systems, interested readers can refer to Jonsson [2005]. 
Table 1 shows measured data for the considered cost metrics of the system components. 
Including such table in Lee et al. [2007c] allows us to compare directly our PSO search 
algorithm with the published ones without re-estimating the HW or SW costs of the design 
modules on our platform. Also, armed with this data, there is no need to re-implement the 
published algorithms or trying to obtain them from their authors. 

Execution Time Cost Percentage Power Consumption Component 

HW(ns) SW(us) HW(10-3) SW(10-3) HW(mw) SW(mw)  

155.264 9.38 7.31 0.58 4 0.096 Level Offset (FEa) 

1844.822 20000 378 2.88 274 45 DCT (FEb) 

1844.822 20000 378 2.88 274 45 DCT (FEc) 

1844.822 20000 378 2.88 274 45 DCT (FEd) 

3512.32 34.7 11 1.93 3 0.26 Quant (FEe) 

3512.32 33.44 9.64 1.93 3 0.27 Quant (FEf) 

3512.32 33.44 9.64 1.93 3 0.27 Quant (FEg) 

5.334 0.94 2.191 0.677 15 0.957 DPCM (FEh) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEi) 

5.334 0.94 2.191 0.677 15 0.957 DPCM(FEj) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEk) 

5.334 0.94 2.191 0.677 15 0.957 DPCM (FEl) 

399.104 13.12 35 0.911 61 0.069 ZigZag (FEm) 

2054.748 2.8 7.74 14.4 5 0.321 VLC (FEn) 

1148.538 43.12 2.56 6.034 3 0.021 RLE (FEo) 

2197.632 2.8 8.62 14.4 5 0.321 VLC (FEp) 

1148.538 43.12 2.56 6.034 3 0.021 RLE (FEq) 

2197.632 2.8 8.62 14.4 5 0.321 VLC (FEr) 

1148.538 43.12 2.56 6.034 3 0.021 RLE (FEs) 

2668.288 51.26 19.21 16.7 6 0.018 VLC (FEt) 

2668.288 50 1.91 16.7 6 0.018 VLC (FEu) 

2668.288 50 1.91 16.7 6 0.018 VLC (FEv) 

Table 1. Measured data for JPEG system 
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The data is obtained through implementing the hardware components targeting ML310 
board using Xilinx ISE 7.1i design platform. Xilinx Embedded Design Kit (EDK 7.1i) is used 
to measure the software implementation costs.  
The target board (ML310) contains Virtex2-Pro XC2vP30FF896 FPGA device that contains 
13696 programmable logic slices and 2448 Kbytes memory and two embedded IBM Power 
PC (PPC) processor cores. In general, one slice approximately represents two 4-input Look-
Up Tables (LUTs) and two Flip-Flops [Xilinx 2007]. 
The first column in the table shows the component name (cf. Fig. 9) along with a character 
unique to each component. The second and third columns show the power consumption in 
mWatts for the hardware and software implementations respectively. The fourth column 
shows the software cost in terms of memory usage percentage while the fifth column shows 
the hardware cost in terms of slices percentage. The last two columns show the execution 
time of the hardware and software implementations. 
Lee et al. [2007c] also provided detailed comparison of their methodology with another four 
approaches. The main problem is that the target architecture in Lee et al. [2007c] has two 
processors and allows multi-processor partitioning while our target architecture is based on 
a single processor. A slight modification in our cost function is performed that allows up to 
two processors to run on the software part concurrently. 
Equation (3) is used to model the cost function after adding the memory cost term as shown 
in Equation (8) 

 
⎭
⎬
⎫

⎩
⎨
⎧

η+γ+β+α=
tcosallMEM

tcosMEM

tcosallPOWER

tcosPOWER

tcosallSW

tcosSW

tcosallHW

tcosHW
*100Cost  (8) 

