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Abstract

The wavefield of Lamb waves is yielded by the feature of plate-like structures. And many
defects imaging techniques and intelligent recognition algorithms have been developed
for defects location, sizing and recognition through analyzing the parameters of received
Lamb waves signals including the arrival time, attenuation, amplitude and phase, etc. In
this chapter, we give a briefly review about the defects imaging techniques and the
intelligent recognition algorithms. Considering the available parameters of Lamb waves
signals and the setting of detection/monitoring systems, we roughly divide the defect
location and sizing techniques into four categories, including the sparse array imaging
techniques, the tomography techniques, the compact array techniques, and full wavefield
imaging techniques. The principle of them is introduced. Meanwhile, the intelligent rec-
ognition techniques based on various of intelligent recognition algorithms that have been
widely used to analyze Lamb waves signals in the research of defect recognition are
reviewed, including the support vector machine, Bayesian methodology, and the neural
networks.

Keywords: Lamb waves, plate, defect imaging techniques, intelligent detection algorithm,
structural integrity evaluation

1. Introduction

The propagation characteristic of Lamb waves is yielded by the state of plate-like structures.

Defect scattering waveforms are generated as the interaction between Lamb waves and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



defects, and that may be contained in received Lamb waves signals during the Lamb waves

structural integrity evaluation. To clearly show out the state of the structures, many kinds of

defect imaging and recognition techniques are proposed for analyzing the change of the signal

parameters based on the settings of detection/monitoring systems during the past decades. In

laboratory and practical field applications of Lamb waves based structure integrity evaluation,

the detection/monitoring systems have two basic setting strategies. Firstly, Lamb waves signals

are emitted and sensed at relatively small number of spatially distributed position by trans-

ducers that have the same or different transduction mechanisms. These positions are maybe

distributed in sparse (adjacent transducer spacing is larger than the largest wavelength of

signals) or compact (adjacent transducer spacing is shorter than the shortest wavelength of

signals) array forms. Collaborative with different signal excitation and detection strategies,

signal processing techniques are developed for integrity detection/monitoring in the whole

structure. The other strategy is a full-scale scanning of the surface of structures with laser

ultrasonic systems, air-coupled scanning systems, to obtain the full wavefield of Lamb waves.

On the basis of the above detection/monitoring system setting strategies, Lamb waves signals

used for damage detection/monitoring are obtained. Then, signal processing techniques are

adopted to analyze the change of signal parameters to extract the damage information such as

the amplitudes, velocity, phase, frequency, etc. Finally, defect influence maps and intelligent

recognition models that indicating defect information are achieved with imaging and recogni-

tion techniques.

In this chapter, the defect imaging techniques and intelligent recognition techniques are briefly

reviewed. Considering the settings of detection/monitoring system, we roughly divide the

defect imaging algorithms into four categories: spare array imaging techniques, tomography

techniques, compact array imaging techniques, and full wavefield imaging techniques. The

basic principle of them is introduced in Section 2. In Section 3, the intelligent recognition

techniques used to process Lamb waves signals and defect feature recognition are introduced.

Finally, a short summary and conclusion are provided.

2. Defect imaging techniques

When a set of Lamb waves signals are received at spatially distributed positions, the tech-

niques map the received time-domain signals that have or have not been processed with the

signal optimization techniques into a 2D or 3D space-domain based on the ToF or beam

directivity for defect location (sizing are termed the defect imaging techniques). Considering

the distribution of the signal received position, we roughly divide these techniques into four

categories: sparse array imaging techniques, tomography techniques, compact array imaging

techniques, and full wavefield imaging techniques.

