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Abstract

Carbon dioxide (CO
2
) has been injected into oil reservoirs to maximize production for 

decades. On the other hand, emitted CO
2
 from industrial processes is captured and stored 

in geological formations to mitigate greenhouse gas effects. As such, greater attention is 
drawn to the potential of utilizing the captured CO

2
 in EOR processes. A significant por-

tion of the injected CO
2
 remains trapped due to capillary forces and through dissolution 

in residual liquids. In organic-rich shales, the presence of isolated kerogen nanopores add 
to the sequestration process due to the adsorptive nature of the surface and its preference 
to CO

2
 over methane (CH

4
), in addition to the sealing capacities of these formations. This 

work summarizes the latest findings of the literature with the purpose of defining further 
areas of investigation to fully capitalize on the potential of CO

2
 sequestration and utiliza-

tion in kerogen nanopores.

Keywords: CCUS, enhanced oil recovery, organic-rich shales, anthropogenic CO
2
, 

kerogen nanopores

1. Introduction

Carbon dioxide capture, utilization and storage (CCUS) technologies involve capturing car-

bon dioxide (CO
2
) emissions to create a synergy between the high demand for fossil fuel and 

mitigating greenhouse gas effects at the lowest possible cost.

CCUS captures over 90% of CO
2
 emissions from power plants and industrial facilities and 

is predicted to reduce global gas emissions by 14% in 2050. Bearing in mind that, fossil fuel-

fired power plants in the United States account for 30% of U.S. total greenhouse gas (GHG) 
emissions, which will only continue to increase regardless [1]. The capacity of CO

2
 utilization 
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and storage in the U.S. is approximately 30 billion metric tons, equivalent to 35 years of CO
2
 

emissions captured from 140 Gigawatts (GWs) of coal-fired power [2, 3].

The captured CO
2
 emissions are usually injected into geologic formations such as deep saline 

aquifers for storage, but most recently associated with enhanced oil recovery (CO
2
-EOR) in oil 

and gas reservoirs. Although, CO
2
-EOR has been practiced for decades now, recent advances 

combine the recovery process with CO
2
 sequestration.

CO
2
-EOR involves the injection of CO

2
 into an oil/gas reservoir to recover more hydrocarbons 

(oil and/ or gas). Mostly, the volume of the injected CO
2
 differs from that of the produced fluid 

with CO
2
, indicating trapping or storage. Hence, incorporating the storage of anthropogenic 

CO
2
 into CO

2
-EOR in already developed oil and gas reservoirs seems economically and tech-

nically feasible. Different forms of trapping mechanisms, such as hydrodynamic and capillary 
trapping hold the CO

2
 in place to prevent movement/leakage, ubiquitous to almost all oil and 

gas reservoirs [2, 3].

The United States (US) leads the world in both the number of CO
2
-EOR projects and in the 

volume of CO
2
-EOR oil production due to complimentary geology (low thermal gradient 

and high permeability) in the Permian Basin, located in West Texas and southeastern New 
Mexico [4]. Approximately 11 trillion cubic feet (560 million metric tons) total volume of CO

2
 

is utilized in by US CO
2
-EOR as compared to 100 trillion cubic feet (5090 million metric tons) 

per year of total US CO
2
 emissions from industrial sources [1, 4–6].

Although, CO
2
 storage during CO

2
-EOR in conventional oil and gas reservoirs is proven 

effective, the potential to sequester in unconventional organic-rich shales (gas/oil) is even 
more promising and economical, yet there has been minimum attention given to these vast 
resources. Organic-rich shales are naturally suited for CO

2
 storage due to the ultra-tight 

impermeable nature of the formation, which would curtail CO
2
 leakage. Moreover, the 

adsorptive surface of kerogen and kerogen nanopores in shales can store substantial amounts 

of CO
2
 in its adsorbed state [5–7]. Thus, in depleted shale gas reservoirs, injected CO

2
 replaces 

methane (CH
4
) in the kerogen micro and nanopores and adsorb to the kerogen surface for 

storage [7–9]. This chapter therefore investigates the potential of CO
2
 sequestration in kero-

gen nanopores.

2. Carbon capture

Carbon capture technology started in the 1970s in North America at industrial projects before 
it was applied to power generation [1]. Early application of carbon capture on a commercial 

basis was focused on the removal of CO
2
 as part of certain industrial processes in concentrated 

streams [1, 8]. The Department of Energy (DOE) estimates that approximately 30 million met-
ric tons per year of pure CO

2
 are currently produced at industrial facilities located within 

50 miles of existing CO
2
 pipeline networks [10].

Some industrial processes with large-scale carbon capture in commercial operation include 

coal gasification, ethanol production, fertilizer production, natural gas processing, refinery 
hydrogen production, and coal-fired power generation [7, 10].
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• Natural sources of CO
2
 are made up of underground accumulations of naturally occurring 

gases with 90% CO
2
. As of 2015, the natural sources are projected to account for approxi-

mately 65 Mt/a of CO
2
 [8].

• Natural-gas processing are also naturally occurring underground accumulations but with 
significant methane content. The contribution of natural-gas processing has increased from 
5 Mt/a of CO

2
 in 2000 to a projected 20 Mt/a of CO

2
 in 2015 [8]. Some of the known chal-

lenges of natural-gas processing include: higher oxygen (O
2
) content, lower CO

2
 concentra-

tion, higher flue gas and high flame temperatures [1].