The added memory cost term (MEMcost) and its weight factor (η) account for the memory 
size (in bits). allMEMcost is the maximum size (upper-bound) of memory bits i.e., memory 
size of all software solution. 
Another modification to the cost function of Equation (8) is affected if the number of 
multiprocessors  is limited. Consider that we have only two processors. Thus, only two 
modules can be assigned to the SW side at any control step. For example, in the step 3 of Fig. 
9, no more than two DCT modules can be assigned to the SW side. The solution that assigns 
the three DCT modules of this step to SW side is penalized by a barrier violation term of 
value "one".  
Finally, as more than one hardware component could run in parallel, the hardware delay is 
not additive. Hence, we calculate the hardware delay by accumulation the maximum delay 
of each control steps as shown in Fig. 9. In other words, we calculate the critical-path delay.  
In Lee et al. [2007c], the results of four different algorithms were presented. However, for 
the sake brevity, details of such algorithms are beyond the scope of this chapter. We used 
these results and compared them with our algorithm in Table 2.  
In our experiments, the parameters used for the PSO are the population size is fixed to 50 
particles, the round terminates after 50 unimproved runs, and 100 runs must run at the 
beginning to avoid trapping in local minimum. The number of re-excited PSO rounds is 
selected by the user. 
The power constraint is constrained to 600 mW, area and memory are constrained to the 
maximum available FPGA resources, i.e. 100%, and maximum number of concurrent 
software tasks is two.  
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Method 
Results 

Lev / DCT / Q / DPCM-Zig / 
VLC-RLE / VLC 

Execution 
Time (us)

Memory 
(KB) 

Slice use 
rate (%) 

Power 
(mW) 

FBP [Lee et al. 2007c] 1/001/111/101111/111101/111 20022.26 51.58 53.9 581.39 

GHO [Lee et al. 
2007b] 

1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069 

GA [Lin et al. 2006] 0/010/010/101110/110111/010 20111.26 146.509 47.1 499.121 

HOP [Lee et al. 2007a] 0/100/010/101110/110111/010 20066.64 129.68 56.6 599.67 

PSO-delay 1/010/111/111110/111111/111 20021.66 16.507 54.7 586.069 

PSO-area 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442 

PSO-power 0/100/001/111010/110101/010 20111.26 181.6955 44.7 494.442 

PSO-memory 1/010/111/111110/111111/111 20021. 66 16.507 54.7 586.069 

PSO-NoProc 0/000/111/000000/111111/111 20030.9 34.2328 8.6 189.174 

PSO-Norm 0/010/111/101110/111111/111 20030.9 19.98 50.6 521.234 

Table 2. Comparison of partitioning results 

Different configurations of the cost function are tested for different optimization goals. PSO-
delay, PSO-area, PSO-power, and PSO-memory represent the case where the cost function 
includes only one term, i.e. delay, area, power, and memory, respectively. PSO-NoProc is 
the normal PSO-based algorithm with the cost function shown in equation (7) but the 
number of processors is unconstrained. Finally, PSO-Norm is the normal PSO with all 
constraints being considered, i.e. the same as PSO-NoProc with maximum number of two 
processors.  
The second column in Table 2 shows the resulting partition where '0' represents software 
and '1' represents hardware. The vector is divided into sets, each set represents a control 
step as shown in Fig. 9. The third to fifth columns of this table list the execution time, 
memory size, % of slices used and the power consumption respectively of the optimum 
solutions obtained according to the algorithms identified in the first column. As shown in 
the table, the bold results are the best results obtained for each design metrics. 
Regarding PSO performance, all the PSO-based results are found within two or three rounds 
of the Re-excited PSO. Moreover, for each individual optimization objective, PSO obtains the 
best result for that specific objective. For example, PSO-delay obtains the same results as 
GHO algorithm [ref.] does and it outperforms the other solutions in the execution time and 
memory utilization and it produces good quality results that meet the constraints. Hence, 
our cost function formulation enables us to easily select the optimization criterion that suits 
our design goals.  
In addition, PSO-a and PSO-p give the same results as they try to move nodes to software 
while meeting the power and number of processors constraints. On the other hand, PSO-del 
and PSO-mem try to move nodes to hardware to reduce the memory usage and the delay, 
so their results are similar.  
PSO-NoProc is used as a what-if analysis tool, as its results answer the question of what is 
the optimum number of parallel processors that could be used to find the optimum design. 
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In our case, obtaining six processors would yield the results shown in the table even if three 
of them will be used only for one task, namely, the DCT.  

