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Abstract

Thiophene S-oxides constitute a class of molecules that have been studied in more detail
only recently. Their existence as intermediates in the peracid mediated oxidation of thio-
phenes to thiophene S,S-dioxides, however, has been known over some time. Over the last
20 years, a larger number of thiophene S-oxides have been prepared and isolated in pure
form. Thiophene S-oxides have been found to be good dienes in [4 + 2]-cycloaddition reac-
tions, where they react with electron-poor, electron-neutral and electron-rich dienophiles
with high syn π-facial stereoselectivity. Thiophene S-oxides have been found to be metabo-
lites of thienyl-containing pharmaceuticals such as the anti-platelet drugs ticlopidine and
clopidogrel. The chapter gives an overview of the preparation and reactivity of this class of
compounds.

Keywords: thiophenes, selective oxidation, cycloaddition, functionalized arenes, drug
metabolites

1. Early history of oxidation reactions of thiophenes: cycloaddition

reactions of thiophene S-oxides prepared in situ in absence of Lewis acids

In the first half of the 20th century, considerable effort was devoted to the oxidation of the

heteroaromatic thiophene (1) with the understanding that the oxidation of thiophene to thio-

phene S,S-dioxide (2) (Figure 1) would be accompanied by the loss of aromaticity [1, 2]. The

non-substituted thiophene S,S-dioxide (1) is not very stable in the pure state [3], but undergoes

a slow dimerization with concurrent extrusion of SO2 from the primary cycloadduct (4) [4],

leading to 5 (Scheme 1). Only much later were the properties and reactivity of pure, isolated

non-substituted thiophene S,S-dioxide (2) described [5].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Much of the early work on the oxidation of thiophenes to thiophene S,S-dioxides involved

hydrogen peroxide (H2O2) as oxidant, later meta-chloroperoxybenzoic acid (m-CPBA). That

thiophene S-oxide was an intermediate in such oxidation reactions [6–8] was evident from the

isolation of so-called sesquioxides as dimerization products of thiophene S-oxides [9–12].

Here, the thiophene S-oxide acted as diene with either another molecule of thiophene S-oxide

or thiophene S,S-dioxide acting as ene [9–12] to give cycloadducts 6–8 (Figure 2). Thiophene

S-monoxide (3) as an intermediate in the oxidation process of thiophene (1) to thiophene S,S-

dioxide (2) could not be isolated under the conditions.

Nevertheless, the idea that a thiophene S-oxide intermediate could be reacted with an alkene

of choice led Torssell [13] oxidize methylated thiophenes with m-CPBA in the presence of

quinones such as p-benzoquinone (12). This gave cycloadducts 13 and 14 (Scheme 2) [13].

Further groups [11, 12, 14–19] used this strategy to react thiophene S-oxides such as 11,

prepared in-situ with alkenes and alkynes in [4 + 2]-cycloadditions (Schemes 3 and 4). In the

reaction with alkenes, 7-thiabicyclo[2.2.1]heptene S-oxides such as 13were obtained, while the

reaction of thiophene S-oxides with alkynes led to cyclohexadienes and/or to aromatic prod-

ucts, where the initially formed, instable 7-thiabicyclo[2.2.1]hepta-2,5-diene S-oxide system 21

extrudes its SO bridge spontaneously (Scheme 4). A number of synthetic routes to multifunc-

tionalized cyclophanes 32 [17], aryl amino acids 25 [16] and to crown ethers 29 [15] (Scheme 5)

Figure 1. Structure of thiophene (1) and oxygenated thiophenes 2 and 3.

Scheme 1. Dimerisation of unsubstituted thiophene S,S-dioxide (2).

Figure 2. Sesquioxides obtained by dimerization of elusive thiophene S-oxide and by cycloaddition of thiophene S-oxide

to thiophene S,S-dioxide.
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have used the cycloaddition of thiophene S-oxides 19, created in-situ, as a key step. The

formation of the 7-thiabicyclo[2.2.1]heptene S-oxides (such as 13, 18) proceeds with

stereocontrol. The cycloadditions yield predominantly endo-cycloadducts, with the oxygen of

the sulfoxy bridge directed towards the incoming dienophile, exhibiting the syn-π-facial

stereoselective nature of the reaction (see below for further discussion of the stereochemistry

of the cycloadducts). Thiophene S,S-dioxides 2 possess an electron-withdrawing sulfone

group, which leads both to a polarization and to a reduction of the electron density in the

diene [20]. This results in a decrease of the energy of the HOMO as compared to identically

Scheme 2. Thiophene S-oxide (11), created in situ, reacts in Diels-Alder type fashion with p-benzoquinone (12).

Scheme 3. Cycloaddition of thiophene S-oxides, prepared in situ, with alkenes.

Scheme 4. Cycloaddition of thiophene S-oxides (19), prepared in situ, with alkynes.
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substituted cyclopentadienes [20]. Thiophene S,S-dioxides 2 are sterically more exacting than

C5 non-substituted cyclopentadienes, with the lone electron pairs on the sulfone oxygens

leading to adverse non-bonding interactions with potentially in-coming dienophiles of high

π-electron density. Thus, thiophene S,S-dioxides 2 often require higher temperatures [21, 22] in

cycloaddition reactions than identically substituted cyclopentadienes. Recent frontier molecu-

lar orbital calculations at the HF/6-311++G(d,p)//M06-2X/6-31+G(d) level theory have shown

that both HOMO (by 0.5 eV) and LUMO (by 0.4 eV) in thiophene S-oxide (3) are slightly higher

in energy than in thiophene S,S-dioxide (2) [23].

Oxidation of the thienyl-unit in 33 leads to an intramolecular cycloaddition, where indanones

34 are obtained (Scheme 6) [24].

Scheme 5. Cycloaddition of thiophene S-oxides prepared in situ—applications in the synthesis of functionalized

aminocarboxylic acids 25, crown ethers 29 and cyclophanes 32.