2.1. Sparse array imaging techniques

In a sparse array, the adjacent transducers are far separated from each other that provide

higher coverage with fewer transducers at the cost of imaging resolution. Discrete ellipse
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imaging technique [1, 2] and the hyperbola imaging technique [3] are ToF imaging algorithms

and map the amplitude information of scattering signals to elliptical trajectory and hyperbola

trajectory, respectively. Their calculation formulas are expressed as

tij ¼
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In the process, the previously recorded baseline data are subtracted from the field-sensing

signals. Then, the pixel intensity is determined by calculating the amplitude information

contained in the combined backward signals. Both of the algorithms have full summation form

and full multiplication form and can be expressed as
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where N is the number of transducers, sij is the amplitude information of scattering signals, tij
is the arrival time of scattering signals. The quality of image produced improves rapidly with

the increase of the transducer number.

The window-modulated ellipse imaging algorithm is proposed in Ref. [4]. Many auxiliary

signal processing techniques are developed for enhancing the imaging performance, such as

the scattering signal normalization to eliminate the different path sensitivity to damage and

extract damage information with the complex Morlet wavelet coefficient [5], the temperature

effect compensation technique to ensure the detection quality [6], consideration of the velocity

directionality [2], and damage information extraction with statistical method [7, 8].

2.2. Tomography techniques

Tomography technique works with specific designed transducer array to reconstruct a physi-

cal quantity in a cross-sectional area by analyzing Lamb waves attenuation, velocity, and mode

conversion from the projection of the quantity in all directions. There are three classical

transducer configuration existed in tomographic detection, parallel tomography, fan beam

tomography, and crosshole tomography [9]. Figure 1 plots the typical spatial distributions of

transducers working with different tomography mechanisms in which the parallel array work-

ing with a parallel tomography at 0�, circular array working with fan beam tomography at 0�,

and square array working with crosshole tomography are shown in Figure 1(a), (b) and (c),

respectively. In the parallel array, the transducers are scanned along parallel lines. Once the

pitch-catch measurements for each ray in an individual orientation have been taken, the

sample is rotated by a fixed amount and the measurement is repeated. The ray density is
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uniform for parallel projection tomography within the scanning region that is critical to the

quality of the reconstruction. Crosshole configuration is a fast and practical alternative to the

parallel-projection scheme in which transducers surround the detection zone to improve the

ray density. The classical tomographic image reconstruction algorithms have the probabilistic

reconstruction algorithms, transform methods, and iteration-based algorithms.

The probabilistic reconstruction algorithms (PRAs) are processed with the probabilistic statistical

techniques to analyze the difference among the parameters for all the rays, including the ToF,

waveforms, and energy [10]. The PRA has the flexibility in array geometry selection that can

realize good reconstruction quality in fast speed. In the analysis, the ray theory needs to satisfy

two validity criteria: the geometry size of the defect must be larger than the wavelength and

larger than the width of the Fresnel zone. The waveform overlapping caused by reflection echoes

of multidefects may make the TOF calculation inaccurate and fail the ray theory. The probabilis-

tic inspection of damage (RAPID) [11, 12] method is a typical PRA that has been studied in Lamb

waves based structure integrity evaluation in which variable shape factor is used for irregular

shape defect imaging [13]. Keulen et al. [14] introduced the damage progression history into

RAPID for composite structure detection. Sheen et al. [15] modified the shape factor, β, of RAPID

algorithm to quantify a defect area. The expressions of the RAPID algorithm are

IRAPID x; yð Þ ¼
X
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where IRAPID x; yð Þ is the pixel value in the imaging zone, r is the zero-lag cross correlation

between the baseline data and the received signals, Wn is the weighted distribution function, n

Figure 1. Typical spatial distributions of transducers working with different tomography mechanisms. (a) Parallel array

working with a parallel tomography at 0�, (b) circular array working with fan beam tomography at 0�, and (c) square

array working with crosshole tomography.
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is the path number of the pitch-catch transducers numbered as i and j, respectively, Rij
n x; yð Þ is

related to both the distance from point (x, y) to the two transducers for excitation (xi, yi) and

sensing (xj, yj) and the distance between the two transducers, β controls the size of the ellipse

and β > 1. If β is too small, then artifacts will be introduced. If it is too large, the resolution will

be lost. Usually, β is setting around 1.05 [16]. The technique for relative relationship calculation

algorithms can be used to acquire the value of r, such as correlation coefficient method, time

reversal method, baseline subtraction method, etc. More damage index calculation methods

are reviewed in [17].