4. Extensions 

4.1 Modeling Hardware Implementation alternatives  

As shown previously, HW/SW partitioning depends on the HW area, delay, and power 
costs of the individual nodes. Each node represents a grain (from an instruction up to a 
procedure), and the grain level is selected by the designer. The initial design is usually 
mapped into a sequencing graph that describes the flow dependencies of the individual 
nodes. These dependencies limit the maximum degree of parallelism possible between these 
nodes. Whereas a sequencing graph denotes the partial order of the operations to be 
performed, the scheduling of a sequencing graph determines the detailed starting time for 
each operation. Hence, the scheduling task sets the actual degree of concurrency of the 
operations, with the attendant delay and area costs [De Micheli 1994]. In short, delay and 
area costs needed for the HW/SW partitioning task are only known accurately post the 
scheduling task. Obviously, this situation calls for time-wasteful iterations. The other 
solution is to prepare a library of many implementations for each node and select one of 
them during the HW/SW partitioning task as the work done by Kalavade and Lee [2002]. 
Again, such approach implies a high design time cost.  
Our approach to solve this egg-chicken coupling between the partitioning and scheduling 
tasks is as follows:  represent the hardware solution of each node by two limiting solutions, 
HW1 and HW2, which are automatically generated from the functional specifications. These 
two limiting solutions bound the range of all other possible schedules. The partitioning 
algorithm is then called on to select the best implementation for the individual nodes: SW, 
HW1 or HW2. These two limiting solutions are: 
1. Minimum-Latency solution: where As-Soon-As-Possible (ASAP) scheduling algorithm 

is applied to find the fastest implementation by allowing unconstrained concurrency. 
This solution allows for two alternative implementations, the first where maximum 
resource-sharing is allowed. In this implementation, similar operational units are 
assigned to the same operation instance whenever data precedence constraints allow. 
The other solution, the non-shared parallel solution, forbids resource-sharing altogether 
by instantiating a new operational unit for each operation. Which of these two parallel 
solutions yields a lower area is difficult to predict as the multiplexer cost of the shared 
parallel solution, added to control the access to the shared instances, can offset the extra 
area cost of the non-shared solution. Our modeling technique selects the solution with 
the lower area. This solution is, henceforth, referred to as the parallel hardware 
solution. 

2. Maximum Latency solution: where no concurrency is allowed, or all operations are 
simply serialized. This solution results in the maximum hardware latency and the 
instantiation of only one operational instance for each operation unit. This solution is, 
henceforth, referred to as the serial hardware solution. 

To illustrate our idea, consider a node that represents the operation y = (a*b) + (c*d). Fig. 
10.a (10.b) shows the parallel (serial) hardware implementations. 
From Fig. 10 and assuming that each operation takes only one clock cycle, the first 
implementation finishes in 2 clock cycles but needs 2 multiplier units and one adder unit. 
The second implementation ends in 3 clock cycles but needs only one unit for each operation 
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(one adder unit and one multiplier unit). The bold horizontal lines drawn in Fig. 10 
represent the clock boundaries. 

  

(a)      (b) 
Figure 10. Two extreme implementations of y = (a*b) + (c*d) 

In general, the parallel and serial HW solutions have different area and delay costs. For 
special nodes, these two solutions may have the same area cost, the same delay cost or the 
same delay and area costs. The reader is referred to Abdelhalim and Habib [2007] for more 
details on such special nodes.  
The use of two alternative HW solutions converts the HW/SW optimization problem from a 
binary form to a tri-state form. The effectiveness of the PSO algorithm for handling this 
extended HW/SW partitioning problem is detailed in Section 4.3. 

4.2 Communications Cost Modeling 

The Communications cost term in the context of HW/SW partitioning represents the cost 
incurred due to the data and control passing from one node to another in the graph 
representation of the design. Earlier co-design approaches tend to ignore the effect of 
HW/SW communications. However, many recent embedded systems are communications 
oriented due to the heavy amount of data  to be transferred between system components. 
The communications cost should be considered at the early design stages to provide high 
quality as well as feasible solutions. The communication cost can be ignored if it is between 
two nodes on the same side (i.e., two hardware nodes or two software nodes). However, if 
the two nodes lie on different sides; the communication cost cannot be ignored as it affects 
the partitioning decisions. Therefore, as communications are based on physical channels, the 
nature of the channel determines the communication type (class). In general, the HW/SW 
communications between the can be classified into four classes [Ernest 1997]: 
1. Point-to-point communications  
2. Bus-based communications  
3. Shared memory communications 
4. Network-based communications 
To model the communications cost, a communication class must be selected according to the 
target architecture. In general, the model should include one or more of the following cost 
terms [Luthra et al. 2003]: 
1. Hardware cost: The area needed to implement the HW/SW interface and associated 

data transfer delay on the hardware side. 
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2. Software cost: The delay of the software interface driver on the software side. 
3. Memory size: The size of the dedicated memory and registers for control and data 

transfers as well as shared memory size. 
The terms could be easily modeled within the overall delay, hardware area and memory 
costs of the system, as shown in equation (8). 