• Hydrocarbon conversion involves the conversion of crude oil (or hydrocarbon feedstock) 

into several (high-value) products to capture CO
2
 as a by-product. This process is projected 

to increase to approximately 5 Mt/a based on known projects under construction and in 

final phase [8].

However, with the recent inclusion of power generation, new systems are designed to capture 

and concentrate CO
2
 using the following processes [7]:

• Pre-combustion carbon capture

Fuel undergoes gasification instead of combustion to produce syngas made of carbon monox-

ide (CO) and hydrogen (H
2
). Carbon monoxide (CO) is then converted to CO

2
 through a later 

shift reaction, while a solvent separates the CO
2
 from H

2
. The pre-combustion carbon capture 

is mostly combined with an integrated gasification combined cycle (IGCC) power plant to 
burn the H

2
 in a combustion turbine and the resulting exhaust heat, used to power a steam 

turbine [1, 6].

• Post-combustion carbon capture

It involves the use of chemical solvents to separate CO
2
 from the resulting flue gas from fos-

sil fuel combustion. This method is commonly used by modified power plants for carbon 
capture [7].

• Oxyfuel carbon capture

This process requires the combustion of fossil fuel in pure oxygen to render the CO
2
-rich 

exhaust gas for capture [7].

In 2016, the US Energy Information Administration (EIA) reported that electricity generated 
from natural gas is expected to exceed that of coal for the first time [9]. This calls for more 

effective measures to be put in place to curtail greenhouse gas (GHG) effects.

2.1. Carbon capture benchmarks

There are about 21 commercial-scale carbon capture projects around the world with 22 more 

in development [7]. Below is a list of a few of the many benchmarks in carbon capture:

• As of 2017, the Archer Daniels Midland (ADM) Company captures CO
2
 from Biofuels (eth-

anol) production, and stores in the Mt. Simon Sandstone, a deep saline formation, Decatur, 

IL. An estimated amount of 1.1 million tons of CO
2
 is captured per year [1, 3].
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• In 2017, the NRG Petra Nova Project, TX, captures 90% of CO
2
 (approximately, 1.6 million 

tons of CO
2
 per year) from a 240 MW slipstream of flue gas of existing WA Parish plant, and 

transported to a nearby oil field [7].

• In 2016, Abu Dhabi CCS Project Phase 1: Emirates Steel Industries, an operating iron and 
steel plant, used to capture CO

2
 for enhanced oil recovery by the Abu Dhabi National Oil 

Company (ADNOC) [3, 5].

• In 2015, Shell Quest Project, AB, CA, a bitumen upgrader complex, captures about 1 mil-
lion tons of CO

2
 annually from hydrogen production units and injects it into a deep saline 

formation for sequestration [7].

• In 2013, Conestoga Energy Partners/Petro-Santander Bonanza Bioethanol plant, KS, an eth-

anol plant, captures and supplies approximately 100,000 tons of CO
2
 per year to a Kansas 

EOR field [1, 5].

• In 2010, Occidental Petroleum’s Century Plant (OPCP), TX, a natural gas processing facil-
ity, compresses and transports CO

2
 stream for utilization in the Permian Basin, among 

others [3, 5].

3. Carbon dioxide utilization (CO
2
: EOR)

CO
2
-EOR has been successfully implemented for nearly half a century now to recover addi-

tional oil from developed conventional oil fields in the United States and around the world. 
It involves the injection of CO

2
, either in its supercritical or gaseous state to re-pressurize a 

depleted reservoir pressure to cause residual oil held in the smaller pores by capillary forces 

to be released [9, 10]. CO
2
, unlike other fluids, reaches miscibility with crude oil at lower 

pressures. Furthermore, it is less expensive than other miscible fluids. As such the injected 
CO

2
 becomes soluble with the residual oil as light hydrocarbons from the oil dissolve in the 

CO
2
 while the CO

2
 density is high when oil contains a significant volume of light hydrocar-

bons [4, 11].

Upon discovery, an oil reservoir is initially produced by means of the pressure gradients 

within the reservoir that provides the energy to move reservoir fluids to the surface. This 
is called the primary production stage. Eventually, the reservoir pressure declines and flow 
to the wellbore ceases. At this moment, a range of secondary or tertiary (EOR) methods are 
implemented to recover additional volumes of oil. The primary stage only recovers about 

5–20% of the original oil-in-place (OOIP), with considerable amount of oil left trapped in the 

pore spaces of the rock [9, 12].

The next stage of production is the secondary recovery, which involves the injection of a fluid, 
either gas or water to sustain and maintain the depleted reservoir drive, and simultaneously 

recover substantial amounts of the remaining OOIP. Treated produced water (waterflooding) 
is commonly used at this stage since it is less expensive and readily available. In most cases, 

the water bypasses the oil due to difference in viscosity leaving behind significant amounts 
of the remaining oil-in-place. Waterflooding results in approximately 50–60% of the OOIP 
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trapped, hence the need for CO
2
-EOR in most oil reservoirs already replenished with water-

flooding. Both primary and secondary recovery methods usually extract about 35% of the 
OOIP [4, 9, 10].

