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Abstract

The fundamental understanding of cryobiology through experimentation in the 1960s, 
1970s, and 1980s has led to the development of today’s vitrification technology. Although 
human embryo and oocyte vitrification was slow to evolve, it has become an invaluable 
technology in the field of reproductive medicine. The aim of this chapter is to discuss 
some of the underlying basic principles behind forming a metastable glass phase during 
rapid cooling in liquid nitrogen (LN

2
) and the prevention of recrystallization events upon 

warming. We then highlight how this understanding has led to its highly effective and 
reliable usage in clinical IVF. Furthermore, we describe how quality control factors (e.g., 
ease of use, repeatability, reliability, labeling security, and cryostorage safety) can vary 
between vitrification device systems, potentially influencing clinical outcomes and creat-
ing possible liability issues. An open-minded approach to continued experimentation is 
a necessity, especially pertaining to oocyte freeze preservation, if we are to optimize the 
vitrification of reproductive cells and tissue in the future.

Keywords: cryopreservation, embryo, oocyte, quality control, vitrification

1. Introduction

Studies investigating the effect of cooling on biological cells have been conducted since at least 
the late 1700s [1]. For much of this history, relatively uncontrolled methods were utilized. 
The discovery [2], or rediscovery [3], of the protective effects of small-molecule solutes such 
as glycerol and sucrose, when incorporated into carrier solutions used during cooling and 
warming, has greatly expanded the efforts to develop robust freeze preservation methods. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



An exponential number of reports successfully preserving biological material have been pub-

lished in the scientific literature over the last six decades.

Because long-term preservation of biomaterial requires cessation of biochemical reactions, stor-

ing this material is typically done at very low subzero temperatures. As a result, ice usually forms 
in the sample, often with deleterious consequences. The avoidance of ice formation, particularly 
intracellular ice, is known to be one of the most important factors contributing to successful 
cryopreservation [4]. Preventing intracellular ice formation (IIF) during cooling and warming, 
and maintaining cellular viability during this process, is achieved by increasing the concentra-

tion of solutes in the cytoplasm. This is done by one of the two ways. The first way, referred to 
as either slow cooling or equilibrium freezing, allows the cell’s sufficient time to dehydrate as 
a result of extracellular ice formation and subsequent exosmosis during the cooling process. 
This dehydration increases the concentration of the solutes in the cytoplasm, preventing lethal 

intracellular ice formation during subsequent cooling and warming if done appropriately. A 
thorough discussion of the principles of cryopreservation has been reviewed by Peter Mazur [5]. 
The second method intentionally loads high concentrations of solutes into cells prior to cooling 

below the freezing point of the solution. With this method, the solution containing the cells (and 
the cells themselves) maintains an amorphous state during subsequent cooling and warming. 
This later procedure, generally referred to as vitrification, is the focus of the current chapter.

While practical methods to successfully vitrify cells were not developed until the mid-1980s, 
the concept of vitrification as a means for cryopreservation has a much longer history. In the 
1930s, Stiles suggested that, with the use of very rapid cooling, cytoplasm may not extensively 
crystallize. The result of which could be maintenance of the system [6]. In 1937, Father Basile 
J. Luyet, one of the founding members of the Society for Cryobiology and its first President, 
developed the concept of vitrification into a major research proposal [7]. For reasons described 
elsewhere [8], Father Luyet never succeeded in developing a method to vitrify cells successfully 

but laid the foundation for the development of vitrification methods by those that followed.

It was not until the 1980s that a method for reviving cells after vitrification was demonstrated 
unequivocally [9]. Gregory Fahy had worked on developing methods for vitrification for 
over a decade, and his contributions, coupled with those of William Rall, proved that mouse 
embryos could be vitrified using several methods. It was subsequently shown that a practi-
cal, ambient approach to vitrify and warm embryos could efficiently and effectively produce 
healthy live births in the mouse [10] and sheep model [11].

After the initial report in 1985, numerous experiments describing successful vitrification of 
embryos from other species were published. It is beyond the scope of the present work to 
describe these reports in detail, but such information can be obtained in recently published 

reviews [12–16].

2. Achieving a vitreous state when cooling an aqueous solution: 

physical aspects

At temperatures above an aqueous solution’s melting point, the water remains liquid as a 
result of the Gibbs free energy being lower in comparison to that in the solid phase [17]. As 
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a solution is cooled, it becomes progressively more favorable for ice to form. However, even 
when the temperature goes below the thermodynamic equilibrium point, ice formation is 
initially unfavorable as a result of an energy barrier to ice nucleation.

As cooling proceeds, it becomes more favorable for ice nuclei to form. This is often the result 
of water molecules becoming arranged in a favorable configuration on a foreign particle 
suspended in the solution. This process is called heterogeneous nucleation. Homogeneous 
nucleation (i.e., where an ice nuclei forms as a result of self-aggregation of water molecules) is 
not favorable until relatively low temperatures (~−39°C in pure water). Therefore, preventing 
heterogeneous nucleation during cooling is important to attaining the vitreous state.

