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Abstract

In mammals, the total number of female germ cells is already established by the time of 
birth, meaning that no mitosis will take place in oogonias thereafter. Their cryostorage, 
therefore, depends on ovarian tissue manipulation. As an alternative to mature oocyte 
cryopreservation, the maintenance of inactive preantral follicles is a remarkable option 
because (i) their availability in the ovary is greater; (ii) as inactive and small structures, 
they show less sensitivity to cryoinjury and the toxic effects of cryoprotectants; and (iii) 
they are present in the gonads at all ages, allowing their retrieval from prepubertal indi-
viduals or even immediately postmortem. Nevertheless, some difficulties remain regard-
ing their in vitro activation and development to the ovulatory stage. For this reason, the 
best option for their total development is transplantation back to the donor or between 
species, promoting follicle activation and development. This technique has proved its 
efficiency and led to several live births in both animals and humans. Since each species 
has its own particularities in terms of ovarian tissue composition, a number of protocols 
have been documented, which may be used for either isolated or in situ preantral follicles.

Keywords: cryostorage, fertility preservation, germ cells, isolated follicles, oocyte, 
ovarian tissue

1. Introduction

In 1866, interest in storing human male germ cells from individuals no longer able to mate was 

proposed, for the first time, suggesting the possibility of generating cryobanks [1]. However, 

interest in the storage of female genetic sources emerged only in the 1950s with the first signs 
of successful cryopreservation in mice published in 1958 [2]. Since then, this strategy has 
spread through different species, and advances have been made in a great variety of animals.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



While male germ cells are isolated in seminal fluid, their female counterparts are contained 
in a specific structure—the ovarian follicle. These follicles consist of an oocyte surrounded 
by one or two types of cells, granulosa and theca cells, which have supporting and steroido-

genic functions. Ovarian follicles are generally classified as preantral and antral, depending 
on the presence of fluid around the granulosa cells. Preantral follicles are subclassified into 
primordial, primary, and secondary. These small structures form the vast majority of avail-

able mammalian oocytes and are the largest source of female genetic material [3]. When 

primordial follicles are activated and commence their growth, granulosa cells alter their 

morphology. This is the first sign of follicle development, followed by proliferation of the 
granulosa cells, oocyte growth, formation of the zona pellucida, changes in oocyte organelles, 

development of theca cells, and accumulation of follicular fluid. Eventually, a follicle may 
reach the preovulatory stage when ovulation occurs, releasing the oocyte ready for fertiliza-

tion (Figure 1).

Because oocytes within preantral follicles are smaller, less differentiated, and almost meta-

bolically inactive, they are more resistant to possible damage caused by cryopreservation 

procedures [4]. This is one of the reasons why so much interest has been shown in their cryo-

preservation as an alternative to fully grown oocytes, which are usually collected from large 

antral follicles. In addition, it is known that cryopreservation of cumulus-oocyte complexes 

(fully developed oocytes surrounded by cumulus cells obtained from antral follicles) or mature 

oocytes may be difficult in some species as their membrane has a low permeability coeffi-

cient with respect to cryoprotectants (CPAs) [5]. Even worse, the cryopreservation procedure 
may lead to zona pellucida hardening, which could hamper fertilization [6]. Since oocytes in 

Figure 1. Ovary organization and follicle classification according to developmental stage. Female germ cells are enclosed 
in follicles that are localized in the cortical region of the ovary, the external layers. The inner layer contains mainly 

blood vessels and ligaments and is termed the medulla. Once primordial follicles are activated, they start their growth, 

developing into antral follicles in order to proceed to ovulation. The pictures are not to scale.
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preantral follicles do not yet have a zona pellucida or peripheral granules in their cytoplasm, 

the CPA can easily penetrate. Another advantage of preantral follicle cryopreservation is that 
they are available in ovaries of all ages, enabling the storage of genetic resources from both 

young and old, an option not available when cryopreserving fully grown oocytes [7].

Ovarian follicle cryopreservation is now performed in various mammalian species, often with 

different objectives, which is why researchers need to test and establish appropriate cryo-

preservation protocols. The goal of this chapter is to summarize some of the recent advances 

made in the field of ovarian follicle cryopreservation in different mammalian species.