To produce more of the remaining oil-in-place, a tertiary oil recovery phase is implemented, 

where fluids (CO
2
, nitrogen, enriched gas, polymer solutions or surfactant solutions) are 

injected to interact with the oil and cause substantial changes to the oil properties [12]. Carbon 

dioxide (CO
2
) flooding is one of the most proven EOR methods, where CO

2
 is injected either 

in its gaseous or supercritical state. The injected CO
2
 is determined to reduce the interfacial 

tension, minimize the viscosity of the oil to make it lighter, cause the oil volume to swell, and 

eventually cause the oil to flow more freely within the reservoir to the producer wellbore [11].

CO
2
 is mostly delivered to the field at a high pressure (>1200 psi) and density (5 lb. /gal) into 

injection wells within a designed pattern based on computer simulation to optimize areal 
sweep of the reservoir [13, 14]. Miscibility of CO

2
 with the oil is important as it causes the 

physical forces (interfacial tension) holding the two phases apart to disappear. It occurs at a 

minimum pressure (MMP), where about 95% of the OOIP is recovered. Below the minimum 

miscibility pressure (MMP), CO
2
 and oil will no longer be miscible, the oil and gas phases 

separate, thereby decreasing oil production rate. Significant volumes of oil are produced dur-

ing CO
2
-EOR. For example, the Wasson field, a Denver unit CO

2
-EOR has produced more 

than 120 million incremental barrels of oil through 2008, with more than 2 billion barrels of 

OOIP and 40% of oil remaining after Waterflooding [14, 15, 19]. All types of oil reservoirs, 
either carbonates or sandstone could be suitable for CO

2
-EOR provided the MMP can be 

reached [13, 14].

The operation of a CO
2
-EOR project is a closed-loop system as shown in Figure 1, where about 

half of the injected CO
2
 is trapped or dissolved in the reservoir and its fluids (oil and water). 

The produced CO
2
 with oil is separated and re-injected back into the reservoir, ensuring an 

increase in trapped CO
2
 instead of being released to the atmosphere. In addition, CO

2
-EOR 

provides a market and revenues for the captured CO
2
 from anthropogenic (industrial and 

power plants) sources [14, 15]. As the project matures, the volume of injected CO
2
 diminishes, 

while recycled volumes increase. This indicates that CO
2
 is being stored in the formation 

through a capillary trapping mechanism [10, 13, 14].

CO
2
-EOR was first tested on a large-scale in the 1970s in the Permian Basin of West Texas and 

southeastern New Mexico. These initial projects used separated CO
2
 from processed natural 

gas and natural sources of CO
2
 instead of anthropogenic CO

2
 from industrial power plants. 

Figure 2 shows CO
2
-EOR projects carried out around the world and in the U.S. from the 1970s 

to present day [9, 16]. Three developed source fields include, Sheep Mountain in south central 
Colorado, Bravo Dome in northeastern New Mexico, and McElmo Dome in southwestern 
Colorado [10]. The recent depletion of the natural source fields of CO

2
 and size limitation 

of the pipelines for CO
2
-EOR processes have paved the way for anthropogenic supplies of 

CO
2
. In so doing, subsequent projects employ CO

2
 molecules from captured emissions to 

supply large quantities of CO
2
 for EOR processes in oil fields. Technological advancement in 

CO
2
-EOR applications, such as 3D seismic and geomodeling reduce the rise of failures and 

improves the flooding efficiency [10, 13–15].
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Figure 1. Schematic diagram of a closed loop CO
2
-EOR [4].

Figure 2. CO
2
-EOR projects conducted worldwide and in the U.S [10].
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4. Carbon dioxide sequestration

The potential of CO
2
 sequestration in geologic formations is possible from the fact that cer-

tain reservoirs naturally trap and store oil and natural gas over long geological time periods 

until extracted [1, 4, 6, 16]. In so doing, CO
2
 from power plants and industrial facilities can 

be trapped and stored in potential geologic formations. A large percentage of the originally 
injected CO

2
 gets trapped in the pores of the geologic formation, while a portion of it is dis-

solved in the oil and also end up trapped [3, 6, 17]. These trapping processes continue as long 

as the CO
2
 is injected. Percentage of stored CO

2
 is based on total injected volumes and not on 

the purchased volume and is given as [10].

   CO  
2storage

   (%)  =  ( CO  
2injected

   −  CO  
2produced

   −  CO  
2losses

  )  /  CO  
2purchased

    (1)

where,   CO  
2storage

    is the CO
2
 storage in metric,   CO  

2injected
    is the total CO

2
 injected,   CO  

2produced
    is the CO

2
 

produced, and   CO  
2purchased

    is the purchased CO
2
 injected. CO

2
 losses is estimated as the difference 

between total CO
2
 injected and CO

2
 produced. Losses may be due to leakages, infrequent 

power outages, among others [10].

CO
2
 can be injected into conventional geological formations and stored deep underground. 

Most of these conventional geologic formations are at depths greater than 800 m, which even-

tually converts the injected CO
2
 into its supercritical state. The supercritical CO

2
 with a higher 

density than its gaseous state results in a given volume of rock capable of holding more mass 

of CO
2
 [4, 7]. For an effective conventional geological storage, approximately 90–95% of the 

injected CO
2
 for will be sequestered within the reservoir [4, 9, 16].