Scheme 6. Intramolecular cycloaddition of in situ prepared thiophene S-oxide 34.
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2. Cycloaddition reactions of thiophene S-oxide prepared in situ in the

presence of Lewis acids: thiophene S-oxides are isolated

Yields of cycloadducts have been found to be much higher, when oxidative cycloaddition

reactions of thiophenes are carried out with meta-chloroperoxybenzoic acid (m-CPBA) or with

H2O2 at lower temperatures such as at �20�C in the presence of a Lewis acid catalyst such as

BF3�Et2O [11, 12, 25, 26] (Scheme 7) or of trifluoroacetic acid (CF3CO2H) [27]. Electron-poor

dienophiles such as tetracyanoethylene, acetylene dicarboxylates, quinones, maleimides and

maleic anhydride and mono-activated enes such as cyclopentenone and acrolein were used in

these reactions.

Scheme 7. Oxidative cycloaddition of thiophene 36 to naphthoquinone (37) in the presence of BF3
.Et2O.

Scheme 8. Preparation of multifunctionalized cyclophane 41 by oxidative cycloaddition of thiophenophane 39 in the

presence of BF3
.Et2O.

Scheme 9. Preparation of aethiosides A–C (44a–c) by oxidative cycloaddition of thienosteroidal sapogenin 42.
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Under the conditions m-CPBA/BF3�Et2O, the cycloadditive transformation of thiophene S-

oxides, prepared in situ, was used in the synthesis of new cyclophanes such as 39 (Scheme 8)

[25]. A series of 2,3-bis(hydroxyphenyl) substituted 7-thiabicyclo[2.2.1]hept-2-ene S-oxides as

potential estrogen receptor ligands were prepared by oxidative cycloaddition of 3,4-bis

(hydroxyphenyl)thiophenes in the presence of BF3�Et2O [28]. Also the key step in Yu et al.’s

[27] synthesis of steroidal saponins 44, closely related to the E-ring areno containing natural

products aethiosides A–C, is a BF3�Et2O catalyzed oxidative cycloaddition of the thieno-

containing steroidal saponin 42 (Scheme 9) [26]. Furthermore, Zeng and Eguchi [29] were able

to functionalize C60 (46) by cycloaddition with in-situ produced 2,5-dimethylthiophene S-

oxide (45) [29, 30] (Scheme 10). Nevertheless, sterically hindered thiophenes are more difficult

to be subjected to the oxidative cycloaddition reactions (Figure 3).

3. Preparation and isolation of pure thiophene S-oxides

Thiophene S-oxides could be isolated in pure form as side-products in a number of oxidative

cycloaddition reactions using alkylated thiophenes as substrates run with m-CPBA in the

presence of BF3�Et2O [11, 12]. Nevertheless, the first ascertained thiophene S-oxide (51) isolated

in pure form came from the oxidation of the sterically exacting 2,5-bis-tert-butylthiophene (50)

in absence of a Lewis acid or an added protic acid. 2,5-Bis-tert-butylthiophene S-oxide (51)

could be isolated in 5% yield [32] (Scheme 11).

Previous to the isolation of thiophene S-oxides in pure form, based on UV-spectroscopic

measurements, Procházka [33] had claimed that the parent thiophene S-oxide (3) could be

Scheme 10. Cycloaddition of 2,5-dimethylthiophene S-oxide (45), prepared in situ, to C60 (46).

Figure 3. Orthothiophenophanes 48 and 49 do not allow for enough reaction volume and do not undergo oxidative

cycloadditions with either alkynes or alkenes under the conditions (m-CPBA, BF3
.Et2O, CH2Cl2) [31].
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prepared by double elimination from 3,4-dimesyloxy-2,3,4,5-tetrahydrothiophene S-oxide (53)

and studied in solution. While subsequently the latter part of the assertion was thrown into

doubt, the isolation of sesquioxides 7/8 from the reaction indicated at least the presence of

thiophene S-oxide under these conditions [33] (Scheme 12).

Interestingly, a toluene solution of η5-ethyltetramethylcyclopentadienyl-η4-tetramethylthienyl

rhodium complex [Cp*Rh(η4-TMT)] (54) can be oxidized with dry oxygen to [Cp*Rh(TMTO)]

(56), which features a η4-coordinated thiophene S-oxide ligand. Complex 56 was isolated and

an X-ray crystal structure was carried out. Alternatively, [Cp*Rh(η4-TMT)] (54) can be oxidized

electrochemically to [Cp*Rh(η4-TMT)]2+ (55), which can also be obtained by protonation of

[Cp*Rh(TMTO)] (56). Reaction of [Cp*Rh(η4-TMT)]2+ (55) with potassium methylsilanolate

(KOSiMe3) leads back to [Cp*Rh(TMTO)] (56) [34] (Scheme 13).

The reaction of the cationic transitory ruthenium complex [Ru(C6R6)(C4R4S)]
+ (57) with

hydroxyl anion (OH�) gives Ru(C6H6)(C4R4SO) (58) [35] (Scheme 14). Here, in contrast to the

complex [Cp*Rh(TMTO)] (56), the thiophene S-oxide ligand in Ru(C6H6)(C4R4SO) (58) is not

Scheme 11. Isolation of 2,5-bis-tert-butylthiophene S-oxide 51 by simple thiophene oxidation with meta-chloroperox-

ybenzoic acid (m-CPBA) [32].

Scheme 12. In situ preparation of parent thiophene S-oxide (3) by an elimination reaction [33].

Scheme 13. Oxidation of [Cp*Rh(η4-TMT)] (54) to [Cp*Rh(TMTO)] (56) [34].
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stable, but opens to an acetylpropenethiolate. Stable osmium thiophene S-oxide complexes of

type (cymene)Os(C4Me4S=O) have also been prepared [36]. In neither of the cases, was it tried

to decomplex the thiophene S-oxide ligand.