Avoiding homogeneous nucleation is difficult when cooling dilute solutions. However, 
increasing the concentration of solutes in a solution depresses the homogeneous nucleation 

temperature (T
hom

), and it is possible to depress T
hom

 below the glass transition temperature 
(T

g
) with a sufficient solute concentration [18]. Unfortunately, solutions with solute concen-

trations high enough to depress T
hom

 below T
g
 are usually too toxic to biological systems to be 

of practical use.

Fortunately, it is possible to depress T
hom

 low enough with relatively nontoxic solutions such 
that kinetics begins to exert an appreciable effect on the probability of ice nucleation and 
growth. It is the combination of thermodynamic and kinetic effects that allow ice crystal 
nucleation and growth to be avoided during cooling of these solutions and is the means by 
which vitrification of oocytes and embryos are achieved presently.

During warming, the likelihood that extensive ice crystal formation will occur is greater for 
a given solution having been cooled at a specific rate, resulting in markedly higher warm-

ing rates being necessary to maintain the vitreous state. The mechanism behind devitrifica-

tion events has been previously discussed [19]. In brief, during cooling, the nucleation 
of ice in a solution can be prevented until very low temperatures. These ice nuclei are 
often very small (submicroscopic), and a solution cooled with only moderate concentra-

tions of cryoprotectants is, for all intent and purposes, vitreous. However, these nuclei 
remain present during warming up to the melting point of the solution. Because crystal 
growth occurs more rapidly as the temperature increases, if warming is not extremely 
rapid (greater than the cooling rate), extensive ice crystal growth will occur from these 
previously formed nuclei. This phenomenon is referred to in the literature as devitrifica-

tion and is believed to be just as damaging to biomaterial as ice crystal formation during 
cooling [19]. Hence, developing cryopreservation methods to avoid extensive crystalliza-

tion rely upon rapid warming more so than rapid cooling, a point often overlooked in the 
literature (See Figure 1).

It should be pointed out that ice formation during warming is not necessarily damaging to 
biological systems, particularly if it occurs for only very brief periods of time and the crystals 

remain very small. It is believed that this may be due, in part, to the type of ice crystal struc-

ture initially formed at low temperatures, as ice has many crystalline forms. However, if the 
system is afforded sufficient time during warming, the molecules in the ice crystals may rear-

range to form the more favorable (i.e., from a thermodynamic standpoint) hexagonal crystal 
structure as well as larger crystals. It is believed that this structure of ice is the most damaging 
to biological systems [19].
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Historically, studies investigating the relationships between devitrification and rates of tem-

perature change as well as solute concentrations have been limited to relatively slow cooling 
and warming rates due to technical limitations (<100 K/min). As such, estimations of the criti-
cal concentrations for the realm of cooling and warming rates that are utilized in the embryol-
ogy laboratory have often been extrapolated from those data [20] with uncertain accuracy. 
Fortunately, a recent study has shed light on the critical concentration of solutes in the ranges 

of cooling and warming rates encountered in oocyte and embryo vitrification [21]. Some of 
the results from that study were not surprising—revealing a greater critical warming rate 
compared to the cooling rate for a given solute concentration (Figure 1), for example. Also, 
the critical warming rate is strongly dependent upon cooling rate, even at the high rates of 
warming in the latter study. Other results, however, were enlightening. The experimental 
data suggests that the critical warming rate is in fact lower than previously estimated from 
theoretical models (c.f. [22], as one example) suggesting that the current systems may be more 

stable than previously estimated. On the contrary, experimental ice growth after nucleation 
was much faster than theoretically predicted [23], approaching 25 μm sec −1 at −33°C from 
approximately zero growth below −80°C. From a practical standpoint, this means that ice, 
starting at a nucleus in the center of a mature human oocyte (radius = 63 μm; [20]), would 
proceed to the edge of the cell at −30°C in roughly 2 seconds. This highlights the importance 
of warming as quickly as possible when vitrifying oocytes and embryos.

3. Cryoprotectants as components of vitrification solutions

An exhaustive review of this topic is beyond the scope of the current work, and, therefore, 
interested readers are referred to thoughtful reviews published previously, as well as the 

Figure 1. The relationship between the critical cooling rate (CCR) and the critical warming rate (CWR) of solutions 
containing a permeating cryoprotectant dissolved in water is shown. Note that the CWR is generally two to three orders 
of magnitude greater than the CCR (Data from Table 1 in Hopkins et al. 2012 [21]).
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primary literature cited within those papers [24–27]. As with freezing methods, dimethyl 
sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol are common 
components of vitrification solutions used for reproductive cells and tissues. These solutes 
possess favorable properties such as high solubility and cellular permeability and relatively 

low toxicity. For systems where extremely rapid cooling and warming are not possible (i.e., 
pieces of tissue and the entire organs), these compounds must be used in fairly high concen-

trations to preclude ice formation. Unfortunately, at these concentrations, the toxicity of the 
solutions becomes a serious concern, and investigations to determine superior vitrification 
solutes have been conducted as a result [27, 28].