4.1. Storage mechanisms in conventional reservoirs

Trapping mechanisms encountered in CO
2
-storage in conventional geologic formations 

include [9–11]:

• Physical trapping: hydrodynamic, stratigraphic, or structural) trapping

This involves the migration of generated hydrocarbons from organic matter (source) over long 
geological periods from the source rock to porous and permeable reservoir rock initially satu-

rated with brine. The accumulated hydrocarbons are trapped below a non-permeable cap rock 

to prevent further migrations, and the density difference between the fluids separates the fluids 
into layers with gas on top, followed by oil and brine at the bottom. A similar mechanism is 
encountered in the case of CO

2
 storage, where the less dense supercritical CO

2
 plume rises due to 

buoyancy forces and is prevented from escaping by overlying low permeability cap rock [15]. This 

mechanism is considered to be relatively fast but requires characterization of the cap rock [2, 3].

• Solubility trapping

CO
2
 is widely accepted to be soluble in water, as such, dissolved CO

2
 can be safely stored in a 

geologic formation under solubility trapping. Since the CO
2
- saturated brine is denser than the 
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unsaturated surrounding brine, density difference causes the denser brine to migrate deeper 
into the formation and slowly dilutes the unsaturated brine through contact. Reservoir pore 

pressure, temperature, and salinity of formation water are vital for solubility trapping [16]. 

This process occurs faster than pure diffusion, prevent CO
2
 from hydrodynamically separat-

ing from other phases, and it is estimated to begin between a year and hundreds of years after 

CO
2
 injection, also dependent on the permeability of the formation in question [2, 20].

• Mineral trapping

This process occurs over longer geological timescales than the other trapping methods, but is 

equally important [3]. It involves the formation of carbonic acids (H
2
CO3) as a result of CO

2
 

dissolution in formation brine. The resulting acid is unstable and dissociates to form groups, 

which react with the formation rock over long periods of time [2, 3]. In situations where, 

carbonate minerals are precipitated through the reaction, CO
2
 is permanently trapped as a 

result [23].

• Capillary (residual) trapping

In a conventional sandstone oil reservoirs, brine is mostly designated as the wetting phase, 
while oil and gas are the non-wetting phases. In the case of carbonate rocks, oil is the wetting 
phase and water and gas are the non-wetting phases. In capillary trapping, the formation wet-
ting phase surrounds the CO

2
 and traps it as immobile pore scale bubbles. This process occurs 

over shorter time scale (right after injection) [15] compared to the other trapping mechanisms 

[2, 19]. In effect, the rock surface is presumed to be less water-wet in the presence of CO
2
 and 

in the absence of oil [9].

These trapping mechanisms occur in geologic storage including [13, 14]:

• Depleted oil and gas reservoirs

Not only do these geologic formations provide a means for storing CO
2
, but also offer eco-

nomic opportunities as the injected CO
2
 recovers additional oil from depleted oil and gas 

reservoirs. Moreover, additional revenue can be obtained from the cost of selling captured 

CO
2
 to EOR operators to fund the cost of capture technology at industrial facilities and power 

plants [4, 14, 17]. CO
2
 is injected underground and remains immobile due to some of the 

enumerated trapping mechanisms listed above [3, 20].

• Deep saline formations

Saline aquifers are preferred due to their large capacities and being geographically wide-

spread. These include porous rock formations saturated with brine at greater depths with 

overlying shale cap rocks, which are impermeable and act as a seal to prevent CO
2
 from 

leaking [4, 17]. The confined CO
2
 also undergoes dissolution in the brine, as well as capil-

lary trapping to render the injected CO
2
 immobile. A study [2] was carried out to measure 

the maximum saturation and the form of capillary curve in a CO
2
 – Berea sandstone system 

through coreflood experiments, representative of a storage location. A capillary trapping 
capacity of 7.8% of the rock volume for CO

2
 – Berea sandstone was recorded [2]. This is to say, 
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if this much is recorded in an unconsolidated formation, how much more there is to expect in 

a consolidated formation.

• Coal beds

Coal beds are either too deep or too thin to be economically developed, as such, they could 

offer CO
2
 storage potential due to the adsorptive nature of the pore surfaces [4, 13]. In CO

2
–

enhanced coalbed methane (ECBM) production, CO
2
 is injected into deep coal seams to desorb 

methane gas to be extracted and preferentially adsorb onto the mineral surface for permanent 

CO
2
–storage. Yet they are not thoroughly characterized and are on a small magnitude for 

CO
2
–storage [8, 19, 21].

4.2. Storage criterion

Nonetheless, not all geologic formations will effectively store CO
2
 with minimum risks of 

leaking due to the buoyancy of CO
2
 gas. The criteria for secure storage involve some of the 

following parameters (Table 1) as reported in a successful project carried out in Canada [10].

Table 2 summarizes CO
2
-EOR and CO

2
 storage projects carried out in some major oil basins 

around the world. A total of 1297 billion barrels of CO
2
 has been utilized worldwide for CO

2
-

EOR, while a total of 370 billion metric tons has been stored/sequestered in the process [4].

4.3. Carbon storage regulation

CO
2
 storage site selection and injection are regulated by the U.S. Federal and State agencies, in 

addition to checking systems for CO
2
 capture and storage to reduce the potential risk of stored 

CO
2
 to humans and the environment [1, 10, 18]. Specific regulations and particular tools are 

commonly implemented to selected reservoirs by different companies and agencies [1, 10].

