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Abstract

In microchannels, interaction and transport of micro-/nanoparticles and biomolecules are
crucial phenomena for many microfluidic applications, such as nanomedicine, portable
food processing devices, microchannel heat exchangers, etc. The phenomenon that parti-
cles suspended in liquid are captured by a solid surface (e.g., microchannel wall) is
referred to as particle deposition. Particle deposition is of importance in numerous practical
applications and is also of fundamental interest to the field of colloid science. This chapter
presents researches on fouling and particle deposition in microchannels, especially the
effects of temperature and temperature gradient, which have been frequently ‘ignored’

but are important factors for thermal-driven particle deposition and fouling processes at
elevated temperatures.

Keywords: particle deposition, microchannel, temperature, temperature gradient

1. Fouling

In the oil and gas industry, people first studied fouling and then it begun to be often adopted to

describe any undesirable deposit that led to an increase of flow resistance in fluid pipes or

thermal resistance in heat exchanger [1]. Most of the published researches on fouling are

focused on macro-scale phenomena and parameters, such as changes of hydraulic perfor-

mances and thermal resistances. According to the causes of formation, fouling can be

categorised into different types, which include crystallisation fouling, or particulate fouling,

scale formation, chemical reaction fouling, corrosion fouling, biological fouling, solidification

fouling and mixed fouling [2]. In this chapter, the authors will concentrate on the studies on

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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particulate fouling in microfluidic applications. Particulate fouling refers to that finely

suspended solid particles accumulate onto solid surfaces. The diameters of particles are usu-

ally less than microns. Without other mechanisms having particles firmly attached onto solid

surface, the deposit formed by particulate fouling is normally thin and easily removed.

2. Particle deposition

Particulate fouling is caused by particle deposition onto the solid surfaces of collectors. This is

a complex process affected by diffusion, convection, colloidal, and external interaction forces.

To better understand the physical process of particle deposition, it can be conceptually divided

into three steps [3]:

1. Particle transport/diffusion

When particles are at large distances from the collector surface, the particles are transported

from the bulk fluid to the collector by diffusion, flow convection, and migration due to

external forces. Particle concentration gradients usually exist between the bulk fluids to the

collector surfaces and drive the suspended particles approaching the collector surfaces.

Flow convection, especially in turbulent flow, could give particles momentum to move

across the bulk fluid toward the collector surface. Besides, particles would migrate to the

collector when they are affected by external fields, such as gravity filed and electric field.

2. Particle-wall hydrodynamic interaction

When particles get close to the collector within a distance comparable to the particle

radius, the motion of the fluid between the particle surface and the collector surface

becomes much more difficult compared to the scenario at large distances. It is because that

the particles need to experience additional hydrodynamic drag caused by the presence of

the collector surface. Thus, the reduction of particle mobility is commonly attributed to the

particle-wall hydrodynamic interaction.

3. Particle adhesion

As particles approach the collector at even closer distances, typically less than 100 nm, the

motion of the particles is influenced by colloidal forces besides the hydrodynamic interac-

tion. Within such extremely short distance, the influences of the colloidal forces are over-

whelmingly stronger than those of external forces. Thus, the particle adhesion onto the

collector is mainly determined by the competition of the attractive and repulsive colloidal

forces. The colloidal forces consist of the universal van der Waals (VDW) force and the

electric double layer (EDL) force. These two interaction forces form the basis of the

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal chemistry. The van der

Waals force originates from spontaneous electrical and magnetic polarizations, which

generate a fluctuating electromagnetic field within the particle and the collector as well as

in the gap between them. Solid surfaces in aqueous media (electrolyte solution) are always

charged because of the dissociation of ionisable surface sites or the adsorption of ionic

surface active sites. As a result, electric double layers are formed in the vicinity of both the
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particle and the collector surfaces. When these two charged surfaces approach each other

in the electrolyte solution, two electric double layers overlap and a repulsive interaction is

developed in this region if the particle and the collector carry the same sign of charge. This

repulsive interaction is known as the electric double layer force. In addition, other non-

DLVO colloidal interactions might affect the particle deposition in short ranges (0.5–5 nm)

under certain physicochemical conditions.

3. Theory of surface forces

The behaviours of particles in aqueous media are significantly influenced by the physicochem-

ical characteristics of the interaction forces between particles and solid surfaces [4]. Thus, the

interaction forces exerted on colloidal particles determine particulate fouling or particle depo-

sition. In this section, the colloidal forces between particles and surfaces are briefly reviewed,

including colloidal interaction forces, van der Waals attraction force and electrical double layer

repulsion force. These two forces form the basis of the Derjaguin-Landau-Verwey-Overbeek

(DLVO) theory, which were independently developed by Derjaguin and Landau [5] from

Soviet/Russian and Verwey and Overbeek [6] from Netherlands. Besides the DLVO forces,

non-DLVO forces are also involved in particle deposition and aggregation, such as polymer

bridging, solvation forces, steric forces or hydrophobic forces.

3.1. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory

In the DLVO theory, van der Waals attraction force and electrostatic repulsion force are

suggested as the dominant interactions between two charged hydrophobic or lyophobic parti-

cles/surfaces in electrolyte solution. Moreover, the total interaction between particles and solid

surfaces in a liquid is assumed as the sum of the two interactions. This is the first theory

enabling to explain and predict the experimental observations of particle deposition and

aggregation in a quantitative way. The van der Waals interaction arises from the electromag-

netic effects of the molecules composing the particles while the electric double layer interaction

is caused by the overlapping of the electric double layers of two particles/surfaces in an

aqueous medium. Normally, the former is attractive and the latter is repulsive, which could

be changed depending on the material properties in some specific cases [4].

3.1.1. van der Waals force

The van der Walls force, also known as London-van der Waals force, originates from a

fluctuating electromagnetic field in particles and between particle and solid surface which is

induced by the spontaneous magnetic and electrical polarisation. The van der Waals force can

be either attractive or repulsive depending on the material property and is always attractive

between identical materials. A number of methods have been proposed to calculate the van

der Waals interaction energy [7–11]. Basically, there are two computation methods: the micro-

scopic and the macroscopic.
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For the microscopic methods, perturbation theory was initially adopted to solve the Schrӧdinger

equation for the interactions between two hydrogen atoms at a large separation distance byWang

[12] and London [13], and they considered the interactions between the protons and electrons of

the two atoms in the calculation. Their study provides a basis of quantum-mechanical analysis of

the interaction between two non-polar molecules. Margenau [14] improved the analysis with

consideration of higher moments. The retardation effect for the interactions was further investi-

gated by Casimir and Polder [15] when the separation distance was shorter than the characteristic

wavelength of radiation. Subsequently, Hamaker [11] proposed a simplified microscopic approx-

imation in which the interaction between two solids is pair-wise additive. In another words, the

total interaction force can be obtained by simply summing up the forces over all pairs of atoms in

both solids. It is worth mentioning that Hamker’s microscopic method neglects the retardation

effect and many-body interactions. However, the influence of neighbouring atoms cannot be

ignored, especially for condensed medium such as liquid. As a result, the pair additivity is

difficult to be implemented for interacting objects in aqueous medium.