In some investigations the search for superior vitrificants has been conducted by assessing 
the effect on the concentration necessary to vitrify (CNV) of the molecular structure of the 
closely related compounds. As an example, the position of the hydroxyl side groups (and the 
associated presence or absence of methyl groups) on diols has a significant effect on the vitrifi-

ability of solutions. For example, at low cooling rates, the concentration of 1,2-propanediol 
necessary for vitrification is 44% by mass, whereas with the isomeric form 1,3-propanediol, 
the CNV is increased substantially (to 57% by mass), making the more commonly used iso-

mer a superior vitrificant. Similarly, for a fixed concentration of solute, the position of the 
hydroxyl pairs plays a significant role in attaining and maintaining an amorphous state. A 
solution of 30% 1,3-butanediol (by mass) dissolved in phosphate-buffered saline containing 
4% sorbitol has a critical warming rate (i.e., rate needed to prevent adverse devitrification 
effects) of 2.73 × 109°C/min. However, this rate is reduced by nearly four orders of magnitude 
for its isomer 2,3-butanediol (2.9 × 105°C/min) [29].

Similarly, adding methyl groups to commonly used diols greatly enhances their stability [30]. 
The critical warming rates for 50% (by mass) ethylene glycol, ethylene glycol monomethyl 
ether, and ethylene glycol dimethyl ether are 250, 80, and 5°C/min, respectively. About 30% 
propylene glycol monomethyl ether has a critical warming rate of 7 × 103°C/min, whereas 35% 
propylene glycol has a critical warming rate of 2 × 107°C/min [30]. These effects are believed 
to be strongly associated with the relative ability of the compounds to hydrogen bond with 
water [27].

Unfortunately, a significant correlation between vitrifiability and biological toxicity has been 
noted [31], making what might seem to be relatively simple modifications to currently used 
vitrification solutions too toxic for practical applications. One alternative has been the inclu-

sion of nonpermeating solutes as a means to reduce the concentration of permeating (and 

presumably more toxic) compounds in vitrification solutions. There are two general classes 
of agents used, relatively small sugars (usually disaccharides like sucrose and trehalose) and 

larger molecular weight polymers (i.e., Ficoll and polyvinyl alcohol). The former can enhance 
the vitrifiability of solutions for a given concentration of permeating agent(s) and also enhance 
the vitrifiability of cytoplasm via dehydration. The latter generally have lower osmotic effects 
on cells but can enhance vitrifiability by one or more means [18].

Due to their large size, these macromolecules contribute markedly to the viscosity of vitrifica-

tion solutions, thus suppressing the kinetics of molecular motion and consequent ice form-

ing tendency as solutions are cooled. Additional developments include the discovery that 
certain polymers are able to interfere with ice nucleation and growth, presumably by directly 
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interacting with the surface of ice nuclei and small crystals [32]. These types of compounds 
(e.g., X-1000 and Z-1000 as marketed by 21st Medicine, Inc.) [32, 33] are becoming common 

additives to vitrification solutions as they are particularly effective in this regard. It should be 
pointed out that the ice blockers may not make a significant difference for vitrification under 
so-called ultrarapid cooling regimes. However, there are benefits to vitrifying by cooling and 
warming more slowly [34, 35], and such methods may eventually prove to be superior to 

some of those currently being utilized.

4. Quality control considerations in vitrification systems

Since the first effective method for vitrification was demonstrated using mouse embryos [9], 

results from numerous experiments designed to vitrify embryos from other mammals have 

been reported. Investigations at that early time period utilized standard 0.25 ml cryostraws as 
sample carriers [10, 36]. Chilling injury was determined to be a challenge to cryopreserving 
bovine and porcine embryos, particularly cleavage-stage embryos. This was also discovered 
to be a serious concern for oocytes. Following the elucidation of the kinetics of chilling injury 
on cattle oocytes [37], more successful methods to cryopreserve these sensitive cells devel-

oped as a result of increasing the rate of cooling. This was achieved by using approaches that 
reduced the volume of solution being cooled and reducing or eliminating the effects of the 
sample carriers on heat transfer from the sample [37].