Furthermore, the Safe Drinking Water Act (SDWA) and the U.S. Environmental Protection 
Agency (EPA) impose safety requirements on CO

2
 injection and monitoring. Whereas, the 

Underground Injection Control Program (UICP) considers the previous seismic history as 

a requirement in selecting geologic CO
2
 sequestration sites to reduce the risk of small earth-

quakes as well as the effect of earthquakes on leakage of CO
2
. Table 3 presents a list of moni-

toring tools used for CO
2
-EOR and CO

2
 storage projects.

Adequate depth (> 1000 meters)

Strong confining seals

Minimally faulted, fractured or folded

Adequate volume and permeability for storage

No significant diagenesis

Table 1. Criteria for storage on a basin scale [10].
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5. CO
2
 storage in unconventional shale reservoirs

As previously mentioned, conventional oil and/gas reservoirs form from the migration of 
petroleum and natural gas from the source (organic matter) into permeable reservoir rocks. 
On the other hand, unconventional shale gas/oil serve as both the source and reservoir for 

natural gas and liquid hydrocarbon (oil and gas condensate). These shale formations are 

being developed widely for oil and gas production especially in the United States (U.S) and 

other parts of the world. Moreover, shale formations are much more abundant and widely 

distributed [17] than deep un-mineable coal seams and/ or depleted oil and gas reservoirs but 

have not been extensively analyzed for CO
2
 sequestration [19]. This is attributed to the ultra-

tight nature of shales but the recent advances in horizontal drilling and hydraulic fracturing 

offers a new perspective into these formations [5, 19].

Shales consist of a mineral matrix (clay, pyrite, carbonate, quartz) embedded with dispersed 
dark kerogen (organic matter) areas as shown in Figure 3. Kerogen is the insoluble solid-
phase nanoporous component of organic matter (decomposed plant and animal debris) in 

Cement integrity logs

Injection logs

Pattern and material balance techniques

Tracer injection/logging

Step rate testing

Fluid levels and reservoir pressure

Table 3. Reservoir monitoring tools used in CO
2
-EOR [10].

Region CO
2
-EOR

(Billion Barrels)

CO
2
 Storage capacity (Billion Metric Tons)

Asia Pacific 47 13

Central & South America 93 27

Europe 41 12

FSU 232 66

Middle East/North Africa 595 170

North America/Other 38 11

North America/U.S. 177 51

South Africa/Antarctica 74 21

TOTAL 1297 370

Table 2. CO
2
-EOR and CO

2
 storage in major oil basins of the world [4].
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shale formations, which controls the gas adsorption capacity. It undergoes different stages 
of maturity (decomposition) at higher temperatures to produce petroleum and natural gas 

within the micropores (<2 nm) and mesopores (2–50 nm) [6]. The kerogen pores create a sieve 

for smaller CO
2
 molecules, making shales more attractive for CO

2
 sequestration unlike meth-

ane (CH
4
) and other gas molecules [18, 30]. Thus, shales can adsorb substantial amounts of 

CO
2
 on kerogen as well as fracture surfaces [19, 24]. The level maturity of kerogen is measured 

by the vitrinite reflectance (% Ro), which indicates the onset of oil (0.6–1.0 Ro%), wet gas 
(<0.80% Ro) and natural gas (>1.4% Ro) generations, respectively [20, 21]. Gas from shale for-

mations are either thermogenic (generated from cracking of organic matter or the secondary 
cracking of oil) or biogenic (generated from microbes) [22, 26].

Because the source rock doubles as the reservoir, shales are characterized as very low per-

meability formations, which form strong confining seals in their own right but have surface 
adsorptive characteristics. As such, they require the creation of hydraulic fractures to form 
conduits for introducing fluids and producing them to the surface through horizontal wells. 
Hydraulic fracturing cracks the shale rock through injections of water, sand and chemicals 

at high pressure [16]. Horizontal wells with multi-stage hydraulic fractures can then be used 

to inject CO
2
 for storage in depleted shale gas and oil reservoirs. The horizontal wells as 

opposed to vertical wells in conventional geologic formations add to the effectiveness of CO
2
 

Figure 3. Backscattered electron (BSE) image of Chattanooga shale, Barber County, KS.
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sequestration in shales since the horizontal wells contact more of the shale formation and as 

a result, increase the subsurface production area of the well [19]. More so, CO
2
 sequestration 

in shales would not require new infrastructure unlike in conventional saline aquifers [19, 20].

Most of the shale formations are located at greater depths, where the injected CO
2
 is in its 

supercritical state, which is much preferred for both CO
2
 – enhanced gas/oil recovery (EGR)/

EOR in addition to CO
2
 sequestration. The injected CO

2
 for EGR/EOR in organic-rich shales 

adsorb onto the rock surface, while concurrently releasing methane gas (CH
4
) and/ or oil for 

natural gas and oil productions, respectively [8, 22]. Furthermore, since most of the injected 

CO
2
 would be adsorbed to the surface of kerogen rather than exist as free gas, the problem of 

leakage is minimized [8]. Hence, CO
2
 sequestration in shales is feasible but requires knowl-

edge of the characteristics of different shale formations as well as gas-water-rock interactions, 
multiphase flow, and reservoir modeling, monitoring and verification [22, 25].