A more rigorous approach, macroscopic theory, was proposed in order to account for the

aforementioned challenges. Dzyaloshinskii et al. [9] developed a new theory to avoid the

problem of additivity encountered in the microscopic methods, known as Lifshitz theory. In

this theory, large subjects are treated as a continuous medium without considering the atomic

structure. The interaction forces between the subjects are calculated based on the bulk material

properties including dielectric constants and refractive indices. The retardation effect is implic-

itly considered in the full Lifshitz treatment, but it is readily take account of the effect via

modifying the Hamaker constant. In terms of calculation of Hamaker constant, various

approaches have been developed and details can be found in the literatures [16–19].

Hamaker constants are most accurately calculated by Lifshitz theory, which determines the

magnitude of the interaction through the frequency dependent dielectric properties of the

intervening media [9, 18]. The Hamaker constant is estimated from the frequency dependent

dielectric properties of the individual materials comprising the system as
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where A132 is the Hamaker constant between particles ‘1’ and the plate ‘3’ in medium ‘2’ and is

a measure of the magnitude of the interaction between two objects. Israelachvili [20] proposed

a simplified expression for the function ε ivj
� �

based on the refractive index and the absorption

frequency of materials.

ε ivj
� �

¼ 1þ
n2 � 1

v2
(2)

In practice, it is difficult to obtain all the parameters in Eq. (2), mainly the absorption fre-

quency. Assuming the absorption frequencies of the three media are the same, the Tabor-

Winterton (TW) expression was developed to overcome the difficulties, shown as [21]
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where the refractive index ni and zero frequency term ε0,i are the temperature-dependent

factors for van der Waals interaction, kB is the Boltzmann constant, and T is the absolute

temperature of the system. The zero frequency term for most of the aqueous colloids is about

equal to 3kT/4 or around 3 � 10�21 J. Water has a dielectric constant of about 80 at room

temperature and non-polar media have values in the range 2–3.

In consideration of the retardation effect, Suzuki and Higuchi [22] proposed an approximated

expression for the van der Waals interaction potential between the sphere and the plate as

Fvdw ¼
�A132

6kT

λ λþ 22:232H
� �

H2
λþ 11:116H
� �2

(4)

where a is the radius of the sphere, h is the minimum surface-to-surface separation between the

sphere and the plate, and H (h/a) and λ (λ/a) are the separation distance between the sphere

and plate surface and the dimensionless characteristic wavelength, respectively, as illustrated

in Figure 1. λ is the characteristic wavelength of the interaction which has a value of about

100 nm for most materials.

3.1.2. Electrostatic double layer force

Because of the electric double layer (EDL) force, particles can be well dispersed in liquids other

than forming aggregation. The EDL force originates from the repulsion between the charged

surfaces of the particles and solid surfaces immersed in liquids of high dielectric constants. The

charges form the so-called electric double layer in the vicinity of the particles and the solid

surfaces. The charging mechanism of a solid surface in a liquid medium can be categorised into

two: (1) ionisation or dissociation of surface groups on the solid surface and (2) adsorption or

binding of ions from electrolyte solutions onto a surface with oppositely charged sites or an

Figure 1. Interaction between the sphere and the plate.
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originally uncharged solid surface. For a single particle suspended in a liquid medium, the

particle is covered by the electric double layer (Figure 2). With consideration of the finite size

of ions, Stern [23] developed an electric double layer model in which one immobilised layer of

ions is absorbed onto the particle surface and the other layer is filled with diffusive space

charges from the liquid medium (Figure 2). The former layer is termed as Stern layer and the

latter layer is called as diffuse or Gouy layer.

Due to the nonuniform distribution of charges around the charged surface, electric potential

reduces gradually with the separation distance from the solid surface to the bulk liquid phase. In

the electric double layer model, several potentials are defined including surface potential on the

solid surface, Stern potential at the Stern layer and zeta potential (ζ) at slipping plane. Assuming

ions of identical property and average surface charge over the whole solid surface, the electric

potential (ψ) and the average charge distribution in the diffuse layer of the electric double layer

can be computed based on the non-linear Poisson-Boltzmann equation (PBE) as [24–26]

∇
2ψ ¼

-1

ε0ε

X

i

n
0
i
zie exp

�zieψ

kBT

� �

(5)

where n
0 is the number density of ions in bulk, i represents the component i, z and e are the

valence and the elementary electric charge, ɛ0 is the permittivity of vacuum, and ɛ is the static

dielectric constant.

As illustrated in Figure 2, a particle approaches a solid surface in an electrolyte solution or two

charged particles approach each other, and their diffuse layers would overlap with each other.

EDL force is repulsive for two surfaces with charges of same sign, while it becomes attractive

for two particles with charges of opposite sign. The accuracy of calculating the EDL interaction

is influenced by various factors. To simplify the calculation, two important assumptions are

Figure 2. Schematic of a diffuse double layer of a charged particle in the vicinity of a charged solid/wall surface.
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made: interactions with constant surface potential and constant surface charge density. For the

constant surface potential cases, surface-chemical equilibrium is maintained while two particles/

surfaces are approaching in a very short time. This may not be realistic for some practical cases

[27]. For the constant surface charge cases, two particles/surfaces have fixed surface charge

densities in the approaching process. These two assumptions are applied to the potential and

charge on the particle/solid surfaces, whereas the interaction between electrical double layers is

determined by the potential at the Stern plane. The charges at the Stern layer may behave

differently from those on the particle/solid surface during the approach process. Recently, Barisik

et al. [28] and Zhao et al. [29] have applied a complex charge regulation as boundary conditions

to calculate the EDL interactions in nanoscale.

Generally, the EDL interaction energy can be computed based on two methods. One method is

to directly solve the Poisson-Boltzmann equation for systems of particle/solid surfaces. Nor-

mally, it is difficult to obtain simple analytical solutions by this method. The other method is to

construct the formula based on known expressions for each of the surfaces involved without

consideration of influences of the other surfaces. The approximations of EDL interaction

energy obtained in this way are often more attractive for practical applications which require

fairy accuracy and simplicity [30].

3.1.3. Sphere-plate double layer interactions

In 1934, Derjaguin [31] developed an integration method to calculate the electric double layer

interactions between two spheres in a dilute suspension. It has become a widely adopted

method in colloidal chemistry since then. The EDL interaction energy between two spheres

with overlapping electric double layers can be calculated as

Vedl ¼
2πa1a2
a1 þ a2

ð

∞

h

υEdh (6)

where h denotes the minimum separation distance between two sphere surfaces, and a1 and a2
are the radii of two spheres. The EDL interaction force can be obtained by differentiating the

interaction energy, Vedl, with the separation distance, h, as

Fedl ¼
2πa1a2
a1 þ a2

υE hð Þ (7)

It should be noted that the above expressions are only applicable for cases in which κap > 5

and h ≪ ap are valid. By allowing one of the radii to approach infinity, the sphere-plate

interactions can be derived from the sphere-sphere interactions. Assuming constant surface

potential, a theoretical expression of EDL interaction energy between a sphere and a plane was

developed by Hogg et al. [32] as
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The electrical double layer (EDL) interaction force can be obtained by differentiating electrical

double layer interaction energy with separation between two surfaces.