2. Why should we cryopreserve ovarian preantral follicles?

2.1. Indications in women

Cryopreservation of human preantral follicles has proved to be an excellent option to safe-

guard future fertility. In women, there are three major indications for cryopreserving ovar-

ian tissue containing preantral follicles: malignant diseases or benign conditions threatening 

fertility or the desire to postpone childbearing or menopause.

Currently, the main reason for cryopreservation of ovarian preantral follicles is to maintain 

fertility in cancer patients subjected to chemo- and/or radiotherapy. These treatments have dif-

ferent toxic effects on ovarian tissue, including DNA and vascular damage [8], which impair 

ovarian function [9]. As a result, the follicle pool diminishes, reducing fertility competency 

and estrogen production and eventually leading to early menopause. The same physiologi-

cal signs are experienced by healthy menopausal women, whose follicle population declines 

enough to cease hormone production. In prepubertal patients undergoing gonadotoxic ther-

apy, the storage of germ cells is strongly indicated because oocytes within primordial follicles, 

which remain in the first meiotic division, are also known to accumulate DNA damage when 
toxic agents are present [10, 11].

Preantral follicle cryopreservation may be indicated to preserve fertility in patients with 
nonmalignant conditions that can result in premature ovarian insufficiency. Indeed, certain 
ovarian pathologies (recurrent ovarian cysts or ovarian torsion), endocrine disorders (galac-

tosemia or Turner syndrome), or diseases requiring chemo- or radiotherapy (autoimmune 

conditions, aplastic anemia, etc.) can pose a significant threat to fertility [12].

More recently, preantral follicle cryopreservation has also been suggested in the context of 

healthy women wishing to postpone childbearing. On account of different personal reasons, 
such as education, career goals, difficulties finding a partner or achieving a stable financial sta-

bility, the number of women delaying their first pregnancy has been on the rise worldwide. In 
most countries belonging to the Organization for Economic Co-operation and Development, 
the mean age of women giving birth for the first time has increased by 2–4 years in the last 
35 years, now standing at 30 years of age or above [13]. As oocyte quality and quantity decline 

with age, cryopreservation of preantral follicles at a younger age could improve the chances 

of having a healthy pregnancy and birth.
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Finally, an emerging indication for this strategy is to delay the onset of menopause. While life 

expectancy seldom reached 50 years 100 years ago, meaning most women would die with-

out experiencing menopause, it is now around 80 years in European women, so they live at 
least 30 of them after menopause [14]. To alleviate symptoms and decrease associated health 

risks, hormone replacement therapy (HRT) can be prescribed. However, HRT has been linked 

to a number of health problems, such as stroke, dementia, blood clots, and cancer [15–18]. 

Preantral follicle cryopreservation could therefore represent a form of “natural” HRT; ovarian 
tissue could be removed and cryopreserved at a young age, with frozen–thawed fragments 
subcutaneously transplanted to the patient when she starts presenting with the first signs of 
menopause [19].

2.2. Indications in other mammalian species

In animals, cryopreservation of preantral follicles can serve different purposes. In the first 
place, some domestic animal species are important models to develop cryopreservation pro-

tocols for human ovarian tissue [20]. Mice, rats, and rabbits are usually chosen because they 

reach puberty in a short period of time, have a short reproductive cycle, and produce several 

mature oocytes per cycle. However, research related to the improvement of reproduction 

capacity in mammalian ovaries also has other purposes today, such as elucidating pathways 

and mechanisms active in reproductive tissues and generating germ cell cryobanks for endan-

gered species [21].

When cryobanks are created in order to store genetic material from endangered species, 

assisted reproductive technologies rely on the development of techniques in domestic animal 

species that show some phylogenetic similarity. For example, dogs [22] and cats [23] have 

been used as experimental models to develop new techniques to improve available methods 

for endangered species. It is also important to maintain genetic material from autochthonous 

breeds, pets, or even production animals. In the latter case, genetically superior animals that 
show better patterns of production (bovines [24], equines [25], sheep [26], and pigs [27]) are 

being increasingly studied with a view to enhancing livestock species [28]. This has led to 

researchers working on the development of cryopreservation protocols specific to different 
species.