Tao and Claren [19] introduced a computational method based on historical and projected 

methane (CH
4
) production to estimate the capacity of CO

2
 sequestration in Marcellus shale 

in eastern United States. From the results obtained, the Marcellus shale is expected to store 

between 10.4 and 18.4 Gt of CO
2
 (approximately 50% of total US CO

2
 emissions) between 

now and 2030. Another point to note from Tao and Claren [19] was that injected CO
2
 moves 

through the shale formation faster than producing CH
4
 through mass transfer kinetics, which 

enhances CO
2
 sequestration process in shales. In addition, other major shale plays like Barnett, 

Eagle Ford, Woodford, could provide incremental storage capacity.

Nuttal [22] performed experiments to estimate CO
2
 sequestration capacity in organic-rich 

Devonian black shales of Eastern Kentucky to be 6.8 Gt [19]. CO
2
 was found to adsorb onto clay 

and kerogen surfaces. A direct correlation was observed between CO
2
 adsorptive capacity and 

the total organic carbon (TOC), where CO
2
 adsorption capacity increases with increasing TOC.

Kang et al. [6] examined shale capacity in organic-rich shales and their added advantage 

of allowing linear CO
2
 molecules to penetrate smaller pores otherwise inaccessible to other 

hydrocarbon gases. Moreover, molecular interaction of CO
2
 and kerogen ensures enhanced 

adsorption for CO
2
 sequestration in shales. Injected gas (CO

2
) molecules move through the 

shale formation through either the organics or inorganics (or both in most cases). In the organ-

ics, CO
2
 dissolves into kerogen and diffuses into the kerogen nanopores, whereas, in the inor-

ganics, CO
2
 flows through irregularly shaped pores of clays, pyrite fambroids, quartz, and 

carbonates. Gas permeation and history-matching pressure pulse decay experiments revealed 
that significant amounts of CO

2
 gas reached the organics through the inorganic pores.

Busch et al. [5] conducted diffusive transport and gas sorption experiments on shale samples. 
Effective diffusion coefficients increased (implies irreversible storage of CO

2
) with a corre-

sponding decrease in the concentration of bulk CO
2
 volume in the sample. The decrease in 

bulk CO
2
 volume is attributed to the dissolution of CO

2
 in formation water (brine), adsorbed 

to clay and kerogen surfaces or undergoes geochemical reactions.

Furthermore, reservoir models can be built and used to predict viable CO
2
 storage in shale 

reservoirs to model diffusivity, gas-water-rock interactions, and adsorption/desorption char-

acteristics, among others. Notably, the presence of clay bound water is known to change the 
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gas sorption properties in coal formations so it is likely to manifest in shales as well. These 

phenomena could also be well understood through experimental methods [16, 19].

With these new insights, CO
2
 sequestration in shale formations looks promising, however, the 

underlying physics of CO
2
 sequestration in kerogen nanopores, where most of the sequestra-

tion takes place is much needed. A better understanding of the fluid dynamics in kerogen 
nanopores and predicting effective transport properties (diffusivity, permeability, etc.) is of 
utmost importance to practical CO

2
 sequestration applications in shales. Also, it would aid 

in capitalizing on the full potential of CO
2
 –EGR/EOR in organic-rich shales. Therefore, the 

application of lattice Boltzmann method (LBM) for CO
2
 sequestration in kerogen nanopores 

focusing on the effect of adsorption was applied.

5.1. Mechanisms of CO
2
 sequestration in shales

In addition to the trapping mechanisms in conventional reservoirs, organic-rich shales have 

an added advantage of trapping CO
2
 through adsorption in the presence of kerogen [30]. 

Kerogen is the insoluble component of organic matter, and measured in the lab as the total 
organic carbon (TOC) through pyrolysis. Thus, both hydrodynamic trapping and trapping 

through adsorption are dependent on the wettability of CO
2
 in in shales.

Tao and Claren [19] developed a linear relationship between TOC and adsorption capacity 

using a number of published data sets as input into (Eqs. (2) and (3)), respectively for methane 
(CH

4
) and carbon dioxide (CO

2
).

   [ CH  
4
  ]  ( cm   3  / g)  = 3.04 + 0.35 (TOC (%) )   (2)

   [ CO  
2
  ]  ( cm   3  / g)  = 0.08 + 1.72 (TOC (%) )   (3)

The resulting plot showed the regression line of CO
2
 adsorption capacity to be steeper than 

that of CH
4
, implying that CO

2
 is able to diffuse more readily than CH

4
 into the porous kero-

gen due to its smaller molecular diameter [19]. Accordingly, we produced a TOC vs. gas 
adsorption capacity plot but with a focus on the level of TOC and its effect on gas adsorption 
capacity. Shale formations are in abundance and have diverse geologic settings throughout 
the U.S. (Appalachian basin, Williston basin, Illinois basin, Michigan basin, Permian basin, 
and Gulf Coast Region) for EOR and associated CO

2
 storage [19, 23] but vary in kerogen con-

tent (TOC) and this variation in TOC has been found to impact the storage capacity of shales.