In the 1990s, two main synthetic methodologies were developed to prepare thiophene S-oxides

63. The first involves the reaction of substituted zirconacyclopentadienes 62 with thionyl

chloride (SOCl2), developed by Fagan et al. [37, 38] and by Meier-Brocks and Weiss [39].

Typically, tetraarylzirconacyclopentadienes 62a can be synthesized easily by reacting CpZrCl2
(59), n-BuLi and diarylethyne (61a) in one step (Scheme 15). This strategy was followed by

Tilley et al. [40, 41] in their synthesis of substituted thiophene S-oxides. Miller et al. published

results for a synthesis of 2,5-diarylthiophene S-oxides (63b) along the same lines, using

ethynylarene (61b) [42].

The other methodology involves an oxidation of a thiophene with either a peracid in the

presence of a Lewis acid such as titanium tetrachloride (TiCl4) [43] or boron trifluoride etherate

(BF3�Et2O) [44, 45] or with hydrogen peroxide in the presence of a protonic acid such as

trifluoroacetic acid [46, 47] (Scheme 16). Also, the use of the reaction system H2O2 in presence

of NaFe(III) ethylenediaminetetraacetate/Al2O3 has been reported [48, 49] (Scheme 16) as has

been the use of the reaction system [(C18H37)2(CH3)2N]3[SiO4H(WO5)3] [50]. The thiophene

S-oxides 65, suitably substituted, can be isolated by column chromatography and can be held

in substance for a number of weeks without appreciable degradation, when in crystallized

form and when kept in the dark. It is supposed that the Lewis acid not only activates the

Scheme 14. Base hydrolysis of [Ru(C6R6)(C4R4S)]
+ (57) [34].

Scheme 15. Synthesis of tetraarylthiophene S-oxides 63a/b by reaction of tetraarylzirconacyclopentadienes 62a/b with

SOCl2.
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peracid, but also coordinates to the oxygen in the formed thiophene S-oxide, thus reducing the

electron-density on the sulfur of the thiophene S-oxide, making it less prone to undergo a

second oxidation to the thiophene S,S-dioxide.

It has been shown that in a molecule, such as 66 or 67, with two thienyl cores, both can be

oxidized to thienyl-S-oxides with m-CPBA, BF3�Et2O CH2Cl2, �20�C) [11, 17] . Under these

conditions, the second thiophene unit can compete successfully with a thiophene S-oxide for

the oxidant (Figure 4).

4. Reactions of thiophene S-oxides

4.1. [4 + 2]-cycloaddition reactions

Even before thiophene S-oxides could be isolated in pure form, it was evident that thiophene S-

oxides are good dienes in cycloaddition reactions, as “trapping” by cycloaddition reaction was

one of the standard techniques to gauge the presence of thiophene S-oxide intermediates and

provided a versatile preparative entry to 7-thiabi-cyclo[2.2.1]heptene S-oxides 68. These in turn

could be converted to substituted arenes 71 by either pyrolysis [15], photolysis [51], or PTC-

catalyzed oxidative treatment with KMnO4 [15] or electrochemical oxidation [18] or

7-thiabicyclo-[2.2.1]heptenes (70) by reaction of 68 with PBr3 [52]. Reaction of 68 with tributyl-

tin hydride gives cyclic dienes such as 72 [▬X▬X▬ = ▬(CO)N▬Ph(CO)▬]. Base catalyzed

cleavage of the sulfoxy bridge of 1,4-dihalo-7-thiabicyclo[2.2.1]heptane S-oxides 68 (R1 = Cl or

Br) leads to the generation of diaryl disulfides such as 69 (Scheme 17).

Scheme 16. Preparation of thiophene S-oxides 65 by oxidation of thiophenes 64 in the presence of a Lewis acid or a

protonic acid.

Figure 4. Known bisthienyl-S-oxides 66 and 67.
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With the possibility of isolating the thiophene S-oxides, it became possible to carry out cyclo-

addition reactions with alkenes that themselves react with m-CPBA. Thiophene S-oxides such

as 73 have been found to react equally well with electron-rich alkenes such as enol ethers (74)

[53], with electron neutral alkenes such as with cyclopentene (76) [53, 54] and with electron-

poor alkenes such as with cyclopentenone or with maleic anhydride [11, 54] (Scheme 18). Also,

thiophene S-oxides react with bicyclopropylidene (82) [55] under high pressure (10 kBar,

Scheme 19), with allenes [56] (such as 79, Scheme 19), with cyclopropylideneketone [55]

(Scheme 20) and with benzyne (90) [56], both formed in-situ (Scheme 21). The reaction of

tetrachlorocyclopropene (93) with 3,4-bis-tert-butylthiophene S-oxide (73) led to 6,7-bis-tert-

butyl-2,3,4,4-tetrachloro-8-thiabicyclo[3.2.1]octa-2,6-diene 8-oxide (95), resulting from a ring

opening of the primary cycloadduct 94 with a concomitant migration of a chloro atom [57]

(Scheme 22). The ability of the thiophene S-oxides to undergo cycloadditions with alkenes,

regardless of the electron demand of the reaction, has made Houk et al. say that thiophene 1-

oxide cycloadditions warrant their classification as click reactions [23].

Scheme 17. 7-Thiabicyclo[2.2.1]heptene S-oxides 68 as versatile precursors to arenes.

Scheme 18. 3,4-Bis-tert-butylthiophene S-oxide (73) cycloadding to electron-rich and electron-neutral alkenes.
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Scheme 19. Thiophene S-oxides cycloadd to allenes and to bicyclopropylidene (82) under high pressure.

Scheme 20. One pot Wittig reaction—Diels Alder reaction with thiophene S-oxide 87 as diene.

Scheme 21. Cycloaddition of thiophene S-oxide 91 with benzyne (90), prepared in situ.