3. Methods for preantral follicle cryopreservation

3.1. Determining the cryopreservation protocol

As with sperm and oocytes, deciding which protocol to use for follicle cryopreservation 

depends on key factors, such as the type and concentration of CPAs, optimal cooling rates for 
follicles, the addition of components or extracellular CPAs to improve tissue dehydration, and 
methods and rates of temperature reduction. Moreover, it is important to bear in mind signifi-

cant differences in ovarian tissue between mammalian species, which are mainly seen in stro-

mal composition, extracellular matrix (ECM) structure, and follicle morphology and density. 
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Variations in ECM structure between species are what impacts CPA permeation the most, 
since it is directly related to cellular connectivity and movement of factors and structures [29].

Perfusion of penetrating CPAs like dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, 
and 1,2-propanediol is what causes dehydration of tissue. With low-molecular weights, these 

compounds are able to penetrate cells and promote an osmotic balance between the compart-

ments that cause cell dehydration, avoiding ice crystal formation. As these compounds are 

transported from the outer to the inner layers of tissue, dehydration takes place cell by cell, 

passing through the ECM. Ideal perfusion is reached when cells from the inner tissue areas 
are filled with CPA [30]. Furthermore, the use of non-permeable CPAs, such as sugars and 
polymers, is indicated due to their effectiveness in water removal by modifying the osmotic 
gradient of the system [31]. Sucrose is known to increase cell survival after thawing [27]; 

effects of trehalose as a membrane-stabilizing agent have also been described [32].

An important point to take into consideration is the CPA concentration; if it is too low, it will 
not allow adequate cell dehydration. On the contrary, high concentrations cause too much 

damage due to cell swelling/shrinkage or toxic effects [33]. Any decision about CPA concen-

trations will essentially depend on the protocol to be used.

Preantral follicles can be cryopreserved by conventional freezing or vitrification. The dif-
ference between these two protocols basically hinges on the CPA concentration and cooling 
rate. Slow-freezing uses low CPA concentrations and seeding, a procedure that promotes the 
extracellular ice formation, resulting in higher levels of dehydration. In vitrification proto-

cols, ice crystal formation is avoided by an ultra-fast temperature reduction associated with 

high CPA concentrations, which may in turn lead to cell toxicity. As an alternative, liquidus 
tracking systems have been developed, aiming to reduce tissue/follicle damage from these 

concentrations. Stepped vitrification may be performed and the cell response to CPA toxicity 
may be attenuated, since the sample is only subjected to high concentrations of CPA when 
low temperatures are experienced in the local environment, hence lowering cell metabolism 

and activity [34, 35]. Some examples of cryopreservation solutions and equilibration curves 
applied before storage are shown in Table 1.

Follicles can be cryopreserved inside ovarian tissue or after isolation from it. Both techniques 

have been applied in several animal species and have shown advantages and disadvantages.

3.2. Ovarian tissue cryopreservation

The heterogeneous cell composition of ovarian tissue presents different challenges in terms 
of CPA perfusion and cooling rates to establish an optimal cryopreservation protocol. Not 
only do cells deserve our attention, but also the extracellular components, since the ECM and 
basement membranes must be maintained in order to provide an adequate structure when 

the tissue is warmed and transplanted [33]. As the oocyte is the target cell, most protocols for 

ovarian tissue cryopreservation are derived from those applied to mature oocytes.

Ovarian tissue can be cryopreserved in its entirety or cut into halves or small pieces. Various 

ovarian tissue cryopreservation protocols for different species are shown in Table 2. In sheep, 

Cryopreservation of Preantral Follicles
http://dx.doi.org/10.5772/intechopen.79538

75



for example, cryopreservation of whole ovaries was successfully achieved [40]. It involved 

special CPA perfusion techniques because the structure is much larger. Such techniques can 
include immersion of the ovary in a CPA solution and also perfusion of CPAs with needles 
and clamps in order to inject the solution through the ovarian artery [41].

Cryopreservation of small tissue pieces is more commonly performed, since thinner layers 

allow smoother CPA permeation. As preantral follicles are usually present in the outer layer 
of the ovary (cortex), this area is chosen when a biopsy is taken for follicle cryopreservation. In 

addition, the thinner the ovarian piece, the lesser it will experience damages due to oxidative 

stress and reactive oxygen species (ROS) formation until its nutrition and oxygenation are 
reestablished, especially because the freeze–thaw process can make cells more sensitive to 
ROS effects [42].