Figure 4 shows the TOC – gas adsorption capacity for a number of published TOC data [5, 

19, 22, 23] ranging from low TOC (<1 wt. %), medium TOC (1 wt. % < TOC < 10 wt. %), high 

TOC (10 wt. % < TOC < 20 wt. %), and ultrahigh TOC (>20 wt. %) [24]. Highest CO
2
 adsorption 

capacity is seen in the ultrahigh TOC region, followed by significant adsorption capacity in the 
high TOC region; the least adsorption capacity is observed at low TOC region. This implies 

that, the higher the kerogen content in shales, a significant amount of CO
2
 sequestration is 

expected through adsorption trapping with subsequent production of significant amounts 
CH

4
 displaced in the process. Therefore, conventional structural trapping becomes dominant 
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in low TOC regions, where shale only serves as a cap rock/seal to prevent dissolved CO
2
 from 

leaking to the surface since the mechanism of adsorption into porous kerogen (TOC) surface 

is close to negligible. On the other hand, within high TOC (>2 wt. %) regions, the adsorption 
trapping mechanism onto the kerogen surface prevails and render shale as storage medium in 

itself. In other words, shales with high TOC tend to be strongly CO
2
-wet, whereas shales with 

low TOC content exhibit water-wet conditions, with medium TOC in between strongly CO
2
 

–wet and water-wet conditions [24]. Furthermore, the presence of interlayering clay minerals 

(illite) in shales also creates a large surface area for adsorption, although the weight of TOC 

has a much larger influence [25].

The properties of supercritical CO
2
 inside small pores are of interest for subsurface carbon 

storage and as such require an understanding of the processes that govern the gas trans-

port process [19, 23]. Molecular dynamics (MD) among other microscopic computational 

fluid dynamics as well as analytical models based on Fick’s law for gas have been applied 
to understand the diffusion of CO

2
 and CH

4
 into organic pores. While, molecular dynamics 

simulates kerogen pore structures with the use of molecular sieves to investigate gas trans-

port, analytical models modify continuum approaches by incorporating slip flow and diffu-

sion. However, molecular dynamics is not feasible to simulate gas flow in porous media at 
large scale due to computational time and memory constraints [25, 26] and analytical models 

Figure 4. Gas adsorption capacity as a function of different levels of TOC.
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fall short of capturing molecular pore wall effects. On the other hand, the lattice Boltzmann 
method (LBM), a mesoscopic numerical method is more flexible and less time consuming 
since a unit of gas molecules is assigned a distribution function for simulation [25, 26].

As previously outlined, the injected gas first contacts the fracture/matrix interface and then 
chooses to either (1) dissolve into the organic material (kerogen) and diffuse through a nano-

pores network or (2) enter the inorganic material and flow through a network of irregularly 
shaped voids [6, 18]. Therefore, the interaction of supercritical CO

2
 (scCO

2
) with porous kero-

gen needs to be investigated for long-term reservoir storage of CO
2
 in organic-rich shales. We 

provide a simulation study that reveals the interaction of scCO
2
 with porous kerogen focusing 

on two key features of adsorption and diffusion.

5.2. Lattice Boltzmann simulation (LBS) of CO
2
 sequestration

The lattice Boltzmann method (LBM) is a numerical method for simulating fluid at the molecu-

lar scale. This method is ideal for simulating gas flow in nanoporous kerogen since the contin-

uum flow (Darcy’s law) fails due to dominating pore-wall effects at the microscale. LBM stems 
from the Boltzmann kinetic theory of gases, where fluids are assumed to be made up of a large 
number of small particles in random motion, which undergo elastic collisions to conserve mass 

and momentum [19, 23, 24]. However, the LBM replaces the fluid molecules with fractious 
particles to reduce the number of possible particles to a handful [28]. The fractious particles are 

then confined to the nodes of the lattice and assigned lattice velocities (  e  
i
   ) at each node as shown 

in Figure 4, where the direction index i = 0, 1, …, 8, for a D2Q9 model [29] (Figure 5). Following 

the kinetic theory, the fractious particles stream along defined lattice links and collide locally 
at varying lattice sites [23–25]. The streaming and collision of fluid particles by the Bhatnagar-
Gross-Krook (BGK) approximation gives the lattice Boltzmann BGK equation as [19, 23–26].

   f  
i
   (x +  e  

i
   𝛥t, t + 𝛥t)  −  f  

i
   (x, t)  = −   1 __ τ   [ f  

i
   (x, t)  −  f  

i
  eq  (x, t) ]   (4)

Figure 5. D2Q9 (2-D, 9-velocities) lattice nodes and velocities. Modified from [29].
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where,   f  
i
   (x, t)   is the density distribution function,   f  

i
  eq  (x, t)   is the equilibrium distribution function,  

τ  is the relaxation time. The left-hand side (LHS) of (Eq. (2)) represents the streaming step, 

while the right-hand side (RHS) constitutes the collision step.

In effect, collision of fluid particles is considered as a relaxation towards a local equilibrium, 
and defined for every model with varying dimensions (2-D, 3-D) and velocities (5, 9, 15, etc.).

The LBM models the distribution of and changes in the density function, from which the 

velocity profile is determined. Accordingly, the macroscopic fluid density and velocity are 
given respectively as [19, 23, 24].

  ρ =  ∑ 
i=0

  
8

     f  
i
    (5)

  u =   1 __ ρ    ∑ 
i=0

  
8

     f  
i
    e  
i
    (6)

where,  ρ  is the macroscopic fluid density and  u  is the macroscopic fluid velocity.