Scheme 22. Cycloaddition of thiophene S-oxide (73) with tetrachlorocyclopropene (93).
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Thiophene S-oxides are good precursors for the preparation of heavily substituted arenes such as

100 [58] (Scheme 23). Often, tetraarylcyclopentadienones 97 are used to synthesize oligoaryl

benzenes by cycloaddition reaction. However, tetraphenylthiophene S-oxide (96) is the more

reactive diene when compared to tetraphenylcyclopentadienone (97) as can be seen in the

competitive cycloaddition of 96 and 97 with N-phenylmaleimide (98), where at room tempera-

ture only tetraphenylthiophene S-oxide undergoes cycloaddition to give 99 (Scheme 23) [58]. 99

can be converted to the heavily substituted phthalimide 100 [58], either by extruding the SO

group thermally in diphenyl ether (Scheme 23) or by reaction with KMnO4/PTC.

Sometimes, tetraphenylthiophene S-oxide (96) and tetraphenylcyclopentadienone (97) give

different products in cycloaddition reactions. A typical example is their cycloaddition to

benzo[b]thiophene S,S-dioxide (101), where the reaction with 96 leads to the formation of

dibenzothiophene S,S-dioxide 102, but with 97 gives dibenzothiophene 104 [59] (Scheme 24).

The reason for this difference lies in the tendency of tetracyclines such as 94 to be oxidized to

pyrones 102 at higher reaction temperatures, with the S,S-dioxides playing the oxidizing agent

[59] (Scheme 24).

Again, cycloaddition reactions of purified thiophene S-oxides can be used to prepare

multifunctionalized arenes such as cyclophanes (Scheme 25) [25]. Nakayama et al. [61] have

used thiophene S-oxides to prepare sterically over freighted anthraquinones. Thiemann et al.

[62] used halogenated thiophene S-oxides, albeit prepared in-situ to synthesize halogenated

anthraquinones, which can easily be transformed further to arylated anthraquinones [63, 64].

Scheme 23. Thiophene S-oxide 96 competes efficiently with tetracyclone 97 for N-phenylmaleimide (98).

Scheme 24. Comparison of the cycloaddition of tetraphenylthiophene S-oxide 96 and tetracyclone 97 with benzo[b]

thiophene S,S-dioxide (101). Tetracyclone 97 gives pyrone 105 as side product [59, 60].
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The cycloaddition reactions of purified thiophene S-oxides can be combined with other trans-

formations in one pot, such as with Wittig olefination reactions (Scheme 20) [55].

Not all thiophene S-oxides undergo cycloaddition reactions with alkynes or alkenes. In gen-

eral, appreciable reaction volume is needed to allow for the forming sulfoxy-bridge in the

primary cycloadducts and, in some cases, of the subsequent extrusion of SO. Also, when

considerable strain is associated with the thiophene S-oxides and/or the cycloadducts, reac-

tions other than cycloadditions can occur. Thus, strained thiophenophane S-oxide 110 does not

undergo a cycloaddition with 98, but undergoes a rearrangement leading to oxygen insertion

into the ring with concomitant extrusion of sulfur, leading to furanophane 111 (Scheme 26)

[25]. Fujihara et al. were able to prepare the thiacalixarene S-oxide 112; again, the thiacali-

xarene S-oxide did not undergo a cycloaddition reaction with alkyne 113, but rather formed

the thiophene-S,C-sulfonium ylide 114 (Scheme 27) [65].

Scheme 25. Multifunctionalized cyclophanes 108 by cycloaddition of thiophenophane S-oxides 106.

Scheme 26. [2.2]Metathiophenophane S-oxide 109 does not undergo cycloaddition but rearranges to [2.2]furanophane 111.

Scheme 27. Thiacalixarene S-oxide 112 reacts with dimethyl acetylenedicarboxylate (113) to the thiacalixarene S,C-ylide 114.
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Thiophene S-oxides as cyclic dienes undergo hetero-Diels-Alder reactions, also (Scheme 28).

Thus, Nakayama et al. could establish that 3,4-bis-tert-butylthiophene S-oxide 73 reacts with

thioaldehydes 115/117 and thioketones 115, generated in-situ to give 2,7-dithiabicyclo[2.2.1]

hept-5-ene 7-oxides 116 and 118 [66] (Scheme 28). The cycloadducts are endo-products as

ascertained by X-ray crystallography and 1H NMR spectroscopy. Thiobenzophenone could be

reacted with good yield; however, here two isomeric products are produced, the major prod-

uct originating from the syn-π-face while the lesser product from the anti-π-face cycloaddition.

Finally, 73 reacts with carbonyl cyanide [121, CO(CN)2], created in-situ by oxidation of

tetracyanoethylene oxide (119, TCNO) with thiophene S-oxide 73, in hetero-Diels-Alder fashion

to give 122 [67] (Scheme 29).

Nakayama et al. have calculated that the cycloadditions of the thiophene S-oxides are inverse

electron demand reactions [53]. All of the above cycloaddition reactions are highly

stereoselective, regardless whether the thiophene S-oxide is prepared and used in-situ or an

isolated thiophene S-oxide is used. It is known that the thiophene S-oxides invert at the sulfur

and inversion barriers have been calculated and measured experimentally for a number of

these compounds [32, 68, 69]. Nevertheless, the sulfoxy group in the 7-thiabicyclo[2.2.1]

heptene S-oxide systems is configurational stable. All the cycloadducts are endo-products.

Scheme 28. Hetero-Diels-Alder reactions of 3,4-bis-tert-butylthiophene S-oxide (73).