The mechanism of passive carriage of CPAs throughout cells also depends on the activity 
of transmembrane proteins like aquaporins [43]. In oocytes, it is known that CPAs, such as 
DMSO and EG, increase aquaporins expression after cryopreservation [44]. These permeating 

CPAs are frequently used for ovarian tissue cryopreservation. So far, DMSO has proved more 

Species Approach Medium Non-permeable 

cryoprotectant

Proteins Equilibration curve Reference

Human Slow-freezing MEM Not used HSA 0 °C → −8 °C (−2°C/min)

−8°C → −40°C (−0.3°C/min)  
→ −196°C

Amorim et al. [36]

Slow-freezing PBS Sucrose Not used 1°C → −9°C (2°C/min)

→ − 40°C (−0.3°C/min)

→ − 140°C (−10°C/min)  
→ −196°C

Schmidt et al. [37]

Vitrification TCM199 PVP and sucrose Not used Direct immersion in LN Suzuki et al. [38]

Baboon Vitrification MEM PVP and sucrose HSA Direct immersion in LN Amorim et al. [39]

Cow Vitrification PBS Not used Not used RT→0°C

0°C → −4°C (−3°C/min)  
→ −8°C (−3°C/min)

→ − 40°C (−3°C/min)

→ − 150°C (−20°C/min)  
→ −196°C

Corral et al. [35]

Sheep Slow-freezing L-15 Not used Calf 

serum

4°C → −7°C (−2°C/min)

→ −40°C (−0.3°C/min)

→ − 140°C (−10°C/min)  
→ −196°C

Gosden et al. [4]

LN, liquid nitrogen; HSA, human serum albumin; L-15, Leibovitz-15; MEM, minimum essential medium; PBS, phosphate 
buffered saline; PVP, polyvinylpyrrolidone; RT, room temperature.

Table 1. Examples of some cryopreservation solution contents applied for ovarian tissue slow-freezing of vitrification.
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efficient in some species, including bitches [45], goats [46], mares [25], and sheep [47] while 

EG is usually used in association with DMSO [48, 49].

Regarding cryopreservation technique, some authors extol the advantages and effectiveness 
of ovarian tissue vitrification [38, 50], but slow-freezing remains the method of choice for 

humans. Interestingly, the protocol described by Gosden et al. back in 1994 [4] is still routinely 

used for cryopreservation of human ovarian tissue, with some small modifications [51]. This 

method involves a curve that usually begins with a temperature reduction of 2°C/min to −7°C, 
followed by seeding; then another reduction to −40°C at 0.3°C/min, and finally plunging into 
liquid nitrogen (Figure 2) [19]. Although slow-freezing is the first-line approach in certain 
species, vitrification is the best alternative when compared to others [52–54].

Species Ovarian 

strip size

Cryoprotectant Cryopreservation 

technique

Procedure 

post-thawing

Results Reference

Human 2 × 2 mm 1.5 mmol/l 

DMSO
SF Autotransplantation Live birth Donnez 

et al. [57]

Mouse ¼ ovary 15% glycerol SF Allotransplantation Live birth Parrot [58]

Half ovary Commercial kit Vitrification Allotransplantation Live birth Okamoto 

et al. [50]

Rat 3 × 3 × 1 mm 1.5 M DMSO SF Autotransplantation Follicle activation Celik et al. 

[59]

1 mm3 Commercial kit Vitrification Autotransplantation Reestablishment of 

ovarian function

Wietcovsky 

et al. [60]

Cat 2 × 2 × 1 mm 1.5 M EG SF Xenotransplantation Follicle growth to 

antral stage

Bosch et al. 

[61]

Dog 3 × 3 × 1 mm 1.5 M DMSO SF Morphology and 

follicle viability

67.5% of viable 

follicles

Lopes et al. 

[45]

Deer 2 × 2 × 

0.5 mm

20% EG + 20% 
DMSO

Vitrification IVC Viability of 

preantral follicles 

evaluated by IHC

Gastal et al. 

[53]

Cow 5 × 5 × 

0.5 mm

15% DMSO 
+15% EG

Vitrification Xenotransplantation Follicle growth to 

antral stage

Bao et al. 

[62]

Sheep Whole ovary 1.5 mol/l DMSO SF Autotransplantation Live birth Campbell 

et al. [40]

1 mm thick 1.5 M DMSO SF Autotransplantation Live birth Gosden 
et al. [4]

Mare 3 × 3 × 

0.5 mm

3 M EG for 
vitrification; 
1.5 M DMSO 
for SF

Vitrification 
and SF

IVC Cell viability Gastal et al. 