Fedl ¼ �
∂Vedl

∂h
¼ 2πε0εaκ ξ2p þ ξ2w

� � 2ξ2pξ
2
w

ξ2p þ ξ2w

exp �κhð Þ

1� exp �2κhð Þ
�

exp �2κhð Þ

1� exp �2κhð Þ

" #

(9)

where ζp and ζw denote the zeta potentials of colloid particle and channel wall, respectively. ɛ0
and εr represent the permittivity of vacuum and relative permittivity, respectively. The EDL

thickness, also known as Debye length, κ�1 is defined as

κ�1 ¼
2e2z2n

∞

εkBT

� ��0:5

(10)

where e represents the electron charge, z is the valance of ions and n∞ denotes the bulk

number density of ions. When the conditions of h ≪ ap and κap ≫ 1 are satisfied, the

expressions above can work well with cases of small potential. Alternatively, the EDL inter-

action energy can be computed with either the linear superposition method or the complete

numerical solution of the nonlinear Poisson-Boltzmann equation [33]. Considering ion-ion

interactions, a complex statistical mechanical model was developed for calculating the EDL

interaction based on the thermodynamic entropy and Helmholtz free energy approach.

Different boundary conditions have been studied, such as charge regulation and constant

surface charge density [28, 34, 35].

The total interaction energy, V, in the DLVO theory is obtained by the summation of the

electrostatic and van der Waals contributions as illustrated in Figure 3. With the electronic

double layer potential and van der Waals potential described under previous mentioned

assumptions, the total interaction is calculated as

Figure 3. Example diagram of potential energy vs. separation distance [36].
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V ¼ Vvdw þ Vedl (11)

Eq. (11) gives both a theoretical framework to predict and compare experimentally measured

colloidal interactions, and the knowledge of how surface interactions can be controlled.

3.2. Non-DLVO forces

In the classical DLVO theory, van der Waals and electrical double layer interactions play vital

roles in colloidal particle interactions. This theory has been successfully utilised to explain

many experimental observations. Whereas, there are situations in which theoretical predica-

tions based on interactions of electrical double layer and van der Waals force cannot provide

reasonable agreement with experimental results [6, 37]. For instance, the classic DLVO theory

fails to explain the interactions with ultra-short separation distance (i.e., shorter than a few

nanometres). The continuum theories are not valid in such short distances, and bulk material

properties (e.g., refractive index, density, and dielectric constant) cannot be used to describe

such interactions. For these cases, some additional non-DLVO forces can be introduced into

the DLVO theory, such as Born repulsion [38], polymer bridging [39], hydration forces [40],

hydrophobic interaction [41], and steric interaction [42]. In this section, a brief introduction for

non-DLVO forces is provided and more details can be found in a comprehensive review by

Liang [4].

Polymer bridging theory applies to polymer flocculation. It is postulated that polymer bridges

are built between neighbouring solid particles in a suspension in order to form a loose porous

3D network of solid particles (i.e., floc). When the detailed spatial variation of the short-range

forces are not crucial, Elimelech et al. [30] reported that the microscopically averaged Born

repulsion could be a convenient approach to consider effects of non-DLVO interactions. As

particles interact with adsorbed fluid layers, solvation or hydration forces begin to take effects.

Grabbe and Horn [43] suggested that the repulsive hydration force plays a dominant role for

two interacting silica surfaces in a short range immersed in an electrolyte solution (NaCl).

Unlike the electric double layer force, the hydration force was found to be independent on the

electrolyte concentration over the range in their experiments. However, the physical mecha-

nism of the hydration force is still unclear. The anomalous polarisation of water near the

interfaces could generate the hydration force. It also could originate from the entropic repul-

sion of thermally activated molecular groups from protrusions on the surfaces [44–46]. Water

molecules between two hydrophobic surfaces tend to migrate from the narrow gap to the bulk

liquid at extremely short separation distance. It is because that the opportunities for hydrogen

bonding are unlimited in the bulk liquid and free energy is lower than in the gap. As a result,

an attractive force, hydrophobic force, would be generated between the two surfaces. This

attractive force works in much greater range (up to 80 nm) than the van der Waals force and is

one to two orders of magnitude stronger [41, 47, 48]. When two polymer-covered particles

approach to each other, steric or osmotic forces would be developed between the particles. The

steric force is related to the repulsive entropic force caused by the entropy of confining these

chains for overlapping polymer molecules. So far, theories of steric forces are not well-

established. Many components can affect the magnitude of the steric forces, such as bonding

Particle Deposition in Microfluidic Devices at Elevated Temperatures
http://dx.doi.org/10.5772/intechopen.78240

111



stress between the polymer molecules, the quantity or coverage of polymer molecules on each

solid surface and solid surfaces (i.e., reversible process or not) [49–52].

4. Temperature control in microfluidic systems

Temperature is a crucial parameter in many microfluidic applications, for example, microscale

milk pasteurisation unit [53], polymerase chain reaction (PCR) [54, 55], mixing [56], and tempe-

rature gradient focusing [57] or separation [58]. Lab-on-a-chip devices and systems are com-

pact and multi-functional platforms which can be integrated into a small chip. Temperature

control is one of the important functions in various microfluidic applications. In this section,

different techniques for temperature control in microfluidic systems will be summarised into

two categories: bulk temperature control and temperature gradient control [59].

4.1. Bulk temperature

The bulk temperatures of liquids in microfluidic systems are uniformly distributed and it can

be changed by either external heating or internal heating approaches. A number of techniques

have been implemented for various applications.

To control the bulk temperature of the liquids, the external heating approaches usually use

either commercial heaters (e.g., Peltier elements) or preheat/cool liquids prior to being injected

into microchannels. Velve Casquillas et al. [60] designed an external temperature control

system with two Peltier elements that is able to readily vary the temperature of yeast channel

underneath the temperature control channel (shown in Figure 4a). By using this system, they

can rapidly regulate the yeast channel temperature in a wide range (5–45�C within 10 s).

Similarly, Khandurina et al. [61] utilised two Peltier elements as a sandwich assembly to

directly heat up a microfluidic chip for the polymerase chain reaction (PCR) (Figure 4b). This

Figure 4. (a) A schematic of the temperature control device by an external Peltier element; the yeast channel is placed

below the temperature control channel [60] and (b) schematic of the dual Peltier assembly for rapid thermal cycling

followed by electrophoretic analysis on-chip [61].
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compact setup is able to complete 10 thermal cycles within 20 min. With the similar configura-

tion, Yang et al. [55] fabricated a serpentine microchannel on a thin polycarbonate plate

(thickness: 0.75 mm) as a PCR microreactor (Figure 5). They used thermocouples to measure

the surface temperatures of the intrachamber temperature and Peltier elements. With the

developed device, they performed 30 thermal cycles in 30 min and the heating rate and cooling

rate are 7–8 and 5–6�C/s, respectively.

Furthermore, Maltezos et al. [62] chose using liquid metal in combination with Peltiers to

explore the limits of PCR speed in a microchip. Sample tubes were first immerged in a liquid

medium (gallium eutectic) and then sandwiched between two high-powered Peltier elements.