In the adoption of vitrification to the human ART industry, thinner straws and flat to semi-
flat sample supports composed of various materials gained prominence for use to increase 
the cooling and warming rates of the samples [38]. While these devices tended to improve 
outcomes, many have relied upon directly exposing the samples to liquid nitrogen [39]. This 
results in an increased theoretical risk of sample cross-contamination from contaminated 

liquid nitrogen [40], yet no such disease transmission has ever occurred via an embryo or 

oocyte [41]. Furthermore, these systems have been reported to be very challenging to use, 
resulting in a significant “technical signature” of the outcomes [42–44]. Commercial influ-

ences have pushed vitrification devices into the marketplace, in fact more than 25 different 
device systems have been utilized. This commercial push to market devices has created seri-
ous potential quality control (QC) problems, such as inherent design flaws of some devices 
in secure labeling, open system storage, and suboptimal recovery and inconsistent survival 

rates; these factors could present unnecessary and undesirable industry variation with sub-

standard outcomes. While a device system may be perfected, or not, within a laboratory, 
when samples are transferred for warming to another laboratory, reduced outcomes may 
occur. This interlaboratory variation poses potential liability issues to both programs [45, 46]. 
Even when both programs are competent in their procedures, the relationships between cool-
ing and warming thermodynamics as discussed above can have applied consequences. For 
example, open device systems like Cryo-Locks, Cryo-Tops, or Cryo-Tech that have become 
a worldwide industry standard emphasize the use of micro-volumes of DMSO/EG solutions 
varying from 0.5 to 0.05 μl. This 10-fold variation in volume, or greater, directly influences 
both the risk of dehydration and cooling/warming rate potentials of the sample. A program 
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emphasizing ultralow volumes utilizing visual dehydration (i.e., complete loss of solution 
seen around sample) prior to LN

2
 direct exposure to maximize ultrarapid cooling rates is 

likely exposing oocytes/embryos to potentially damaging or unnecessary osmotic stress and 
an increased risk of suboptimal warming rates by an end user unfamiliar with their particular 
vitrification nuance in the technique. In turn, a poor outcome by the end user is not necessarily 
a reflection of their competence. Device systems using higher volumes, or more importantly 
set volumes, are less vulnerable to warming rate variation under standard conditions.

Alternative efforts have focused on developing aseptic vitrification devices/procedures that 
offer simplicity and reliability of use, high survival/viability rates, and biosecurity. The CBS™ 
0.3 ml embryo/semen straw is an ideal storage container, offering biosecurity, and tamper-

proof, dual-colored labeling for ease of identification. In conjunction with vitrifying in an open 
pulled straw (OPS; [47]), a cut standard straw (CSS; [48]), or sterile flexipette (microSecure-
VTF; [44]), effective low-cost options are proving to be very practical and successful, in con-

trast to expensive commercial systems like the CBS™-HSV and VitriSafe™ devices [49, 50] .  
The success of implementing these double-container systems is predicated more on achieving 

rapid warming rates (in excess of 5000°C/min) than on their moderately rapid cooling rates 
(up to 1500°C/min). Thus, the simplicity of the system and the ability to effectively remove 
the device for rapid warming are critical factors to these aseptic methods. These factors were 
taken into consideration in the development and validation of the microSecure-VTF system 

[51], which has proven to be a user-friendly technique offering high inter-technician repeat-
ability and reliability (100% recovery rates), high survival rates, and high live birth rates with 
human oocytes and blastocysts [44, 52, 53]. There are also hybrid vitrification device systems 
like Rapid-i [54] and the Cryotop SC [55] which ultrarapidly cool the device prior to seal-
ing them into a straw container under LN

2
 vapor conditions, placing the container at risk of 

incomplete seals (i.e., particularly the Cryotop SC and homemade cut straw-double container 
systems). The latter event could allow LN

2
 seepage to occur and problematic warming events 

to transpire if not accounted for properly [56]. Variations in device systems that place the end 
user at risk of unexpected poor outcomes, like non-recovery and high degeneration rates, 

create serious liability issues to IVF programs, as recently discussed [46]. Liability concerns 
can also stem from poor manufacturer design or user compliance to quality management 

practices.

When contemplating which vitrification device to use, there are some critical factors to evalu-

ate to accurately judge its potential usefulness [57]. We believe it is important to assess label-
ing potential, technical ease, simplicity and repeatability, LN

2
 storage, recovery potential, 

and survivability. A device that offers secure (internalized), dual-colorized labeled containers 
(e.g., CBS™ embryo straws) is considered optimum. In evaluating technical ease, one should 
assess handling simplicity/repeatability of cryo-loading and warming, as well as identifica-

tion potential. Can the desired vitrified sample be promptly, clearly, and accurately identified 
without ambient exposure? In terms of LN

2
 exposure, is the device closed with secure seals, 

easy to handle, well protected, and space efficient (e.g., greater than five devices/goblet)? 
Furthermore, technician’s safety in the handling of devices in LN

2
 should be seriously evalu-

ated and not overlooked. Finally, one should determine the recovery and survival potential 
of using a particular device before implementing it into commercial practice. In terms of 
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“technical signature,” remember that any good laboratory can master a device with sufficient 
practice and experience, but can an inexperienced lab using that same device have compa-

rable results? Therein lies the rub, a potential QC nightmare awaits as so many different types 
of suboptimum vitrification devices have been mass marketed without full consideration to 
the factors listed above.