[25]

DMSO, dimethyl sulfoxide; EG, ethylene glycol; SF, slow-freezing; IVC, in vitro culture.

Table 2. Tissue size, main CPA concentrations, cryopreservation techniques, and results from published protocols for 
ovarian tissue cryopreservation in a variety of species.
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After thawing, ovarian tissue can be used for transplantation, in vitro culture, or follicle iso-

lation. Nowadays, transplantation techniques are widespread, and more than 130 human 

live births have been documented worldwide following ovarian tissue cryopreservation and 

transplantation [55]. Such success rates have led to a greater visibility of this procedure in 
hospitals around the world. Indeed, in some countries like Israel, this strategy is no longer 

considered experimental [56].

3.3. Isolated follicles cryopreservation

While cryopreservation of isolated follicles is less commonly described in the study, it has 

some key advantages. If tissue cryopreservation may suffer impairment due to difficult CPA 
perfusion, this issue is somewhat reduced in case of isolated structures. Preantral follicles 
are small (usually less than 150 μm in diameter), so CPA perfusion is facilitated and optimal 
concentrations are easier to gauge in oocytes. Moreover, CPA types and concentrations as 
well as cryopreservation procedures can be precisely tailored to preantral follicles, taking 

into consideration their permeability parameters [63–65]. Another advantage of using iso-

lated follicles is more specific to humans; in some types of cancer, there is a risk of malignant 
cells being present in the ovarian tissue, so transplantation is not recommended. The use 

of isolated follicles instead of vascularized ovarian tissue avoids the risk of reintroducing 

the disease [66], since their basal membrane prevents them from coming into contact with 

malignant cells that may be present in the tissue [67]. Another point worth mentioning is the 

considerable follicular loss that occurs due to ischemia–reperfusion after transplantation of 
ovarian tissue, which could be avoided by grafting isolated follicles [68].

On the other hand, there are limitations, like follicle dissociation from the surrounding ovar-

ian tissue. To isolate preantral follicles, we can use mechanical [69] or enzymatic [70] means, 

or an association of both, depending on the origin of the ovarian tissue [71]. The mechanical 

Figure 2. A schematic demonstration of the cooling rate applied by Gosden et al. [4] for slow-freezing of sheep ovarian 

tissue. Usually, cooling rates are performed in an automatic freezer, useful for cooling samples up to −140°C. SL, 
slow-freezing.
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dissociation of the follicles is based on its fragmentation; cutting the cortex into small pieces 
with scissors or even with surgical blades are some options; in addition, the use of a tissue 

chopper has been widely described [71–73]. Most studies on human follicle isolation use lib-

erase and/or collagenase for enzymatic digestion [70, 71, 74, 75]. This step is crucial, and care 

must be taken to avoid or mitigate the chances of follicle damage during these procedures. 

Choosing the right enzyme and an adequate concentration are vital and must be well thought 

out, since differences in the fibrous nature of the ovary [76] and basal membrane composi-

tion of various animal species [77] require specific isolation protocols for the different types 
of ovary. Indeed, even in the same species, ovary composition changes with age, so follicle 

isolation may well need an individually tailored approach [71].

The first successful cryopreservation of isolated follicles was achieved in mice, when Carrol 
et al. obtained offspring after follicle isolation, cryopreservation, in vitro culture, maturation, 

fertilization, and finally embryo transfer [78]. More recently, cryopreservation of isolated fol-

licles has been performed in a much greater number of animal species (Table 3).

The routine procedure for cryopreserving isolated follicles is similar to that used for oocytes 

and isolated cells in general. After isolation, they are submerged in CPA solution and placed 
in a plastic straw for freezing [88].

Unlike ovarian tissue, isolated follicles cannot be immediately transplanted after thawing; 

they first need to be encapsulated in a matrix, made of fibrin [89], alginate [90], collagen [91], 

and/or other materials [92] in order to maintain their 3D structure. This also allows better 
handling of the follicles, facilitating cryopreservation, in vitro culture, and transplantation. 

Isolated follicles can also be encapsulated in a matrix prior to cryopreservation. To date, only 

an alginate matrix has been used to cryopreserve follicles after isolation [80].