Several works [18, 29] have been carried out on modeling the convection problem encoun-

tered in deep saline aquifers during CO
2
 sequestration with the lattice Boltzmann method 

(LBM). The findings include the fact that brine with a high CO
2
 concentration was found 

to invade into the underlying unsaturated brine, causing an increase in the interfacial area 

between the CO
2
–rich brine and CO

2
 – deficient brine. In effect, this phenomenon enhanced 

the migration of CO
2
 into the fracture and pores.

However, in organic-rich shales, most of the sequestration process takes place within the 

kerogen nanopores through adsorption [30, 31]. In so doing, there is the need to understand 

the interaction of supercritical CO
2
 (scCO

2
) with porous kerogen for long-term reservoir stor-

age of CO
2
 in organic-rich shales.

In a typical kerogen nanopore, the velocity is discontinuous at the pore wall due to the 

mean free path of the gas molecules exceeding the characteristic length (pore size). This 

phenomenon is characterized by the Knudsen number (  K  
n
   ); slip flow regime falls within 

0.001 <  K  
n
   < 0.1 . For chosen characteristic length 20 nm for our LBS (  K  

n
   = 0.0243 ), fluid flow 

falls within the slip flow regime. Slip flow boundary condition was modified for CO
2
 mol-

ecules, which are predicted to not reflect at the walls but rather adsorb and desorb after 
some time lag [26, 27]. In effect, the velocity of the pore wall is defined to be dependent 
on the surface diffusion coefficient of CO

2
 gas as well as Langmuir adsorption parameters 

based on the amount of adsorbed gas. Hence, the slip velocity at the pore-wall is given by 

[26, 27, 30].

   u  
slip

   =  (1 − α)   u  
g
   + α  u  

w
    (7)

where,   u  
slip

    is the slip velocity,   u  
g
    is the fluid velocity away from the wall,   u  

w
    is the local wall 

velocity dependent on the surface diffusion coefficient, and  α is the amount of adsorbed gas at 

the solid surface through Langmuir isotherm.
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Marcellus shale reservoir conditions were implemented at a high pressure of 12 MPa and 

temperature of 300 K. The D2Q9 LBM diffusion coefficient is known to be given in (Eq.(8)) and 
is directly comparable to the kinematic viscosity [28, 32].

  D =   1 __ 3   ( τ  σ   −   1 __ 
2
  )   (8)

where,  D  is the diffusion coefficient of the D2Q9 LBM and   τ  
σ
    is the relaxation time for each 

fluid component.

A 20-nm pore-slit is filled with both CH
4
 and CO

2
 at 12 MPa. Hydrodynamic velocity bound-

ary condition is implemented at the upper and lower walls, while the pressure boundary 

condition is applied to the east and west ends. Figure 6 shows the static velocity profile of 
both fluids in the pore-slit; CO

2
 occupies the surface of the pore walls on both ends as the 

wetting phase, while methane occupies the center as the non-wetting phase.

Estimating the amount of adsorbed gas for CO
2
 and CH

4
, respectively, it was found that CO

2
 

adsorption capacity was much more than that of CH
4
 for the same pore dimension and pre-

vailing temperature and pressure. Furthermore, the diffusion coefficient CO
2
 at  τ = 1  is higher 

than the diffusion coefficient of CH
4
 at  τ = 0.8 . The estimated magnitude of CH

4
 diffusion 

coefficient is given in the range of 10−13–10−10 m2/s in carbon molecule sieves [19].

6. Conclusions

CO
2
 sequestration in organic-rich shales to mitigate greenhouse gas (GHG) effects is proven 

to be very feasible through experimental and numerical simulations. Our literature review 

Figure 6. Composite velocity distribution of both CH
4
 (center) and CO

2
 (at the walls) in a 20 nm pore-slit.
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and LBS suggest that organic-rich shales are capable of storing CO
2
 in substantial quantities 

in its adsorbed state in the presence of higher TOC levels. In addition to shales being widely 

distributed and in abundance, the natural confining seals of the formation reduces the risk of 
leakage. On the other hand, CO

2
-EGR/EOR can be achieved as part of the CO

2
 sequestration 

process; CO
2
-EGR/EOR produces relatively clean fuel and sustains energy demands.

However, to accurately benefit from CO
2
 – sequestration in organic-rich shales, there is the 

need to overcome developmental challenges and understand the rock-fluid and fluid–fluid 
interactions in organic-rich shales for large scale pilot test and implementation.
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Appendices and nomenclature

EGR/EOR enhanced gas recovery/enhanced oil recovery

OOIP original oil-in-place

ECBM enhanced coalbed methane

CO
2
 carbon dioxide

scCO
2
 supercritical CO

2

CH
4
 methane

Gt giga tons

TOC total organic carbon/content
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Ro % vitrinite reflectance

LBM lattice Boltzmann method

LBS Lattice Boltzmann simulation

BGK Bhatnagar-Gross-Krook

  f  
i
   (x, t)   velocity distribution function

  f  
i
  eq  (x, t)   equilibrium distribution function

 τ  relaxation time

  e  
i
    lattice velocities

 ρ  macroscopic density

 u  macroscopic velocity

GHG greenhouse gas

MPa mega Pascal

K Kelvin

Kn Knudsen number

nm nanometer

  u  
slip

    slip velocity

 D  diffusion coefficient of D2Q9 LBM

D2Q9 2-dimensional, 9 velocity/speed model
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