Heat can be rapidly transferred between the DNA/RNA in the sample tubes and the Peltier

elements via the liquid interface. High heating rate and cooling rate can be up to 106 and 89�C/s

in their experiments, respectively.

On the other side, the direct integration of heating or cooling elements into microfluidic

systems is a popular method. Integrated heating approaches are able to reduce the whole

system size and improve its portability.

Joule heating has been the most widely-used technique as an integrated heating solution for

the temperature control in microfluidic systems. Lao et al. [63] filled platinum into silicon-

based microchannels as in-chip heaters and sensors. A well-controlled thermal environment

(�1�C) was achieved for gas and liquid phase reactions (Figure 6). The silicon microchannel

was thermally isolated by a thin silicon nitride membrane to save power consumption. Precise

and prompt temperature control was facilitated with a digital feedback system developed by

them (heating rate: 20�C/s, cooling rate: 10�C/s, and response time: 5 s). By using similar

serpentine channel configurations, Wu et al. [64] injected silver paint into the PDMS

microchannels as integrated microheaters and took an advantage of compressed air for rapid

cooling in parallel channels. Heating rate was 20�C/s and error of temperature was about

�0.5�C in the steady state. With this device, DNA can be successfully amplified in 25 thermal

cycles with 1 min per cycle. Instead of applying metal, de Mello et al. [65] made use of ionic

Figure 5. (a) Peltier thermocycler for the PCR microreactor and (b) a photograph of the serpentine polycarbonate

microchannel [55].
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liquids ([BMIM][PF6] and [BMIM][Tf2N]) as heating elements. The ionic liquid was Joule

heated by an AC current (power: 1 W, frequency: 50 Hz, and voltage: ≤ 3.75 kV). By controlling

the applied voltage of the ionic liquids, the bulk temperature was regulated from 50 to 90�C

with an accuracy of 0.2�C.

Other than the commonly used physical heating approach (i.e., Joule heating), chemical

approach can be another integrated option. To locally control the temperature in a micro-

channel, Guijt et al. [66] made use of heat adsorption and dissipation via endothermic and

exothermic chemical reactions, respectively (Figure 7a). Heating/cooling can be achieved in a

temperature control channel (TCC) where two reagents from separate reactant channels (RC1

and RC2) merged and had chemical reaction. Heating was achievedwith a dissolution of 97 wt%

H2SO4 (Reagent 1) in water (Reagent 2), while cooling was realised with the evaporation process

acetone (Reagent 1) in the air (Reagent 2). A wide temperature range from �3 to 76�C with a

ramp rate of 1�C/s can be realised in the central channel by manipulating the flow rate ratio

between two reagents (shown in Figure 7b).

Figure 6. Top view of the microchip showing the patterned heaters and temperature sensors [63].

Figure 7. (a) Two reactant channels (RC) merging into a temperature control channel (TCC) and (b) layout of the device

used for demonstration experiments [66].
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4.2. Temperature gradient

For several applications such as Soret effect and droplet actuation, temperature gradients are

demanded in microfluidic systems. Temperature gradients have been generated in either a

controlled temperature profile or an arbitrary way by various techniques.

As illustrated in Figure 8a, Mao et al. [67] generated a linear temperature gradient along the

horizontal direction of the PDMSmicrochannel by using the pre-heated liquid approach. Hot and

cold fluids were channelled into two side channels separately, and a stable temperature gradient

has been established in the central channel (Figure 8b). Zhao et al. [68] implemented this

approach for studies on thermophoresis using amicrochipmade of stainless steel. Due to a higher

conductivity of stainless steel than PDMS, a wider range of variations for both bulk temperature

and temperature gradient (1.5� 104K/m) can be formed in themicrochannel. In order to fabricate

similar structures in PDMS microchip, Yan et al. [69] proposed a fast prototyping method for

single-layer PDMS microfluidic devices with abrupt depth variations by combining the laser

ablation and NOA81 moulding. The whole fabrication process can be completed within 2 h. This

method can readily produce PDMS microfluidic devices with micrometre and millimetre struc-

tures in one step. Moreover, this method can be applied in a non-clean-room environment and

does not require complicated and expensive soft lithography equipment or etching processes.

Instead of preheating liquids, Vigolo et al. [70] chose to use silver-filled epoxy with a similar

parallel channel configuration to generate temperature gradients in a microchannel. This

microscale heating element can be powered by two ordinary AAA batteries. Thus, this design

shows its potential as a cost effective and portable solution for thermal control of microfluidic

devices. Alternatively, the parallel-channel configuration has also been implemented for con-

trol of bulk temperatures in microchannels. It can be readily realised by changing the direc-

tions of preheated liquid and DC electric current [71–73].

In addition to regulating bulk temperatures, Peltier elements can be utilised to establish a

constant temperature gradient in microfluidic systems. Matsui et al. [74] designed and fabri-

cated a hybrid temperature gradient focusing (TGF) chip (materials: PDMS/glass) by applying

two Peltier elements. A range of temperature gradient can be formed along the horizontal

Figure 8. (a) Schematic diagram of a device with an on-chip linear temperature gradient and (b) a plot of temperature vs.

position of the temperature gradient device [67].
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direction of the microchannel (Figure 9). The maximum temperature gradient generated in

their device was 13.75�C/mm.

Jiao et al. [75] designed a microfluidic droplet manipulation system with integration of four

microheaters (materials: titanium and platinum) generating planar temperature gradients in

the square region (10 mm � 10 mm). By controlling the frequency and amplitude of square

wave signals, they successfully manipulated the trajectory of a microdroplet based on the

periodic thermocapillary actuation caused by temperature gradients. Yap et al. [76] deposited

a thin film platinum heater in a microchannel to control the thermal field for droplet formation

in a bifurcated microchannel. The trajectory and splitting of the droplet can be controlled by

modulating viscosity and interfacial tension of liquids under different heating conditions.

Because of the temperature gradients generated by metal microheaters, the PDMS micro-

channel would undergo a slight dilation. The temperature-induced dilation changed the height

of the microchannel so that the bubble would be driven away from the constricted region.

Selva et al. [77] successfully controlled the bubble motion by utilising this thermomechanical

actuation under temperature variation. Miralles et al. [78] from the same research group

optimised their previous design by using localised heating resistor whose size was smaller

than the droplet size.

The aforementioned designs of temperature-gradient devices are not suitable for researches on

the microscale mechanism of particle deposition in microchannels due to the obstruction of

heating or cooling elements along the optical path of microscope for observation or inconsis-

tency of the directions of temperature gradient and particle deposition. The authors’ group has

developed a novel design of temperature-gradient microchip to investigate particle deposition

in microchannels [79].

There are three major parts for the temperature-gradient microchip (Figure 10), including a

microchannel, a thermoelectric cooler (TEC) unit as cold end, and a thin glass slide coated with

indium tin oxide (ITO) film as hot end. A temperature gradient can be established along the

vertical direction inside the microchannel, by cooling the top surface of the microchip with the

TEC unit and heating the bottom surface with the ITO film heater.