Species Cryoprotectant and its final concentration Method Reference

Human 1.4 M DMSO SF in sodium alginate 
matrix

Camboni et al. [79]

40% EG Vitrification Bian et al. [80]

Goat 1 M EG + 0.5 M sucrose SF Santos et al. [81]

Sheep 2.6 M acetamide, 2.62 M DMSO, 1.31 M 1,2 propanediol 
and 0.0075 M polyethylene glycol

Vitrification Lunardi et al. [82]

Cat 1.5 M DMSO or 1.5 M EG SF Jewgenow et al. [83]

Rat 35% EG + 0.5 M sucrose Vitrification Xing et al. [84]

Mouse 6 M EG Vitrification Desai et al. [85]

15% EG + 15% DMSO Vitrification Ganji et al. [86]

Monkey 8.83% EG + 35 mg/ml sucrose SF Barret et al. [87]

DMSO, dimethyl sulfoxide; EG, ethylene glycol; SF, slow-freezing.

Table 3. CPAs, their concentrations, and cryopreservation methods for isolated ovarian preantral follicles.
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4. Warming rate and CPA removal

The impact of the warming rate is another important point to be taken into account. Due to 
the risk of ice formation during warming, fast protocols involving immediate plunging of the 

cryovials into a water bath at 30–40°C, are more frequently applied [45, 54, 93]. Indeed, cool-

ing and warming rates interact, and both are keys to achieving a favorable outcome. Akhtar 

et al. [94] compared different cooling and warming rates for cryopreservation of lymphoma 
cells and reported that the best results were obtained with a conventional slow-cooling (1°C/

min) and fast-warming (200°C/min) protocol [94]. In vitrification protocols, the warming rate 
is of much greater importance, particularly when high CPA concentrations were not ade-

quately achieved. In this case, there is a risk of ice crystal formation during rewarming that 

may be avoided with very rapid warming rates [95]. When permeating CPAs are removed, 
an osmotic imbalance usually occurs; there is an uptake of water causing the cells to swell, 

increasing their natural volume. As the CPA is eliminated, together with the water, the cells 
start to shrink again, aiming to recover their osmotic equilibrium. A physiologically normal 

volume is reestablished only when no natural solutes are able to leave or enter the cells [96]. 

In order to define the optimal CPA concentration that can induce sufficient cell dehydration 
and prevent damages caused by cell swelling/shrinking during CPA removal, further tests 
must investigate how much variation each cell type can tolerate in terms of its volume [65]. 

The use of non-permeable CPAs like sugars and polymers is known to help in the removal of 
their permeating counterparts and have a protective effect on cell membranes [32].

5. Conclusion and final considerations

In addition to CPA effectiveness for cell preservation, it is vital that we investigate possible 
long-term toxic effects on cells in frozen tissue, or, indeed, on the host after transplantation. 
Long-term studies on the impact of CPAs on mature oocytes and embryos resulting from 
these cryopreserved follicles should also be carefully analyzed. Epigenetic alterations to the 
DNA of cells subjected to CPAs may emerge. For instance, DMSO is known to produce modi-
fications to DNA methylation in embryos [97]. Despite a limited number of studies on ovarian 
tissue, data on other tissues provide valuable information. Even low DMSO concentrations in 
blood can cause damage to the central nervous system during development [98], and terato-

genic effects have been described, as having alterations to lipid metabolism [99].

In summary, the different options available to cryopreserve ovarian preantral follicles have both 
benefits and limitations, some of which are cited in Table 4. Attempts made so far with single-
cell system protocols for tissue cryopreservation have resulted in failure, showing that being 

able to adapt is fundamental. Although existing data show that ovarian tissue cryopreservation 

and transplantation is feasible and effective, follicle loss is still an obstacle to be surmounted. 
Thus, the protocol of choice will depend on a variety of factors, including the goal of follicle 

cryopreservation, its purpose after thawing, and the availability of laboratory equipment.

It is undeniable that preantral follicle cryopreservation can help patients face the challenges of 

chemotherapy, improving their chances of fertility restoration once they are cured. Moreover, 
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this may be the only strategy available now to preserve female germ cells of highly endan-

gered animal species. It is nevertheless important to stress that while currently implemented 

cryopreservation procedures have yielded successful results, there is still room for improve-

ment. Studies should be performed to enhance outcomes and facilitate the creation of cryo-

banks in medical centers and animal facilities worldwide.
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