Ultimately, the successful application of all vitrification methods, independent of the device 
used, is dependent on three principle quality control components (i.e., the 3 “Cs” to suc-

cessful vitrification): clarity of the mind (i.e., organization), concentration (i.e., focus on task 
at hand), and consistency (meticulous, technical repeatability; [44]). For example, complete 
organization (i.e., clarity) is imperative to avoid any variation in strictly timed dilution and 
loading/plunging/warming steps. Meanwhile, the cryo-dish setup and routine manner of 
warming and diluting oocytes and embryos (intra- and inter-solution steps, i.e., consistency) 
can be critical to the effective and timely use and reuse of vitrification solutions. Because of the 
rate-limiting nature of these dilution steps to avoid toxicity, user concentration and focus are 

important to insure that multiple straws and devices can be prepared in a short, precise time 
period. It is the latter issue that poses the greatest challenges to animal industry application 
of vitrification where large numbers of oocytes and blastocysts may need to be processed in a 
given day (e.g., in vitro production facility).

5. Experimental aspects of today’s clinical vitrification

After 20 years of development, vitrification has transformed the IVF industry, with regard 
to oocyte cryobanking [58–60] and the justified adoption of vitrification-all IVF cycles [61] in 

conjunction with blastocyst culture and micromanipulation. The combined use of nontoxic 
levels of permeating cryoprotective agents, coupled with supplemental macromolecules, as 
discussed above, has facilitated the safe vitrification of human oocytes and embryos. Today, 
blastocysts are vitrified with great confidence that their fresh-state viability will be completely 
sustained. This is particularly true in conjunction with blastocyst biopsy/PGS-single embryo 
transfer application ([62, 63] where over 99% survival can be typically achieved [64] along 

with efficient pregnancy success across all age groups following single euploid embryo trans-

fer [65]. Embryo and oocyte vitrification has been the most significant procedure applied to 
the ART industry since the development of ICSI [44]. In our own experimental efforts to verify 
the safety and reliability of μS-VTF in a metastable solution (>7.9 M glycerol/DMSO-free; 
Innovative Cryo Enterprises, NJ, USA), we determined that blastocyst viability was sustained 
after up to five times re-vitrified (rVTF) with and without equilibrating sucrose dilutions 
post-warming [66]. Although the commonly used 15% DMSO/15% EG commercial vitrifica-

tion solution is less cytotoxic to human blastocysts following extended exposure (>10 min; 
Figure 2), its inferior metastability is less resilient to repeated rVTF.

In the last decade, oocyte vitrification has proven to be a reliable option for the “fertility 
preservation” of women facing potential sterilization medical treatments. Based on the nor-

mal health and well-being of live-born babies, and consistently good survival, fertilization, 
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and pregnancy rates in some randomized clinical trials, oocyte cryopreservation technology 

was deemed “nonexperimental” in 2013 by the American Society for Reproductive Medicine 
(ASRM; [67]). It should be noted that the determining factor to remove the “experimental” 
classification was dictated by medical insurance factors to aid the former female popula-

tion. Although oocyte vitrification has numerous potential clinical benefits, including IVF 
cycle rescue and elective fertility preservation when a sperm provider fails to produce or is 
unavailable, respectively, its “nonexperimental” classification has been potentially mislead-

ing [46]. Blastocysts derived from vitrified oocytes are comparable to those derived from 
fresh oocytes, in terms of euploidy and live birth rate potential [68, 69]; however, the overall 
developmental competence of zygotes to the blastocyst stage continues to be delayed and 

reduced overall [69].

Little to no progress has been made over the past 5 years to correct or understand why overall 
blastocyst development may be reduced between cryopreserved batches. The inefficiencies 
of oocyte cryopreservation go beyond the device system used or technical variation and 

undoubtedly rest on improving our understanding of the membrane integrity and cytoplasmic 

sensitivity of this large single cell [45, 70, 71]. There remains a need to understand more about 
cytosolic factors at the level of gene regulation and energetics of vitrified-warmed oocytes 
that could be responsible for decreasing their developmental potential [72–74]. Due to the 
high costs, resource availability, and ethical considerations of generating human oocytes for 

experimentation, research progress is slow but necessary. There is a need to continue explor-

ing the role of safer, metastable vitrification practices (e.g., solutions, equilibration intervals, 
dilution methods), as well as the cytoplasmic preparedness of oocytes to be cryopreserved.

Figure 2. The effect of vitrification solution (VS) type by exposure interval is conveyed in terms of initial post-warming 
survival (0 hr; inner bar graph) and 24 h sustained development (line graph). Statistical differences (p < 0.05) between 
groups within interval are indicated by an asterisk (*). The more concentrated, metastable EG-glycerol solution tended 
(p > 0.10) to show reduced survival and development of human blastocysts after 10 min of exposure, with overt 
differences in toxicity seen by 15 min.
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6. Summary

As with all ART procedures, there is always room for improvement in their application and 
outcomes. Steady advancements in reproductive tissue and oocyte vitrification will likely 
require continued experimentation to further understand membrane biomechanics and the 

role of extracellular stabilizing additives (e.g., hyaluronate, hydrocellulose, and butylated 
hydroxytoluene) and ice blocking agents (e.g., polyvinyl alcohol polymer), organelle function-

ality and gene expression, cryoprotectant interactions, and possible toxicities. Furthermore, 
quality management improvements aimed to reduce technical variation will all prove critical 
to optimizing vitrification in the future. Ideally, vitrification systems require mindfulness to 
quality control issues to enhance procedural consistency and repeatability. Our common goal 
should be to eliminate technical signature by reducing intra- and interlaboratory variation. 
Indeed, our future ability to sustain cellular viability and physiological processes is infinite 
in the wondrous world of glass formation and the controlled elimination of recrystallization 
events.