Figure 9. Schematic drawing of temperature gradient focusing apparatus [74].
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The microchannel can be fabricated with polydimethylsiloxane (PDMS) using standard soft

lithography techniques. The PDMS monomer and the curing agent are fully mixed in a mass

ratio of 10:1, and then they are vacuumed for 45 min to evacuate air bubbles remaining in the

PDMS mixture. The mixture is applied onto the master mould constructed by SU8 on a silicon

wafer. PDMS is cured after being heated with the wafer in an oven at 80�C for about 1 h. A thin

layer of polymerised PDMS (e.g., 1 mm in thickness) is peeled off from the mould. Two

cylindrical openings are then punched at both ends of the microchannel as the inlet and outlet

for sample fluids.

For the ITO glass slide, a thin indium tin oxide film (e.g., 200 nm in thickness) is deposited on

one side of a glass slide (e.g., 0.71 mm in thickness) as a heater for the microchip. Indium tin

oxide is a solid mixture including 90% In2O3 and 10% SnO2 by mass. On the other side of the

glass slide, a thin PDMS film was coated on the bare glass surface. The ITO glass heater has

three major advantages for the particle deposition study. (1) The ITO glass (10 ohms/sq) can

easily generate heat by Joule heating when being connected into an electrical circuit. The heat

dissipation rate of the ITO glass can be well controlled by regulating the applied electrical

current and voltage. (2) The ITO glass has excellent optical transparency allowing direct

observation on particle deposition onto the bottom surface of the microchannel along the

direction of the applied temperature gradient. The bottom view of the particle deposition can

be readily captured via using an inverted microscope equipped with a CCD camera. (3) A

wide range of customised dimensions and patterns can be precisely achieved for ITO heaters

by implementing the standard photolithography techniques.

A closed microchannel is formed via irreversibly oxygen plasma bonding the treated ITO glass

slide and the PDMS block with microchannel structure. The bonded microchannel is heated in

Figure 10. Schematic of the temperature-gradient microchip, consisting of the PDMS microchannel, the glass slide

coated with the ITO film and the TEC unit. Various temperature gradients can be achieved by cooling the top surface of

the microchip with the TEC unit and heating the bottom surface with the ITO film heater. (figure is for not drawn to

scale) [79].

Particle Deposition in Microfluidic Devices at Elevated Temperatures
http://dx.doi.org/10.5772/intechopen.78240

117



the oven to reinforce the plasma-bonding strength. The thermoelectric cooler (TEC) unit is

mounted on the top of the bonded microchannel to provide a stable cold end over the

microchannel. The temperatures of hot/cold ends can be readily adjusted via the DC power

supplies for the ITO film heater and the TEC unit, respectively. Moreover, the temperature

gradient can be well controlled in the microchannel along the same direction as the particle

deposition. Thermal conductive silicon paste can be applied in the gap between the TEC unit

and the PDMS microchip to enhance the heat conduction. This specially designed temperature-

gradient microfluidic system provides a useful tool for researches on dynamics of particle

deposition under different thermal conditions. To the best knowledge of the authors, it could be

the first microfluidic device allowing to directly observe the dynamic process of particle deposi-

tion along the direction of applied temperature gradient.

5. Particle deposition in microchannels

Particle deposition onto solid surfaces has been intensively studied in both experimental and

theoretical approaches. In this section, major works on particle deposition in microchannels are

reviewed.

5.1. Experimental studies

Experiments are usually conducted in three types of setup, including cylindrical, parallel-plate

channels, and impingement jet chamber. Various parameters have been evaluated experimen-

tally in terms of their effects on particle deposition, such as pH, electrolyte concentration,

particle, and solid surface.

5.1.1. Effect of pH on particle deposition

The repulsive interaction would exist between charged particles of same like sign and hinder

fouling behaviour. The zeta potentials of the particle and microchannel surface determine the

magnitude of the repulsion and are closely related to the pH value of working fluid. The pH

value can control the charge signs of the particle and channel surface. Newson et al. [80]

investigated the mechanisms of deposition, removal and sticking in a haematite/water system

(particle diameter: 0.2 μm and concentration: 100 ppm). They found that the sticking coeffi-

cient of particles from turbulent water suspension (Re: 11,000–14,000) was significantly depen-

dent upon the pH value of suspension. Perry and Kandlikar [36] also adjusted the pH value of

the nanofluids and were able to effectively mitigate particulate fouling. The reduction of the

deposition rate was mainly attributed to the augmented EDL repulsion as pH was increased.

5.1.2. Effect of the ion concentration on particle deposition

Gu and Li studied the influence of the electrolyte concentration on deposition of silicon oil

microdrops onto cylindrical surfaces via both experimental and numerical approaches [81, 82].

They found that the increase of the Sherwood number (dimensionless mass transport rate)
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resulted from the neutralisation effect of the electrolyte concentration (10�6–10�3 M) which

crucially determined the zeta potentials of bare glass tube surfaces and silicon oil drops.

Moreover, they found that the Sherwood number was increased significantly with the increase

of the cationic surfactant concentration (CTAB, 10�6–10�4 M) but was reduced monotonically

with adding anionic surfactant (SDS) into the oil droplet emulsion. Kar et al. [83] performed

experiments with CaCO3 microparticles and hollow fibre membrane to study the effect of salt

concentration gradients on particle deposition. They reported that the diffusiophoretic particle

transport has crucial influence on particle deposition when different electrolyte ions of salts in

solution have different diffusion coefficients. Furthermore, Guha et al. [84] found the diffusio-

phoresis has significant influence on the colloidal fouling in a low salinity reverse osmosis

system.

5.1.3. Effect of properties of particle and wall on particle deposition

Salim et al. [85] investigated the effects of protein (fibrinogen and lysozyme) adsorption on the

electroosmotic flow (EOF) behaviour of the plasma-polymerised glass microchannel surfaces.

Three types of plasma-polymerised surfaces (pp.TG, pp.AAm, and pp.AAc) were tested which

had different surface charges and charge densities. They observed a non-fouling phenomenon

with tetraglyme coating in the presence of protein, and this coating provided stable EOF

performance in the glass microchannel.

Mustin and Stoeber [86] conducted experiments with polystyrene microsphere suspensions in

a PDMS microchannel. They found that the dynamics of channel blockage was influenced by

particle size distribution besides the particle size alone. Recently, they performed another

experiment in a mini impingement jet flow cell made of PDMS for particle deposition

(Figure 11) [87]. They noticed discrepancies between the experimental measurements and

numerical simulation results based on both DLVO and extended DLVO theories, and pro-

posed the surface roughness and electrostatic charge heterogeneity of the PDMS surface could

be the most plausible reason for such discrepancies.

Figure 11. (a) Cross-section view of the deposition chamber and (b) flow cell on substrate without clamping [87].
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5.1.4. Effect of external field on particle deposition

In the previous literature, transport of micron-size particles is normally simplified as a mass

transfer process that is majorly affected by Brownian diffusivity. However, gravity or a con-

stant body force exerted on the particles could have significant influence on the deposition

process, even for such tiny colloidal particle size (less than 1 μm). Yiantsios and Karabelas [88]

reported that gravity played a key role for the deposition rate of spherical Ballotini glass

particles (diameter: 1.8 μm). Gravity could control the particle transport boundary layer in

a horizontal narrow channel under laminar flow over a fairly wide range of flow rate. They

[89] conducted further experiments on the effects of physicochemical and hydrodynamic

conditions by using dilute microsized glass particle suspensions (diameter: 1.5 μm) in a

parallel-plate channel. They concluded that gravity was a determining factor for deposition at

low wall shear stresses. While the hydrodynamic wall shear stress was increased, particle

deposition rates were noticeably decreased because of hydrodynamic lift or drag forces hin-

dering transport or attachment.