Scheme 29. Reaction of 3,4-tert-butylthiophene S-oxide (73) with tetracyanoethylene oxide (119, TCNO) and hetero-Diels

Alder reaction to carbonyl cyanide (121).
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In the cases where Lewis acids are used at low temperatures, this in itself is not surprising as it

is known that low temperatures kinetically controlled cycloadducts are favored. Moreover, it

has been stated that Lewis acid catalysis increases the extent of endo-addition in Diels-Alder

reactions [70, 71]. The cycloadditions are seen to have syn-π-facial in that the dienophile adds

syn to the oxygen. This means that the lone pair of the sulfur is directed towards the side of the

newly formed double bond of the cycloadduct. A number of explanations have been given for

the π-facial selectivity. Thus, Nakayama et al. rationalized that in the transition state less

geometric change of the SO function would be required to reach the syn- rather than the anti-

transition state geometry [53]. Also, a destabilizing interaction between the HOMO of the

dienophile and the sulfur lone pair was noted in the anti-transition state [72]. The π-facial

selectivity has also been explained by the Cieplak effect [73–75]. This effect was first proposed

to account for the directing effect of remote substituents in addition reactions to substituted

cyclohexanones. A large number of experimental observations in Diels-Alder reactions of

dienophiles with 5-substituted cyclopentadienes have shown that the dienophiles will

approach anti to the antiperiplanar σ-bond that is the better donor at the 5-position of the

cyclopentadiene [76]. This σ-bond will best stabilize the σ-bonds formed in the transition state.

Cycloadditions to thiophene S-monoxides have been predicted to occur anti to the lone

electron-pair on sulfur, which is the better hyper-conjugative donor when compared to the

oxygen of the sulfoxy-moiety. The lone pair electron orbital at the sulfur will stabilize the

vacant σ*-orbitals of the developing incipient σ-bonds better than any orbital associated with

the oxygen of the sulfoxy moiety [77] (Figure 5). This would be even more so, when the oxygen

of the sulfoxy-unit is complexed by BF3�Et2O.

Based on DFT computational studies, Houk et al. [23] showed that the ground state geometry

of a thiophene S-oxide already resembles the molecule in its syn transition state. This distortion

from planarity of the molecule minimizes its potential antiaromaticity which would result

from a hyperconjugative effect by an overlap of σ*S〓O with the π-system (see also above/

below) [23] (Figure 6).

Figure 5. Transition state 123 preferred over transition state 124.

Figure 6. Structural feature of thiophene S-oxide 160.
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4.2. Further cycloaddition reactions

When heated with 2-methylene-1,3-dimethylimidazoline (125), 3,4-bis(tert-butyl)thiophene S-

oxide 73 undergoes a [4π + 4π]-cycloaddition to the head-to-head dimer 126 (Scheme 30) [78].

Oxidation of the two sulfoxy bridges to sulfone 127 with dimethyldioxirane as oxidant is

followed by thermally driven extrusions of the SO2 bridges in 127 and gives 1,2,5,6-tetra(tert-

butyl)octatetraene 128 [79] (Scheme 30).

Thiophene S-oxides react as enes in 1,3-dipolar cycloaddition reactions. Thus, 3,4-bis-tert-

butylthiophene S-oxide (73) reacts with pyrroline N-oxide (129) to give cycloadduct 130

(Scheme 31) [80]. Nakayama et al. could show that 73 reacts with nitrile oxides, diazomethane,

nitrile imides, nitrones, and azomethine ylides in syn-π-facial fashion [80].

4.3. Additions to thiophene S-oxides and other reactions

1,4-Additions are known for both 3,4-disubstituted and 2,5-disubstituted thiophene S-oxides

[81–83]. Thus, bromine adds cis to both 3,4-bis-tert-butylthiophene S-oxide (73) [81] and 2,5-

bis-trimethylsilylthiophene S-oxide (134) [82] to give the 2,5-dibromo-2,5-dihydrothiophene

S-oxide derivatives 131 and 135 (Scheme 32). 3,4-Bis-tert-butylthiophene S,S-dioxide (132)

undergoes cis-1,4-bromination, too [81] (Scheme 32). Also, alcohols and mercaptans have

been submitted successfully to 1,4-additions with 3,4-bis-tert-butyl thiophene S-oxide (73)

(Scheme 33) [83]. Interestingly, disulfur dichloride (S2Cl2) could be added to thiophene S-oxide

73, leading to the rapid formation of adduct 137 (Scheme 34) [84]. 137, however, is not stable

Scheme 30. [4π + 4π]-cycloaddition of thiophene S-oxide (73) to dimer 126.

Scheme 31. [3 + 2]-cycloaddition of thiophene S-oxide (73) with pyrroline N-oxide (129) as 1,3-dipole.
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and transforms into 138. 138 can be obtained with a 98% yield, when 137 is treated with aq.

NaHCO3 (Scheme 34) [84].

The sulfoxy group in thiophene S-oxide can be transformed into a sulfilimine or a sulfoximine

moiety [85–87]. When thiophene S-oxide 73 is reacted with trifluoroacetic acid anhydride or

triflic anhydride at �78�C, a mixture of sulfonium salt 139 and sulfurane 140 forms, which can

be reacted with p-toluenesulfonamide (141) to provide, as the reaction mixture warms to room

Scheme 32. Bromination of thiophene S-oxides 73 and 134 and thiophene S,S-dioxide 132.

Scheme 33. Addition of methylthiolate to thiophene S-oxide (73).

Scheme 34. Addition of disulfur dichloride (S2Cl2) to thiophene S-oxide 73.
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temperature, sulfilimine 142 (Scheme 35) [85, 86]. Sulfoximine 145 could be prepared by action

of N-[(p-tolylsulfonyl)imino]phenyliodinane (TsN〓IPh, 144) on 2,4-bis-tert-butylthiophene S-

oxide (143) in the presence of Cu(CH3CN)4PF6 as catalyst. Further reaction of 145 with H2SO4

leads to N-unsubstituted sulfoximine 146 (Scheme 36) [86].