Filtered back-projection (FBP) combines the back-projection and the filter based on the Radon

transform and Fourier slice theorem. Only with a circular sensor array, FBP method has

efficiency of reconstruction and incomplete datasets, and unfortunately is sensitive to noise. It

is essential to form a complete set of projections from many directions. Its formulas can be

expressed as

IFBP x; yð Þ ¼

ð2π
0

ðþ∞
-∞

F ω;θð Þei2πω xcosθþysinθð Þωdωdθ ¼

ð
π

0

Qθ tð Þdθ, (6)

Qθ tð Þ ¼

ðþ∞
�∞

F ω;θð Þei2πωt ωj jdω, (7)

where IFBP(x,y) is the pixel value in the imaging zone, F(ω,θ) is the spatial Fourier transform of

a line integral of the attenuation f(x,y) in a polar coordinate system o-θ, Qθ(t) is called a filtered

projection because it represents a spatial frequency filtering operation, in which the filter

response is |ω|. Every point (x,y) in the image plane is contributed by a value Qθ(t) from all

direction θ. For a given direction θ, the function Qθ(t) is a constant on the line AB, where t is

fixed as shown in Figure 2(a). This is equivalent to saying that the filtered projection function

Qθ(t), which is obtained from angle θ and position t, is back-projected along the initial projec-

tion direction over the image plane.

Figure 2. Principle of fan beam projection and algebraic reconstruction technique. (a) Principle of the filtered back-

projection method and (b) situation of the ith path crossing the specimen.
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The key to FBP tomographic image is the Fourier slice theorem that relates the measured

projection data to the 2D Fourier transform of the object cross section. Wright et al. [18] used

the FBP technique to image defects in isotropic and anisotropic plates of different materials

using air-coupled Lamb wave tomography. Mokhtari et al. [19] proposed a polygon recon-

struction technique for polygonal damage shape reconstruction. First, the projections (Radon

transform) of the damaged region are generated from a small number of angles with the aid of

beamforming method. Then, the damaged region is modeled by a polygon, which its optimal

number of vertices is estimated using the minimum description length principle. Finally, using

the polygon reconstruction technique, the coordinates of the vertices are determined. While in

practice, it is not possible to measure a large number of projections in FBP that may induce the

aliasing distortions by insufficiency of the input data, necessary for the transform-based tech-

niques to produce highly accurate results. Researchers developed the interpolated FBP in

which interpolations with respect to sample angle and projection angle based on limit mea-

surements are used to generate the required projection data for the number of sampled grid

values necessary for displaying a well-balanced reconstructed image. Meanwhile, it should

constrain the projection data at a source point to zero when using the interpolation, rather than

using extrapolation to generate projection data. Figure 2(a) plots the principle of the filtered

back-projection method [20]. The formula, Ifan_FBP x; yð Þ, of the fan beam-based FBP can be

expressed as

Ifan_FBP x; yð Þ ¼
2π

M

X

M

i¼1

Qβi γð Þ

L2 x; y; βi
� � , (8)

where Qβi(nα) is the filtered projection along the fan, M is the number of projections, and L is

the distance from the transmitter to the point (x,y). βi is the ith projection angle and γ is the

angle of the fan beam ray passing through the point (x,y).

The algebraic reconstruction technique (ART) starts from an initial guess for the reconstructed

object and then performs a sequence of iterative grid projections and correction back-

projections until the reconstruction has converged. Its formulae are expressed in Eqs. (9)–(11).
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where Ai�j represents the weight of ith path in jth grid, x represents the image results for each

cell, and bi � 1 represents the change of signal feature (correlation) for each path. X(i,j) is the
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attenuation coefficient for ith path in jth grid, and the Lij represents the real length for ith projected

to jth grid. Here, m represents the number of paths and n represents the number of grids.