Stamm et al. [90] experimentally examined the initial stage of cluster growth in a particle-laden

flow in a microchannel and investigated the parametric effects of a void fraction, flow shear

strain rate and channel height to particle diameter ratio. Thereafter, Gudipaty et al. [91] studied

the cluster formation of colloidal particles in a PDMS microchannel and found that the clusters

were initiated by the attachment of individual flowing particle onto the bottom surface.

However, they have not either addressed the physical mechanism of the initial particle attach-

ment to the surface or observed the adherence process in the experiments.

Unni and Yang [92] experimentally investigated the dynamics of particle deposition in an elec-

troosmotic flow using video microscope, and reported that the increased surface coverage at

higher salt concentrations resulted from weakened EDL repulsion with particles being adsorbed

onto the channel surface. Hydrodynamic blocking became relatively weaker with lower electric

field strengths because the surface blocking was majorly caused by electrical interactions.

5.1.5. Effect of temperature on particle deposition

Most of the researches about deposition of micro-/nanoparticles in microchannel are con-

ducted in room temperature environment, seldom with high bulk temperature or temperature

gradient, which is a crucial factor for heat exchangers in reality. Yan et al. [73] investigated the

effect of bulk solution temperature on particle deposition in a microchannel under well-

controlled temperature conditions using a microfluidic temperature control device. To the best

knowledge of the authors, this was the first attempt to study the thermal effect on the deposi-

tion of colloidal particles in an aqueous dispersion onto a microchannel wall. It is found that

the temperature of solution has a considerable effect on the particle deposition in microc-

hannels. The static particle deposition rate (Sherwood number) has been measured over a

range of temperatures between 20 and 70�C. It is found that the Sherwood number is mono-

tonically increased up to 265%, with the solution temperature within the test range. They

developed a deterministic model based on the Derjaguin-Landau-Verwey-Overbeek theory

with consideration of temperature dependence, and found that by increasing the solution
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temperature, the attraction energy (van der Waals force) between the particles and the solid

surface is increased while the repulsive energy (electric double layer force) is decreased.

Moreover, they further studied the hydrodynamic effects on particle deposition in micro-

channels at elevated temperatures, including steady flow and pulsatile flow [71, 72]. The

dimensionless particle deposition rate (Sherwood number) was found to be reduced with the

Reynolds number and changed insignificantly for the Reynolds number beyond 0.091 (0.5 mL/h)

within the tested range with a given solution temperature (324.85 K) and an electrolyte concen-

tration (5� 10�4 M). Under the pulsatile flow condition, the normalised particle deposition rate

was found to be reduced significantly as the flow oscillation frequency was increased from 0 Hz

to 1 Hz, while keeping the steady flow component and the amplitude of the flow oscillation

unchanged.

5.2. Theoretical modelling/studies

Spielman and Friedlander [93] theoretically analysed the effect of the electrical double layer on

particle deposition based on the equation of convective diffusion in an external force field.

They reported that the deposition process of Brownian particles was equivalent to ordinary

convective diffusion in the bulk with a first-order surface reaction at the collector. With respect

to the net interaction potential, a formula can be derived for the surface reaction coefficient.

Another analytical model was developed by Adamczyk and Van De Ven [94] for particle

deposition kinetics onto the surfaces of parallel-plate and cylindrical channels (Figure 12). As

governing equation, the mass transport equation was formulated with consideration of electri-

cal double layer force, van der Waals force, and external forces such as gravity. The ‘perfect

sink’ boundary condition was applied to solve the mass transport equation. Different dimen-

sionless parameters (Ad, Pe, Dl, and Gr) were proposed to account for dispersion, convection/

diffusion, electrical double layer, and gravity, respectively.

Studies on particle deposition onto permeable surfaces are practically meaningful for mem-

brane filtration industry. Song and Elimelech [95, 96] theoretically studied this phenomenon in

Figure 12. Schematics of parallel-plate and cylindrical channels [94].
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a system of parallel-plate channel. The convection-diffusion equation was solved numerically

with consideration of lateral transport. The lateral transport would be induced by inertial lift,

permeation drag, and transport that are determined by the collective effect of gravity force and

surface forces. Parametric studies were systematically carried out regarding the initial particle

deposition rate, including the effects of permeation velocity, cross flow velocity, particle size,

and solution ionic strength.

Since the distribution of surface charge is not uniform in practice, Nazemifard et al. [97, 98]

performed a trajectory analysis of particles close to a micropatterned charged plate based on the

radial impinging jet setup for the influences of surface charge heterogeneity on deposition

efficiency and particle trajectory. The surface charge heterogeneity was controlled by concentric

bands with varied properties, such as geometric dimension and types of surface charges. In their

analysis, the van der Waals, electrostatic double layer force, hydrodynamic force, and gravity,

have been taken into consideration. Due to the coupled effects of colloidal and hydrodynamic

forces, the deposition efficiencies and particle trajectories were remarkably influenced by surface

charge heterogeneity when a particle flowed radially away from the stagnation point in the

radial jet impingement setup. This analysis demonstrates how the existing particle transport

models could possibly be modified in consideration of chemical heterogeneity and additional

surface interactions. Similarly, Chatterjee et al. [99] applied the convection-diffusion-migration

equation (Eulerian model) with fully developed Poiseuille flow velocity profile to investigate the

transport of particles in patchy heterogeneous cylindrical microchannels (Figure 13). They eval-

uated the effects of surface chemical heterogeneity on particle transport and deposition, and

found that particles tend to travel further along the microchannel in the heterogeneous channels

compared to the homogeneously favourable channels.

Using a soft-sphere discrete element method, Marshall [100] studied the caption of particles by

wall and particle aggregation in a microchannel. According to their results, the particle lift-off

from the wall was caused by adhesion and collision with particle aggregate or a passing

particle when a single particle with a large size was attached to the wall. The fluid forces were

not the direct reason for the particle lift-off.

Unni and Yang [92] developed an electrokinetic particle transport model in a parallel-plate

microchannel (Figure 14) based on the Stochastic Langevin equation. They incorporated ran-

dom Brownian motion of colloidal particles and the hydrodynamic, electrical, DLVO colloidal

interactions into the equation. Based on the developed model, particle trajectories can be

stochastically simulated using Brownian dynamics simulation and the surface coverage was

calculated under a range of electrical and physicochemical conditions.

In the absence of repulsive energy barrier, Jin et al. proposed concurrent modelling for the

effects of interaction forces and hydrodynamics on particle deposition on rough spherical

surfaces [101]. The model considered the hydrodynamic retardation functions and flow field

profiles. Their works showed that the hydrodynamic effects remarkably affect the particle

deposition behaviours which were different from the predictions based on DLVO forces alone.