Author details

Mitchel C. Schiewe1* and Steven F. Mullen2

*Address all correspondence to: mschiewe@ovationfertility.com

1 Ovation Fertility, Newport Beach, CA, USA

2 Cook Regentec, Bloomington, IN, USA

References

[1] Spallanzani L. Opuscules de physique animale et vegetale. Pavie and Paris: P.J. Duplain; 
1787

[2] Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydra-

tion at low temperatures. Nature. 1949;164:666

[3] Katkov I, Isachenko V, Isachenko E. Vitrification in small quenched volumes with 
a minimal amount of, or without vitrificants: Basic biophysics and thermodynamics. 
In: Tucker MJ, Liebermann J, editors. Vitrification in Assisted Reproduction. London: 
Informa Healthcare; 2007. pp. 21-32

[4] Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal 
rates. Cryobiology. 1977;14(3):251-272

[5] Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the 
Frozen State. Boca Raton: CRC Press; 2004. pp. 3-65

Cryopreservation Biotechnology in Biomedical and Biological Sciences100



[6] Stiles W. On the cause of cold death of plants. Protoplasma. 1930;9:459-468

[7] Luyet B. The vitrification of organic colloids and of protoplasm. Biodynamica. 1937;1(29): 
1-14

[8] Fahy GM, Rall WF. Vitrification: An overview. In: Tucker MJ, Liebermann J, editors. 
Vitrification in Assisted Reproduction. London: Informa Healthcare; 2007. pp. 1-20

[9] Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by 
vitrification. Nature. 1985;313(6003):573-575

[10] Rall WF et al. Development of mouse embryos cryopreserved by vitrification. Journal of 
Reproduction and Fertility. 1987;80(2):499-504

[11] Schiewe MC. Comparative estrus synchronization, ovarian stimulation, luteal func-

tion and embryo cryopreservation of domestic sheep and non-domestic species, 

Ph.D. Dissertation, Uniformed Services University of the Health Sciences (USUHS); 
1989. pp. 1-352

[12] Dobrinsky JR. Cryopreservation of pig embryos: Adaptation of vitrification technology 
for embryo transfer. Reproduction Supplement. 2001;58:325-333

[13] Fahning ML, Garcia MA. Status of cryopreservation of embryos from domestic animals. 
Cryobiology. 1992;29(1):1-18

[14] Kasai M, Mukaida T. Cryopreservation of animal and human embryos by vitrification. 
Reproductive Biomedicine Online. 2004;9(2):164-170

[15] Massip A. Cryopreservation of embryos from farm animals. Reproduction in Domestic 
Animals. 2001;36:49-55

[16] Mullen SF, Critser JK. The comparative cryobiology of preimplantation embryos from 
domestic animals. In: Schaten H, Constantinescu GM, editors. Comparative Reproductive 
Biology. Ames: Blackwell; 2007. pp. 213-235

[17] Wowk B. Thermodynamic aspects of vitrification. Cryobiology. 2010;60(1):11-22

[18] Fahy GM et al. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21(4): 
407-426

[19] MacFarlane DR. Devitrification in glass-forming aqueous solutions. Cryobiology. 1986; 
23:230-244

[20] Mullen SF et al. Human oocyte vitrification: The permeability of metaphase II oocytes to 
water and ethylene glycol and the appliance toward vitrification. Fertility and Sterility. 
2008;89(6):1812-1825

[21] Hopkins JB et al. Effect of common cryoprotectants on critical warming rates and ice 
formation in aqueous solutions. Cryobiology. 2012;65(3):169-178

[22] Boutron P, Mehl P. Theoretical prediction of devitrification tendency: Determination 
of critical warming rates without using finite expansions. Cryobiology. 1990;27:359-377

Vitrification: Fundamental Principles and Its Application for Cryopreservation of Human…
http://dx.doi.org/10.5772/intechopen.79672

101



[23] Karlsson JO, Cravalho EG, Toner M. A model of diffusion-limited ice growth inside bio-

logical cells during freezing. Journal of Applied Physiology. 1994;75:4442-4450

[24] Fahy GM, Levy DI, Ali SE. Some emerging principles underlying the physical proper-

ties, biological actions, and utility of vitrification solutions. Cryobiology. 1987;24:196-213

[25] Fuller BJ. Cryoprotectants: The essential antifreezes to protect life in the frozen state. 
Cryo-Letters. 2004;25:375-388