4.4. Photochemistry of thiophene S-oxides

The photochemical deoxygenation of dibenzothiophene S-oxides has been studied for quite

some time [88–91] and has been found to proceed via the release of ground state atomic

oxygen [O(3P)] upon photoirradiation (Scheme 37). Thiophene S-oxides deoxygenate photo-

chemically as well. Nevertheless, the photochemistry of thiophene S-oxides is intrinsically

more complex than that of dibenzothiophene S-oxides, often providing a mixture of products,

depending on the substitution pattern of the photoirradiated thiophene S-oxide. The photoly-

sis of 2,5-bis(trimethylsilyl)thiophene S-oxide (134) leads exclusively to deoxygenation to

Scheme 35. Preparation of thiophene S-imide 142 from thiophene S-oxide 73.

Scheme 36. Thiophene sulfoximines 145 and 146 from thiophene S-oxide 143.

Scheme 37. Photodeoxygenation of dibenzothiophene S-oxide (147).

Scheme 38. Photolysis of 2,5-bis(trimethylsilyl)thiophene S-oxide (134).
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produce 2,5-trimethylsilylthiophene (149) (Scheme 38). Otherwise, in those cases, where the

thiophene S-oxide does not exhibit a CH3 substituent on the ring system, furans are often the

main products along with (deoxygenated) thiophenes (Scheme 39). This has been noted with

phenyl-substituted (96, 160) and tert-butyl substituted thiophene S-oxides (73, 143, 153) as well

as with 3,4-dibenzylthiophene S-oxide (158) (Scheme 40) [92–95]. Different mechanisms have

been forwarded for this photochemical formation of furans. A viable mechanism involves a

cyclic oxathiin, where the first step within the photochemical reaction is initiated by the

homolytic ring cleavage α to the sulfoxy group [92–94]. A rearrangement of thiophene S-

oxides to produce furans can also proceed thermally as found by Thiemann et al. [18] in the

transformation of thiophenophane S-oxide 110 to furanophane 111 (Scheme 26) and by

Scheme 39. Photolysis of tetraphenylthiophene S-oxide (96).

Scheme 40. Photolysis of 2,4-bis(tert-butyl)-, 2,5-bis(tert-butyl), 3,4-bis(tert-butyl), 3,4-dibenzyl-, and 2,5-diphenylthiophene

S-oxide (143, 153, 73, 158, and 160).

Thiophene S-Oxides
http://dx.doi.org/10.5772/intechopen.79080

61



Mansuy, Dansette et al. in their oxidation of 2,5-diphenylthiophene (162) with H2O2/CF3CO2H

to 2,5-diphenylthiophene S-oxide (163), where an appreciable amount of furan 164was formed

as side-product [46] (Scheme 41). In the case of methyl substituted thiophene S-oxides,

hydroxyl-alkylthiophenes such as 166 and follow-up products such as ether 167 have been

isolated as photoproducts [96] (Scheme 42).

4.5. Electrochemistry of thiophene S-oxides

Thiophene S-oxides such as 164 and 167 show well-defined, chemically irreversible CV reduc-

tion waves, where two reduction processes seem to compete. In the presence of a proton

donor, the reduction waves experience a significant shift to more positive potentials, although

the reduction potential is still dependent on the substitution pattern of the thiophene S-oxides

[96]. In the presence of a proton donor such as benzoic acid at higher concentrations, the

reduction of a thiophene S-oxide such as of 167 becomes a straightforward two proton—two

electron reduction process to the corresponding thiophene [96]. Bulk electrolysis of thiophene

S-oxides in presence of 10-fold excess of benzoic acid has been carried out and have led to

the corresponding thiophenes in up to 90% isolated yield (Scheme 43) [96]. Also, thiophene

Scheme 41. Formation of furan 163 in the oxidation of 2,5-diphenylthiophene (162).

Scheme 42. Photolysis of 3,4-dibenzyl-2,5-dimethylthiophene S-oxide (165).

Scheme 43. Electrochemical reduction of 3,4-dibromo-2,5-dimethylthiophene S-oxide (167) in the presence of 10 eq.

benzoic acid.
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S-oxides show oxidative electrochemistry at platinum in MeCN/Bu4NPF6 [97]. The electro-
chemical oxidation of tetraphenylthiophene S-oxide under the above conditions leads mainly
to the formation of diphenylacylstilbene [98]. Here, more effort needs to be invested to identify
the electro-oxidative transformations of other thiophene S-oxides.

4.6. Structural studies on thiophene S-oxides

In 1990, Rauchfuss et al. published an X-ray crystal structure of the tetramethylthiophene S-
oxide rhodium complex 56 [34]. The first X-ray single crystal structure determination of a non-
liganded thiophene S-oxide was carried out by Meier-Brocks and Weiss on tetraphe-
nylthiophene S-oxide. The crystal, however, showed some disorder, and only limited informa-
tion could be gleaned from it [39]. In 1995, Mansuy et al. carried out an X-ray crystal structural
analysis of 2,5-diphenylthiophene S-oxide (160) [46, 47], where the structure of 160 was com-
pared to 2,5-diphenylthiophene (162) and 2,5-diphenylthiophene S,S-dioxide (169). The S▬O
bond in the thiophene S-oxide was found with 1.484(3) Å to be appreciably longer than those
of the thiophene S,S-dioxide with 1.418(5) Å and 1.427(5) Å, respectively [47]. The ring system
of the thiophene S,S-dioxide 169 was found to be absolutely planar, while thiophene S-oxide
160 was found to be puckered, with the sulfur lying outside the plane constructed by the four
ring carbons by 0.278 Å, and the sulfoxy oxygen lying outside of the plane on the side opposite
to sulfur, located by 0.746 Å away from the plane. Previously, this non-planarity of thiophene
S-oxides had been predicted by MNDO [99] and ab-initio calculations [100] of the parent
thiophene S-oxide itself and dibenzothiophene S-oxide. A more pronounced alteration
between double and single C▬C bond was found in thiophene S-oxide 160 in comparison to
diphenylthiophene [47]. In probing the aromaticity of thiophene S-oxide 160, it can be seen
that apart from its non-planarity, it exhibits relatively large bond order alternations [C(2)▬C(3)
2.11; C(3)▬C(4) 1.23, C(2)/C(5)▬S 1.11; for comparison, the bond orders in 162: C(2)▬C(3)
1.94; C(3)▬C(4) 1.46; C(2)/C(5) 1.53]. The corresponding 2,5-diphenylthiophene S,S-dioxide,
though features even larger bond alternations than 160 [47]. An approach for an assessment of
aromaticity is the A index as defined by Julg and François [101], which evaluates aromaticity
in respect to bond alternation and bond delocalization in ring systems. Here, benzene as
the aromatic system par excellence, has an A index of 1, the thiophene system in 2,5-diphenyl-
thiophene has an A index of 0.99, the 5-membered ring system in 2,5-diphenylthiophene S-
oxide’s A index is calculated at 0.79, and the parent thiophene S-oxide A index lies at 0.69 ([47],
see also [102]).