In addition, surface roughness played an important role in particle deposition experiment/

simulation. They conducted another study on deposition of colloidal particles and reported a

non-monotonic, non-linear effect of nanoscale roughness on particle deposition without
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energy barrier using both the convection-diffusion model and parallel-plate chamber experi-

mental system [102]. Their results showed particle deposition flux could reach the minimum

value when a critical roughness size was provided.

Figure 13. Schematic of patchy heterogeneous cylindrical microchannels. (a) 3D schematic representation of positively

charged particles deposition along the the microchannel. (b) 2D axisymmetric view of the microchannel geometry. (c) The

zoomed view of one pitch length [99].
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Based on the Derjaguin-Landau-Verwey-Overbeek theory, Yan et al. [73] developed a qualita-

tive theoretical model with consideration of the temperature effect for the first time. All the

driving forces during the whole particle deposition process are temperature dependent, so the

particle deposition is determined by the collective effects of the variations of the forces caused

by temperature changes. By plotting interaction potential curves and energy barriers, the effect

of bulk solution temperature can be clearly seen in Figure 15 that the interaction potential

Figure 14. (a) Schematic of electrokinetic transport of a particle in a parallel-plate channel. (b) Forces acting on a moving

particle in the vicinity of an attached particle and the channel wall [92].
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curves are varied with the bulk solution temperature and the energy barrier reduces consider-

ably with increasing the bulk solution temperature as shown in the inset of Figure 15.

Furthermore, Yan et al. [71] developed a simplified one-dimensional mass transport model

(i.e., Eulerian model) for calculating the particle deposition rate in microchannel flows at

elevated temperatures. A schematic of microparticles flowing through a microchannel at an

elevated temperature (T) is shown in Figure 16. For a dilute spherical particle monodispersion

in the absence of chemical reactions, the interactions between particles are neglected. The

deposition rate of particles from solution onto the microchannel surface at the steady state

can be described by the general convection-diffusion equation as

∇ � j ¼ �∇ � D � ∇nð Þ þ ∇ � unð Þ þ ∇
DF

kBT0
n

� �

¼ 0, (12)

where j is the particle flux vector (the number of particles per unit area per second), the particle

flux comprises three components as shown in Eq. (12): Brownian diffusion, fluid convection,

and migration under external forces. Besides, the particle flux j can be decomposed into two

portions along the x-direction and y-direction, j ¼ jxx⃑þ jyy ⃑, n is the local particle number

concentration,D is the diffusion coefficient tensor, u is the particle velocity, F indicates external

forces exerted on the particles, kB is the Boltzmann constant, and T0 is the reference tempera-

ture. By an appropriate scaling with the dimensionless parameters given in Table 1, the mass

transport equation can be expressed in a dimensionless form as

Figure 15. Dimensionless particle-wall interaction potential curves for three different solution temperatures (T = 293.15,

323.15, and 343.15 K). Curves are obtained with the temperature dependent Hamaker constant, zeta potential and the

thickness of electric double layer. Inset shows the energy barrier that polystyrene particles should overcome to achieve

deposition onto the PMMA surface at different temperatures for the DI water case [73].
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�f 4 Hð ÞR2 ∂
2n

∂X2
þ Pef 3 Hð Þ H þ 1ð Þ 2� H þ 1ð ÞR½ �
 � ∂n

∂X
þ

∂

∂H
�f 1 Hð Þ

∂n

∂H
þ f 1 Hð ÞFn

� �

¼ 0: (13)

All the forces acting on particles are along the vertical direction (y-axis in Figure 16), and they are

colloidal forces (van der Waals force Fvdw and electric double layer force Fedl) and external forces

(gravity FG, hydrodynamic lift force FL, and thermophoretic force FT). The thermophoretic force

is neglected because of its low magnitude compared to other forces in the study [73]. The non-

DLVO forces are excluded for simplicity. Hence, the total force (F = Fy) can be treated as a scalar

in the following sections. The dimensionless total force (F) is calculated as

F ¼ Fy ¼ Fedl þ Fvdw þ FG þ FL: (14)

The potential of each force is computed by integrating the force over the separation distance

between a particle and the channel surface (H). The total potential (V) can be obtained by using

superposition of individual potentials: the van der Waals potential (Vvdw), the EDL potential

(Vedl), and the potentials contributed by gravity and lift force (VG, VL),

V ¼ Vedl þ Vvdw þ VG þ VL ¼

ð

FedldH þ

ð

FvdwdH þ

ð

FGdH þ

ð

FLdH (15)

As the scaled particle ratio (R ¼ ap=w) in Eq. (13) is about the order of 10�3 (ap ≪ w) for their

experiment system, the particle diffusion term (first term in Eq. (13)) and the particle convec-

tion term (second term in Eq. (5)) in x-direction can be neglected for the low Peclet number (<1)

in the present study. Besides, the variation of the deposition rate for a dilute particle solution

Dimensionless parameters Expression

Scaled particle flux Jx ¼
ap jx

n∞,pD∞

, Jy ¼
ap jy

n∞,pD∞

Scaled particle concentration n ¼ n
n∞,p

Scaled external force F ¼
apF

kBT0

Scaled interaction energy V ¼ V
kBT0

Scaled particle-wall separation distance H ¼ h
ap
¼

y�ap
ap

Scaled distance from channel entrance X ¼ x
w

Scaled particle ratio R ¼
ap
w

Peclet number Pe ¼
3Uavga

3
p

2w2D∞

Hydrodynamic retardation functions [101] f 1 Hð Þ ¼ 1� 0:399 exp �0:14869Hð Þ � 0:601 exp �1:2015H0:92667
� �

f 3 Hð Þ ¼ 1� 0:3752 exp �3:906Hð Þ � 0:625 exp �3:105H0:15
� �

f 4 Hð Þ ¼ 1� 1:23122 exp �0:2734Hð Þ þ 0:8189 exp �0:175H1:2643
� �

Table 1. Dimensionless parameters utilised for the mass transport equation [71].
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along the x-direction in downstream was found to be insignificant [96, 103]. Consequently, the

mass transport equation can be further simplified to one-dimensional as

∂

∂H
�f 1 Hð Þ

∂n

∂H
þ f 1 Hð ÞFn

� �

¼ 0: (16)

Eq. (16) can be solved with the boundary conditions as

n ¼ 0, at H ¼ H0 (17)

n ¼ 1, at H ¼ H
∞

: (18)

Eq. (17) refers to the ‘Perfect sink’ boundary condition. H0 indicates the minimum dimension-

less particle-wall distance (h0/ap). This boundary condition has been widely used in particle

deposition studies, and it assumes that all particles are irreversibly adhered to the solid surface

when they move into the primary energy minimum (PEM) region. It can be explained by that

the attractive van der Waals force in the PEM region becomes much stronger than the repulsive

electric double layer force. Thus, the particles would deposit onto the solid surfaces. The

second boundary condition, given by Eq. (18), states a natural boundary condition for the

particle concentration. The particle concentration gets close to that in the bulk phase when

the particle-wall distance becomes an ‘infinite’ distance.