4.3 Extended algorithm experiments 

As described in Section 3.3, the input to the algorithm is a graph that consists of a number of 
nodes and number of edges.  Each node (edge) is associated with cost parameters. The used 
cost parameters are: 
Serial hardware implementation cost: which is the cost of implementing the node in 
serialized hardware. The cost includes HW area  as well as the associated latency (in clock 
cycles). 
Parallel hardware implementation cost: which is the cost of implementing the node in 
parallel hardware. The cost includes HW area  as well as the associated latency (in clock 
cycles). 
Software implementation cost: the cost of implementing the node in software (e.g. 
execution clock cycles and the CPU area). 
Communication cost: the cost of the edge if it crosses the boundary between the HW and 
the SW sides (interface area and delay, SW driver delay and shared memory size). 
For experimental purposes, these parameters are randomly generated after considering the 
characteristics of each parameter, i.e. Serial HW area ≤ Parallel HW area, and    
SW delay ≤ Serial HW delay ≤ Parallel HW delay. 
The needed modification is to allow each node in the PSO solution vector to have three 
values: “0” for software, “1” for serial hardware and “2” for parallel hardware. 
The parameters used in the implementation are: No. of particles (Population size) n = 50, 
No. of design size (m) = 100 nodes, No. of communication edges (e) = 200, No. The number 
of re-exited PSO rounds set to a predefined value = 50. All other parameters are taken from 
Section 3.4. The constraints are: Maximum hardware area is 65% of the all-Hardware 
solution area, and the maximum delay is 25% of the all-Software solution delay. 

4.3.1 Results 

Three experiments were performed. The first (second) experiment uses the normal PSO with 
only the serial (parallel) hardware implementation. The third experiment examines the 
proposed tristate formulation where the hardware is represented by two solutions (serial 
and parallel solutions). The results are shown in Table 3. 

 
Area 
Cost 

Delay 
Cost 

Comm. 
Cost 

Serial HW 
nodes 

Parallel 
HW nodes

SW 
nodes 

Serial HW 34.9% 30.52% 1.43% 99 N/A 1 

Parallel HW 57.8% 29.16% 32.88% N/A 69 31 

Tri-state formul. 50.64% 23.65% 18.7% 31 55 14 

Table 3. Cost result of different hardware alternatives schemes 

As shown in this table, the serial hardware solution pushes approximately all nodes to 
hardware (99 out of 100) but fails to meet the deadline constraint due to the relatively large 
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delay of the serial HW implementations. On the other hand, the parallel HW solution fails to 
meet the delay constraint due to the relatively large area of parallel HW. Moreover, It has 
large communications cost. Finally, the tri-state formulation meets the constraints and 
results in a relatively low communication cost. 

4.4 Tuning Algorithm. 

As shown in Table 3, the third solution with two limiting HW alternatives has a 23.65% 
delay. The algorithm could be tuned to push the delay to the constrained value (25%) by 
moving some hardware-mapped nodes from the parallel HW solution to the serial HW 
solution. This node switching reduces the hardware area at the expense of increasing the 
delay cost within the acceptable limits, while the communication cost is unaffected because 
all the moves are between HW implementations. 

 

Figure 11. Tuning heuristic for reducing the hardware area. 

The heuristic used to reduce the hardware area is shown Fig. 11. It shares many similarities 
with the greedy approaches presented by Gupta et al. [1992]. 
First, the heuristic calculates the extra delay that the system could tolerate and still achieves 
the deadline constraint (delay margin).  
It then finds all nodes in parallel HW region with delay range less than delay margin and 
selects the node with maximum reduction in HW area cost (hardware range) to be moved to 
the serial hardware region. Such selection is carried out to obtain the maximum hardware 
reduction while still meeting the deadline. 

1) Find all nodes with parallel HW implementation (min_delay_set) 
2) Calculate the Delay_margin = Delay deadline – PSO Achieved delay  
3) Calculate Hardware_range = Node's Max. area – Node's Min. area. 
4) Calculate Delay_range = Node's Max. delay – Node's Min. delay. 
5) Create (dedicated_nodes_list) with nodes in (min_delay_set) sorted in ascending 
order according to Hardware_rang such that Delay_range<Delay_margin  
6) While (dedicated_nodes_list) is not empty 
 7) Move node with the maximum Hardware_range to serial HW region. 
 8) For many nodes with the same Hardware_range, choose the one with 
minimum  Delay_range  
 9) Re-calculate Delay_margin 
 10) Update (dedicated_nodes_list) 
11) End While 
12) Update (min_delay_set) 
13) Calculate Hardware Sensitivity = Hardware range / Delay range 
 