In the ART, a weight matrix is constructed as a rectangular array whose size is equal to the

number of paths multiplied by the number of grids. From the projections (measured data) and

the weight matrix (created from sensor locations and ray geometry), the field value that maps

the state of the inspection zone (correlation coefficient) is obtained using the ARTmethod. The

iterative solution to the reconstruction problem in ART is constructed by Ladas and Deveaney

[21]. The iteration operation of Eq. (9) is expressed as Eq. (12) [23] in which one equation is

used in each step, and an iteration consists of m steps.

xk,0 ¼ xk

xk, i ¼ xk, i�1 þ λk
bi � aixk, i�1

aik k
2
2

, i ¼ 1, 2,⋯, m

xkþ1 ¼ xk,m

(12)

Though compared with the FBP technique, ART has many advantages including better noise

tolerance and better handling of the insufficiently distributed projection datasets that are

induced by the spare and nonuniformly distributed projection data, it has slow speed due to

iteration process. Wang et al. [22] used the ART to locate and quantify the corrosion damage at

the edge of holes. In order to make the tomographic image describe the real condition of the

damage, a homogenization method was designed to make the image smoother. Improved

tomograms as a result of ART consider the anisotropic and attenuation characteristics of

composite plates [23]. The technique based on the similarity theory is the simultaneous itera-

tive reconstruction technique (SIRT). Malyarenko et al. [24] described the basic principle of

SIRT for Lamb waves tomography that working with travel time data. In the research, the

bend ray routines of a moderately scattered wavefiled was transformed into straight routines

with a ray bending correction technique. The output image from the present straight ray

algorithm serves as an input background for the ray tracing routine. The curved-ray ART then

reconstructs the updated image and feed the next iteration until the desired quality or asymp-

totic behavior is observed. Miller et al. [25] used SIRT to process the multiple-mode Lamb

wave signals for feature extraction of corrosion thinning for autonomous classification of flaw

severity. This technique also termed diffraction tomography (DT) technique incorporates scat-

tering effect into tomographic algorithms in order to improve the image quality and resolution.

Mode conversion frequency occurs on defect boundaries, and dispersion makes all quantities

frequency dependent.

Figure 3 plots the stages of accuracy thickness mapping tomography algorithms. Inhomoge-

neity objects are as small as 5% of the background; multiple scattering can introduce severe

distortions in multicomponent objects [26]. The hybrid algorithm for robust breast ultrasound

tomography (HARBUT) uses the low-resolution bent-ray tomography algorithm as the back-

ground for DT [27] in which bent-ray tomography can be applied initially to obtain a low-

resolution estimate of the velocity field; this then forms the background for the DT method

using the technique outlined above. Meanwhile, the subtraction is not necessary to obtain a
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good reconstruction, simplifying the process and avoiding these errors. The object function in

HARBUT is divided into two components, the known background component Ob and the

perturbation component Oδ. Since there is no need to run forward models, the speed of the

algorithm is also improved. While the traditional HARBUT relies on having a sufficiently

accurate background reconstruction that should satisfy the Born approximation assumption,

iterating HARBUT uses an existing HARBUT reconstruction as the background for another

HARBUT stage in place of bent-ray tomography, as illustrated in Figure 3(a). At each step, Ob

becomes more accurate, minimizing Oδ and allowing HARBUT to produce more accurate

velocity maps. Through iteration operation of the HARBUT, small and high contrast defects

are successfully imaged. A Gaussian filter is used to smooth the background before the next

iteration, which is a form of regularization. This filter aims to remove as many of the artifacts

from each iteration as possible, while maintaining the true reconstruction values. Full wave-

form inversion (FWI) technique is first developed in geophysics for seismic wave imaging in

which the process also based on a serious of iteration operation. Rao et al. [28] introduced the

FWI in Lamb waves tomography for corrosion mapping. The stages for FWI algorithm is

plotted in Figure 3(b) in which a numerical forward model is used to predict the scattering of