Figure 16. Schematic of microparticle transport in a microchannel. The forces on the particle are van der Waals force

(Fvdw), gravity force (FG), electric double layer force (Fedl), thermophoretic force (FT), and hydrodynamic lift force (FL). The

radius of the particle is ap, the minimum separation distance between the particle surface and the bottom surface of the

microchannel is h, the flow velocity distribution is U(y), and the applied temperature gradient in the microchannel is ∇ T

(the figure is not drawn to scale) [71].

Particle Deposition in Microfluidic Devices at Elevated Temperatures
http://dx.doi.org/10.5772/intechopen.78240

127



Having obtained dimensionless concentration distribution (n) along the dimensionless separa-

tion distance (H) in Eq. (6), the particle deposition flux to the channel surface can be found as

J0 ¼ �f 1 H0ð Þ
dn

dH

� �

H¼H0

: (19)

Here, J0 is the particle number flux at H ¼ H0. The negative sign on the right hand side of

Eq. (9) indicates that the particle number flux is toward the solid surface. Moreover, the

dimensionless particle deposition rate onto the channel surface can be quantified by the

Sherwood number

Shnum ¼ �
j0

D
∞
n
∞,p=ap

� � ¼ f 1 H0ð Þ
dn

dH

� �

H¼H0

: (20)

The thermal effects on the particle deposition rate (i.e., Sherwood number) are influenced by

the temperature dependences of all the forces (Fvdw, Fedl, FG, and FL) acting on the particles. For

van der Waals force, the Hamaker constant is a temperature dependent parameter. For EDL

force, EDL thickness, zeta potential, and relative dielectric constants of materials are varied

with the temperature. For gravity and hydrodynamic lift forces, the magnitude of forces is

changed due to the variations of density and viscosity of liquid. Details of the calculations for

the temperature dependences can be found in [71, 73].

For the first time, based on the DLVO theory with considering the temperature-dependent

interactions, a simplified one-dimensional mass transport model was developed and it can

serve as a semi-quantitative approach for describing particle deposition phenomena in

microchannel flows at elevated temperatures.

6. Summary and future prospects

Particle deposition and particulate fouling have been ubiquitous phenomena in natural and

industry processes. Thermal effects (i.e., temperature and temperature gradient) on particle

deposition are important but always ‘ignored’ in literatures. Most of the published research

works about micro-/nanoparticles deposition in a microchannel were conducted in the room

temperature environment, seldom with consideration of elevated bulk temperature or temper-

ature gradient, which is a crucial factor for thermal driven fouling phenomena in reality.

Especially, the microscale mechanism of particle deposition in microchannel at elevated tem-

perature was still in its infancy. In this chapter, researches on particle deposition and particu-

late fouling on surfaces have been extensively reviewed both theoretically and experimentally

from the published works. This chapter has summarised relevant concepts of particle deposi-

tion, key parameters, and experimental techniques (e.g., device design) as well as theoretical

methodologies (e.g., modelling). The physics of particle deposition phenomena under different

parametric influences has been discussed in detail. The authors have presented a new micro-

fluidic temperature-gradient device that can be used to directly observe particle deposition
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along the direction of temperature gradient with a single-particle resolution. Moreover, a

simplified mass transport model (Eulerian model) with consideration of thermal effects has

been presented to describe the particle deposition phenomena in microchannels at elevated

temperatures based on the Derjaguin-Landau-Verwey-Overbeek theory. Both the theoretical

modelling and experimental measurements have shown that the thermal effects have pro-

found the impact on particle deposition in microchannels.

Future research in this field lies in the development of investigations on coupling effects of

thermal field and other external fields, such as optical, acoustic, and magnetic fields [104–106].

Microfluidic devices and systems offer ideal experimental platforms which provide well-

controlled external fields applied to the particle deposition process. Especially, the dynamic

behaviour of particle deposition under complex external fields can be observed directly with a

resolution of micrometre even nanometre (e.g., single molecule detection). With such unique

information, trans-scale theoretical modelling which can bridge the gap between particle

kinetics in microscale and fouling phenomena in macroscale will be highly appreciated. The

current investigations at elevated temperatures rely on either ensemble average value of a

population of particles (i.e., average particle deposition rate) or bulk property of fouling (i.e.,

fouling resistance). When the deposition of single nanoparticle at elevated temperatures can be

reliably investigated, researchers will be able to understand the dynamic processes of nano-

particle deposition in microchannels which elucidates particulate fouling of nanofluids in heat

exchangers and nanomaterial drug delivery in vivo in details.
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Nomenclature

ap particle radius (m)

a1 radius of interacting particle 1 (m)
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a2 radius of interacting particle 2 (m)

A132 Hamaker constant for the interaction between substances 1 and 2 in medium

3 (J)

B width of the microchannel (m)

w half channel height (m)

Dx diffusivity in X direction (m2/s)

Dy diffusivity in Y direction (m2/s)

DT thermal diffusion coefficient (m2/s)

D
∞

Stokes-Einstein diffusivity (m2/s)

Dl double layer number in the HHF expression for the EDL interaction

Da double layer asymmetry number in the HHF expression for the EDL interac-

tion

f1(H) UHCC correction function for diffusivity perpendicular to the solid surface

f3(H) UHCC correction function for diffusivity parallel to the solid surface

f4(H) UHCC correction function for diffusivity along the flow direction (X)

Fx X component of the total force exerted on the particle (N)

Fy Y component of the total force exerted on the particle (N)

Fedl dimensionless EDL interaction force

Fvdw dimensionless van der Waals interaction force

FG dimensionless gravity force

FL dimensionless hydrodynamic lift force

FT dimensionless thermophoretic force

h minimum separation distance between particle and wall (m)

H dimensionless particle-wall separation

H0 dimensionless primary energy minimum separation

H
∞

dimensionless particle-wall separation in bulk fluid

jx particle flux in X direction (m�2 s�1)

jy particle flux in Y direction (m�2 s�1)

Jx dimensionless mass flux in X direction
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Jy dimensionless mass flux in Y direction

kB Boltzmann’s constant (1.38064852 � 10�23 J/K)

L length of the microchannel (m)

n particle number concentration (/m3)

n dimensionless particle number concentration

n
∞,p particle number concentration in bulk liquid (/m3)

Pe Peclet number based on average flow velocity

Q volume flow rate of liquid (m3/s)

Re Reynolds number based on average flow velocity

Sh Sherwood number

t time (s)

T absolute temperature (K)

T0 reference temperature (293.15 K)

Uavg average flow velocity in microchannels (m/s)

V dimensionless total interaction potential

Vedl dimensionless EDL interaction potential

Vvdw dimensionless van der Waals interaction potential

VG dimensionless gravity potential

VL dimensionless lift potential

VT dimensionless thermophoretic potential

z ionic valence

e elementary electric charge (1.602176620898 � 10�19 C)

Greek symbols

ε dielectric constant

ε0 absolute dielectric constant of vacuum (8.845 � 10�12 C2/N m2)

ξ zeta potential (V)

λ London retardation wavelength (100 nm)

κ Debye-Hückel parameter (m)

μ dynamic viscosity of liquid (N s/m2)
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ν kinematic viscosity of liquid (m2/s)

r density (kg/m3)

ψ electric potential (V)

τ ratio of particle radius (ap) to the Debye length (κ�1)

ω mobility of particle
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