[26] Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications 
of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. 
Cryobiology. 2017;76:74-91

[27] MacFarlane DR, Forsyth M. Recent insights on the role of cryoprotective agents in vitri-
fication. Cryobiology. 1990;27:345-358

[28] Ali J, Shelton JN. Design of vitrification solutions for the cryopreservation of embryos. 
Journal of Reproduction and Fertility. 1993;99(2):471-477

[29] Boutron P. Glass-forming tendency and stability of the amorphous state in solutions 
of 2,3-butanediol containing mainly the levo and dextro isomers in water, buffer, and 
euro-Collins. Cryobiology. 1993;30(1):86-97

[30] Wowk B et al. Effects of solute methoxylation on glass-forming ability and stability of 
vitrification solutions. Cryobiology. 1999;39:215-227

[31] Fahy GM et al. Improved vitrification solutions based on the predictability of vitrifica-

tion solution toxicity. Cryobiology. 2004;48(1):22-35

[32] Wowk B et al. Vitrification enhancement by synthetic ice blocking agents. Cryobiology. 
2000;40(3):228-236

[33] Wowk B, Fahy GM. Inhibition of bacterial ice nucleation by polyglycerol polymers. 
Cryobiology. 2002;44:14-23

[34] Rall WF, Meyer TK. Zona fracture damage and its avoidance during the cryopreserva-

tion of mammalian embryos. Theriogenology. 1989;31(3):683-692

[35] Steif PS, Palastro MC, Rabin Y. The effect of temperature gradients on stress develop-

ment during cryopreservation via vitrification. Cell Preservation and Technology. 
2007;5(2):104-115

[36] Schiewe MC et al. Ovine embryo cryopreservation: Analysis of cryoprotectant, cooling 
rate and in situ straw dilution using conventional freezing or vitrification. Theriogenol-
ogy. 1991;36:279-293

[37] Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryo-

preserved by ultra-rapid cooling. Biology of Reproduction. 1996;54(5):1059-1069

[38] Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? 
Review on vitrification. Reproductive Biomedicine Online. 2006;12(6):779-796

Cryopreservation Biotechnology in Biomedical and Biological Sciences102



[39] Vajta G et al. Vitrification in assisted reproduction: Myths, mistakes, disbeliefs and con-

fusion. Reproductive Biomedicine Online. 2009:19(Suppl 3):1-7

[40] Rall WF. Avoidance of microbial cross-contamination of cryopreserved gametes, embryos, 
cells, and tissues during storage in liquid nitrogen. The Embryologists' Newsletter. 2003; 
6(2):1-15

[41] Pomeroy KO et al. Storage of cryopreserved reproductive tissues: Evidence that cross-
contamination of infectious agents is a negligible risk. Fertility and Sterility. 2010;94: 
1181-1188

[42] Stachecki JJ, Cohen J. S3 vitrification system: A novel approach to blastocyst freezing. 
Journal of Clinical Embryology. 2008;11:5-14

[43] Stachecki JJ et al. A new safe, simple and successful vitrification method for bovine and 
human blastocysts. Reproductive Biomedicine Online. 2008;17(3):360-367

[44] Schiewe MC. MicroSecure Vitrification for oocytes and embryos: Optimum simplicity, 
security. And cost and effectiveness combining FDA-approved products. Journal of 
Clinical Embryology. 2010;13(2):33-51

[45] Schiewe MC. The historic development and incorporation of four assisted reproduc-

tive technologies shaping today's IVF industry. Journal of Fertilization: In Vitro - IVF-
Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology. 2016;4(2):173-181

[46] Schiewe MC, Anderson RE. Vitrification: The pioneering past to current trends and per-

spectives of cryopreserving human embryos, gametes and reproductive tissues. Journal 
of Biorepository Science for Applied Medicine. 2017;5:1-12

[47] Vajta G et al. Sterile application of the open pulled straw (OPS) vitrification method. 
Cryo Letters. 1998;19:389-392

[48] Isachenko V et al. Vitrification of human laser treated blastocysts within cut standard 
straws (CSS): Novel aseptic packaging and reduced concentrations of cryoprotectants. 
Cryobiology. 2007;54(3):305-309

[49] Vanderzwalmen P et al. Vitrification of human blastocysts with the hemi-straw carrier: 
Application of assisted hatching after thawing. Human Reproduction. 2003;18(7):1504-1511

[50] Vanderzwalmen P et al. Aseptic vitrification of blastocysts from infertile patients, egg 
donors and after IVM. Reproductive Biomedicine Online. 2009;19(5):700-707

[51] Schiewe MC, Fahy GM. Validation of a simple and effective sterile vitrification system 
for embryos. Fertility and Sterility. 2008;90(Suppl 1):S288

[52] Schiewe MC et al. Validation of microSecure vitrification (muS-VTF) for the effective 
cryopreservation of human embryos and oocytes. Cryobiology. 2015;71(2):264-272