Outputs 

1. HW/SW partition 
2. The remaining delay range in clock cycles. 
3. Remaining parallel hardware nodes and their Hardware Sensitivity 

 
Nodes with high Hardware Sensitivity could be used along with the delay range to 
obtain refined implementations (Time Constrained Scheduling Problem) 
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(delay margin)  is then re-calculated to find the nodes that are movable after the last 
movement.  
After moving all allowable nodes, the remaining parallel HW nodes can not move to the 
serial HW region due to deadline violation. Therefore, the algorithm reports to the designer 
with all the remaining parallel HW nodes, their Hardware Sensitivity (the average 
hardware decrease due to the increase in the latency by one clock cycle), and the remaining 
delay margin. The user can, then, select a parallel hardware node or more and make a 
refined HW implementation with the allowable delay (Time-constrained Scheduling 
problem [De Micheli 1994]). 
The algorithm can be easily modified for the opposite goals, i.e. to account for reducing the 
delay while still meeting the hardware constraint. 
The above algorithm could not start if the PSO terminates with invalid solution. Therefore, 
we implemented a similar algorithm as a pre-tuning phase but with the opposite goal: 
moving nodes form serial HW region to parallel HW region to reduce the delay, hence meet 
the deadline constraint if possible, while minimizing the increase in the hardware area. 

4.4.1 Results after using the Tuning Algorithm  

Two experiments were done: the first one is the tuning of the results shown in Table 3. The 
tuning algorithm starts from where PSO ends.  The Delay Margin was 1.35% (about 72 clock 
cycles). At the end of the algorithm, the Delay margin reaches 1 clock cycles, the area 
decreased to 40.09% and the delay reaches 24.98%. 12 parallel HW nodes were moved to the 
serial HW implementation. The results show that the area decreases by 10.55% for a very 
small delay increase (1.33%).  
The constraints are modified such that the deadline constraint is reduced to 22% and the 
maximum area constraint is reduced to 55% to test the pre-tuning phase. PSO terminates 
with 23.33%delay, 47.68% area, and communications 25.58%. The deadline constraint is 
violated by 1.33% (about 71 clock cycles). The pre-tuning phase moves nodes from serial 
HW region into parallel HW region until satisfying the deadline constraints (delay is 
reduced to 21.95%). It moves 32 nodes and the Area increased to 59.13%. The delay margin 
becomes 2 clock cycles. Then the normal tuning heuristic starts with that delay margin and 
moves two nodes back to the serial HW region. The final area is 59% and the final delay is 
21.99%. Notice that the delay constraint is met while the area constraint becomes violated.  

5. Conclusions 

In this chapter, the recent introduction of the Particle Swarm Optimization technique to 
solve the HW/SW partitioning problem is reviewed, along with its “re-exited PSO” 
modification. The re-exited PSO algorithm is a recently-introduced restarting technique for 
PSO. The Re-exited PSO proved to be highly effective for solving the HW/SW partitioning 
problem.  
Efficient cost function formulation is of a paramount importance for an efficient 
optimization algorithm. Each component in the design must have hardware as well as 
software implementation costs that guide the optimization algorithm. The hardware cost in 
our platform is modeled using two extreme implementations that bound all other schedule-
dependent implementations. Communications cost between hardware and software 
domains are then proposed in contrast to other approaches that completely ignore such 
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term. Finally, a tuning algorithm is proposed to fine tune the results and/or try to meet the 
constraints if PSO provides violating solutions. 
Finally, JPEG encoder system is used as a real-life case study to test the viability of the PSO 
for solving the HW/SW partitioning problems. This case study compares our results with 
other published results from the literature. The comparison focuses on the PSO technique 
only. The results prove that our algorithm provides better or equal results relative to the 
cited results.  
The following conclusions can be made: 

• PSO is effective for solving the HW/SW Partitioning Problem. The PSO yields better 
quality and faster performance relative to the well-known Genetic Algorithm. 

• A newly-proposed “Re-exited PSO” restarting technique is effective in escaping local 
minimum. 

• Formulating the HW/SW partitioning problem using the recently proposed two 
extreme hardware alternatives is effective for solving tightly constrained problems. The 
introduction of two limiting hardware alternatives provides extra degree of freedom for 
the designer without penalizing the designer with excessive computational cost.  

• Greedy-like Tuning algorithms are useful for refining the PSO results. Such algorithms 
moves hardware-mapped nodes between their two extreme implementations to refine 
the solution or even to meet the constraints.  

• A JPEG Encoder system is used as a real-life case study to verify the potential of our 
methodology for partitioning large HW/SW co-design problems. 
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