Subsequently, further X-ray crystal structure analyses were carried out on thiophene S-oxide,
such as on 2,5-bis(diphenylmethylsilyl)thiophene S-oxide [45], 3,4-bis-tert-butylthiophene S-
oxide (73) [43], (1,1,7,7-tetraethyl-3,3,5,5-tetramethyl-s-hydrindacen-4-yl)thiophene S-oxide
[68], 1,3-bis(thien-2yl)-4,5,6,7-tetrahydrobenzo[c]thiophene S-oxide [40], and the sexithiophene
(170) (Figure 7), where two of the thienyl units were oxidized to sulfoxides [103]. As the
thiophene S-oxides are not planar, they invert at the sulfur with different substituents at the
C2/C5 positions leading to different barriers of inversion, which have in part been determined
experimentally [32, 68, 69]. Structural features of thiophene S-oxides and thiophene S,S-diox-
ides have been reviewed before [104].
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4.7. Oligomers and polymers incorporating thiophene S-oxide units

Oligothiophenes and polythiophenes are being studied as advanced materials with interesting

electronic and nonlinear optical properties [105] with applications in photovoltaic cells [106]

and field effect transistors (FETs) [107], among others. It has been noted that oxidation of

thienyl-units in oligothiophenes and polythiophenes leads to a lowering of energy gaps, to

greater electron affinities, and to greater ionization energies [103, 108, 109]. The introduction of

thienyl-S,S-dioxides into oligothiophenes often leads to solubility problems of the materials

and often leads to a noticeable increase of oxidation potentials. Therefore, there has been a

recent interest in incorporating thienyl S-oxide units in oligo- and polythiophenes with the aim

of greater solubility and smaller oxidation potentials and narrower energy gaps with electron-

affinities similar to thienyl S,S-dioxides [103].

A number of synthetic approaches exist towards the preparation of oligothiophenes with

thienyl S-oxide units. Oxidation of a pre-prepared oligo- or polythiophene is more difficult to

achieve and leads to modest yield [110]. However, two strategies can be seen as promising.

One is the transformation of polyarylene-alkynes 171 via oligozirconacyclopentadienes 172 to

polythiophene S-oxides 173, where the zirconacyclopentadienes are reacted with SO2 [41]

(Scheme 44). The other takes advantage of the fact that certain thiophene S-oxides such as 2-

bromo-3,4-diphenyl-thiophene S-oxide (175) are stable enough to be subjected to C▬C cross-

coupling reactions and subsequent halogenation reactions with N-bromosuccinimide (NBS),

leading to sequences as shown in Scheme 45 [103]. Already, an FET has been synthesized with

a thienyl-thienyl S-oxide polymer [103]. Also, larger π-conjugated ring systems with a thienyl

S-oxide unit such as 179 have attracted some attention because of their electronic and optical

properties (Figure 8) [111]. As a drawback, it may be noted that thienyl S-oxides in oligomers

and polymers would not be stable towards UV radiation as opposed to thienyl S,S-dioxides

[112, 113].

4.8. Thiophene S-oxides as metabolites in the enzymatic oxidation of thiophenes

Thiophenes have been known to have toxic effects [114, 115]. The understanding of the

mechanism leading to the toxicity of thiophenes is of importance, as a number of drugs such

as tienilic acid (180), ticlopidine (182), methapyrilene (183), thenalidine (184), tenoxicam (185),

cephaloridine (186), suprofen (187), and clopidogrel (188) carry thienyl units, where some of

the drugs have been taken off the market (Figure 9). Already in 1990, it was shown that hepatic

cytochrome P450 mediated oxidation of the thienyl-containing tienilic acid (180) led to

Figure 7. Oligothiophene S-oxide 170.

Chalcogen Chemistry64



Scheme 44. Preparation with oligomer 173 via zirconacyclopentadiene 172.

Scheme 45. Preparation of thienyl S-oxide containing oligomers 170 and 178 by Pd(0) Suzuki and Stille cross-coupling

reactions.

Figure 8. Tetrakis(pentafluorophenyl)tetrathiaisophlorin dioxide (179).
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electrophilic metabolites that bind to hepatic proteins [116, 117]. Oxidative metabolism of

thiophenes in rats involves thiophene S-oxides [118–120]. It has been found [119, 121] that rats

administered with thiophene (1) in corn oil showed dihydrothiophene S-oxide 191 in their

urine as a major metabolite [119] (Scheme 46). This metabolite was assumed to stem from the

addition of glutathione (189) to a reactive intermediate thiophene S-oxide 3 (Scheme 46).

Previously, it had been shown that rat liver microsomal cytochrome P450 oxidizes 3-

aroylthiophene 181, a regioisomer of tienilic acid (180), to aroylthiophene S-oxide 192, which

in the presence of mercaptoethanol (193) transformed into dihydrothiophene S-oxide 194 [121]

(Scheme 47). Also, 181was oxidized by clofibrate induced rat liver microsomes to S-oxide 191,

Figure 9. Thiophene-containing pharmaceuticals.