[53] Schiewe MC et al. Modified MicroSecure Vitrification: A safe, simple and highly effective 
cryopreservation procedure for human blastocysts. Journal of Visualized Experiments. 
2017;121:e54871

Vitrification: Fundamental Principles and Its Application for Cryopreservation of Human…
http://dx.doi.org/10.5772/intechopen.79672

103



[54] Hashimoto S et al. A closed system supports the developmental competence of human 
embryos after vitrification. Journal of Assisted Reproduction and Genetics. 2013;30: 
371-376

[55] Castello D et al. Pre-clinical validation of a closed surface system (Cryotop SC) for the 
vitrification of oocytes and embryos in the mouse model. Cryobiology. 2018;81:107-116

[56] Schiewe MC et al. Liquid nitrogen vapor sealing of straw containers can be unsafe and 
detrimental to embryo survival. Austin Journal of Reproductive Medicine & Infertility. 
2016;3:1038-1041

[57] Schiewe MC. Quality control factors influencing the successful and reliable implemen-

tation of oocyte and embryo vitrification. In: Marco-Jimenez F, Akdemir H, editors. 
Cryopreservation in Eukaryotes. Rijeka, Croatia: InTech; 2016

[58] Nagy ZP et al. Clinical evaluation of the efficiency of an oocyte donation program using 
egg cryo-banking. Fertility and Sterility. 2009;92(2):520-526

[59] Cobo A et al. Use of cryo-banked oocytes in an ovum donation programme: A prospec-

tive, randomized, controlled, clinical trial. Human Reproduction. 2010;25(9):2239-2246

[60] Goldman KN et al. Oocyte efficiency: Does live birth rate differ when analyzing cryopre-

served and fresh oocytes on a per-oocyte basis? Fertility and Sterility. 2013;100(3):712-717

[61] Zhu D et al. Vitrified-warmed blastocyst transfer cycles yield higher pregnancy and 
implantation rates compared with fresh blastocyst transfer cycles--time for a new 
embryo transfer strategy? Fertility and Sterility. 2011;95(5):1691-1695

[62] Grifo JA et al. Single thawed euploid embryo transfer improves IVF pregnancy, miscar-

riage, and multiple gestation outcomes and has similar implantation rates as egg dona-

tion. Journal of Assisted Reproduction and Genetics. 2013;30(2):259-264

[63] Schoolcraft WB, Katz-Jaffe MG. Comprehensive chromosome screening of trophecto-

derm with vitrification facilitates elective single-embryo transfer for infertile women 
with advanced maternal age. Fertility and Sterility. 2013;100(3):615-619

[64] Whitney JB, Schiewe MC, Anderson RE. Single center validation of routine blastocyst 
biopsy implementation. Journal of Assisted Reproduction and Genetics. 2016;33(11): 
1507-1513

[65] Gordon C et al. Patients of advanced maternal age should only transfer a single euploid 
blastocyst. Journal of Reproductive Endocrinology & Infertility. 2018;4(2):1-4

[66] Schiewe MC et al. Comparative assessment of human blastocyst resiliency to vitrifica-

tion solution toxicity and osmotic stress associated with re-vitrification (rVTF). Human 
Reproduction. 2016 (ESHRE Meeting: Helsinki);31(Suppl):i212-i213 (P-198)

[67] Practice Committee of the American Society for Reproductive Medicine. Mature oocyte 
cryopreservation: A guide. Fertility and Sterility. 2013;92:520-526

Cryopreservation Biotechnology in Biomedical and Biological Sciences104



[68] Forman EJ et al. Oocyte vitrification does not increase the risk of embryonic aneuploidy 
or dimish the implantation potential of blastocysts created after intracytoplasmic 

sperm injection: A novel, paired randomized controlled trial using DNA fingerprinting. 
Fertility and Sterility. 2012;98(3):644-649

[69] Chamayou S et al. The accumulation of vitrified oocytes is a strategy to increase the 
number of euploid available blastocysts for transfer after preimplantation genetic test-

ing. Journal of Assisted Reproduction and Genetics. 2017;34(4):479-486

[70] Gook DA, Edgar DH. Human oocyte cryopreservation. Human Reproduction Update. 
2007;13(6):591-605

[71] Gardner DK, Sheehan CB, Rienzi L, et al. Analysis of oocyte physiology to improve 
cryopreservation procedures. Theriogenology. 2007;67:64-72

[72] Jones A et al. Cryopreservation of metaphase II human oocytes effects mitochondrial 
membrane potential: Implications for developmental competence. Human Reproduction. 
2004;19(8):1861-1866

[73] Hosseini SM, Nasr-Esfahani MH. What does the cryopreserved oocyte look like? A 
fresh look at the characteristic oocyte features following cryopreservation. Reproductive 
Biomedicine Online. 2016;32:377-387

[74] Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of 
gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. 
Human Reproduction Update. 2015;21(2):209-227

Vitrification: Fundamental Principles and Its Application for Cryopreservation of Human…
http://dx.doi.org/10.5772/intechopen.79672

105