Scheme 46. Cytochrome P450 mediated transformation of thiophene 1 to adduct 191.
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which was then trapped as a Diels Alder product with maleimides, for example as 195 [120]

(Scheme 48).

The oxidation of 2-(4-chlorobenzoyl)thiophene (196), a molecule in structure close to tienilic

acid, by H2O2 in the presence of trifluoroacetic acid (TFA) and by m-CPBA, BF3�Et2O, both in

CH2Cl2, gives sesquioxides 198–200 that clearly indicate that a thiophene S-oxide structure 197

is formed as an intermediate [122] (Scheme 49). Nevertheless, the oxidation of thiophene (1)

itself with H2O2 in the presence of TFA produces apart from sesquioxides 6–8 thiophen-2-one

(thiolactone 202). Thiophen-2-one (202) most likely is produced through thiophene-epoxide

(201) [23] (Scheme 50). Thiophen-2-one (202) is in equilibrium with 2-hydroxythiophene (202).

There is one report of a Pummerer-like rearrangement reaction that leads from the purified

and isolated thiophene S-oxide 134 to thiophen-2-one (thiolactone 202) [123] (Scheme 51). Still,

the current understanding is that the thiophene S-oxide intermediates formed in vivo do not

lead to a 2-hydroxythiophene (203) [124] (Scheme 52), so that two separate mechanisms may

exist for the cytochrome P450 2C9 (CYP2C9) mediated oxidation of thiophenes. In this regard,

Dansette et al. [119] showed that CYP450s may catalyze both the reaction of thiophenes to

thiophene S-oxide and to thiophene epoxides [125].

Scheme 47. Transformation of tienilic acid regioisomer 181 to thiophene S-oxide and its addition of mercaptoethanol (193).

Scheme 48. Cycloaddition of the thiophene S-oxide derivative of 181 to maleimide.

Scheme 49. Formation of sequioxides 198–200 by dimerization of thiophene S-oxide 197.
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Scheme 51. Pummerer reaction of thiophene S-oxide 134 to thiolactone 202.

Scheme 52. Cytochrome P450 mediated oxidation of thiophene may lead to two pathways, one through thiophene

S-oxide 3, the other through thiophene epoxide 201.

Figure 10. Metabolites of ticlopidine that derive from a ticlopidine S-oxide intermediate.

Scheme 50. Reaction of thiophene (1) leads via thiophene S-oxide (3) to sesquioxides 7–9 and in a separate pathway via

thiophene epoxide 201 to thiolactone 202 and thus to 2-hydroxythiophene (203).
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Also, the investigation of the metabolism of other thienyl-containing pharmaceuticals show

that potentially both mechanisms, epoxidation of the thiophene-unit and oxidation of the

thiophene-unit to thiophene S-oxide, operate concurrently. As to the thiophene S-oxide path-

way, Shimizu et al. in their investigation of metabolites ticlopidine (182) in rats found both the

glutathione conjugate of ticlopidine S-oxide 205 and the dimeric ticlopidine S-oxide cycloa-

dduct 206 (Figure 10) [126, 127]. The structures could be identified by mass spectrometry, and
1H and 13C NMR spectrometry. Medower et al. have noted that cytochrome P450 mediated

oxidation of cancer drug OSI-930 (207) leads to GSH conjugate 209, derived from OSI-930 S-

oxide (208), as recognized by mass spectrometry (Scheme 53) [128].

Lastly, both possible metabolic pathways of thiophenes, via thiophene S-oxides and via thio-

phene epoxides, have been examined as to their energy profiles using density functional

theory [129]. It was found that the formation of the thiophene epoxide (�23.24 kcal/mol) is

more exothermic than the formation of the thiophene S-oxide (�8.08 kcal/mol) [129]. Also, the

formation of thiophene epoxide seems kinetically favored [129]. Both possible metabolites,

thiophene S-oxide and thiophene epoxide, are highly electrophilic, leading to bond formation

with nucleophiles such as with amino acids, leading to a mechanism-based inactivation (MBI)

of cytochrome P450.

5. Conclusion

Since the first unverified isolation of a thiophene S-oxide a little more than 50 years ago,

research on thiophene S-oxides has reached a milestone. Due to mainly two synthetic routes,

the controlled oxidation of thiophenes in presence of a Lewis- or proton acid and the reaction

of zirconacyclopentadienes with thionyl chloride, a number of thiophene S-oxides have now

become readily accessible. Thiophene S-oxides are noted to be reactive dienes in Diels-Alder

type cycloadditions, where they react equally well with electron-poor and electron-rich

dienophiles. Thiophene S-oxides can be stabilized by sterically exacting substituents. Then,

they exhibit sufficient stability to be submitted to Pd(0)-catalyzed cross-coupling reactions

without deoxygenation.

Scheme 53. In vivo oxidation of anticancer drug OSI-930 (207) to OSI-930 sulfoxide (208) and addition of glutathione

(GSH) to provide identified metabolite 209.
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This leads to the possibility of preparing aryl-oligomers with thiophene-S-oxide subunits. By

comparing oligothiophenes and oligomers with thiophene S,S-dioxide subunits, oligomers

with thiophene S-oxide subunits exhibit smaller oxidation potentials and narrower energy

gaps with electron-affinities greater than oligothiophenes and similar to thiophene S,S-diox-

ides. Nevertheless, thiophene S-oxides are not stable photochemically, but deoxygenate to the

corresponding thiophenes or transform to furans by photochemical rearrangement.

Thiophene S-oxides have been found to act as intermediates in the cytochrome P540 mediated,

oxidative metabolism of thiophene-containing compounds, including a number of important

thiophene containing pharmaceuticals. Addition of nucleophiles in vivo leads to mechanism

based inhibition (MBI) and to toxic side effects of the thiophenes, including nephrotoxicity.
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