Figure 3. Stages of accuracy thickness mapping tomography algorithms. (a) HARBUT. (b) FWI algorithm.
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Lamb waves through corrosion defects and an iterative inverse model to reconstruct the

corrosion profile. The aim of the tomography is to reconstruct the object function, which is a

mathematical representation of the defect and is formulated in terms of velocity. The FWI

algorithm proceeds from a starting velocity model to refine the velocity model in order to

reduce the residual wavefield between the predicted data by the current model and the

observed data from FE simulations or experiments. The predicted data are obtained by using

frequency-domain finite difference method. It overcomes the limitation imposed by ignoring

crucial low-frequency effects in travel time tomography. The FWI can obtain a resolution of

around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling

data, and about 1.5�2.0 wavelengths from the elastic modeling data. The defect abrupt change

in the wall thickness has been shown to decrease the reconstruction error of small defects

compared to the smoothly varying thickness, for larger defects with sharper change in thick-

ness, they are more likely to lead to overestimation in depth [29]. FWI allows higher order

diffraction and scattering to be considered in its numerical solver, thus it has the potential to

achieve more accurate inversion results, especially when multiple defects exist.

2.3. Compact array imaging techniques

Phase array (PA) technique and the synthetic aperture (SA) technique are widely performed

based on the compact arrays in which the spacing between the adjacent transducers is shorter

than the wavelength. Figure 4 plots the typical compact arrays used for Lamb waves based

structure integrity evaluation, such as the linear-phased arrays, circular, square, spiral, and

star-shaped arrays [30]. During detection or monitoring, when one of the transducers used as

actuator, Lamb waves signals are captured by all the rest transducers, then next transducer is

chosen and used as actuator and capture the signal data until all the transducers have been

Figure 4. Typical compact arrays used for Lamb waves based structure integrity evaluation. (a) Linear, (b) cross-shaped,

(c) rectangular, (d) star-shaped, (e) circular, and (f) spiral.
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used for Lamb waves emitting. Through analysis of the amplitudes and phase parameters of

the received Lamb waves signals, the imaging is performed in a polar coordinate systemwhere

each pixel can be defined with its angular position and the distance from the center.

Total focusing method (TFM), also named as delay-and-sum algorithm, is processed with the

amplitude information of signals. Using steered and possibly focused beam improves angular

resolution in ultrasonic image but it requires scanning of the full structure. It is sensitive to the

wavefield profile, signal-to-noise ratio (SNR), and the dispersion nature of Lamb waves [31].

Meanwhile, TFM suffers from large side lobes that result from overlapping echoes that result

in the back-propagation. Adaptive imaging methods [32], where the weights are adjusted for

each pixel, can offer a significant improvement to the side lobe behavior of TFM. Vector total

focusing method, phase coherence factor (PCF), and the sign coherence factor (SCF) use signal

phase information to perform the correction action and defect location. Besides achieving the

main goal, these methods obtain improvements in lateral resolution and SNR. Implementation

of the SCF technique is quite straight forward, operating in real-time, and can be added to any

virtually existing beam former to improve the resolution [33]. Compared with amplitude-

based imaging techniques, such as the TFM, the phase information-based techniques are no

sensitive to Lamb waves dispersion. For enhancing the defect imaging performance, many

imaging combination strategies are proposed, including the combination of the TFM and

various polarity images or SCF for enhancing damage detection [34–36], the combination of

the TFM, and the multiapodization polarity (MAP) technique [36, 37]. The formulas of the

TFM and the SCF algorithms are expressed in Eqs. (13) and (14), respectively.

ITFM x; yð Þ ¼
1
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X
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J¼1
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� �

, (13)

where N is the number of a linear array, aij corresponds to an apodization applied to individual

elements to control some characteristics of the acoustic beam, such as main lobe width and side

lobe levels, uij(t) is the amplitude time domain data from all transmitter and receiver j; τij(x, y)

is the ToF from the transmitter i to the receiver j and passes the point (x, y).
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(14)

where σ is the standard deviation of the polarity bij(t) of the aperture data; bij(t) is the polarity

or algebraic sign of the aperture data.

Minimum variance distortionless response (MVDR), also known as Capon’s method, divides

the signals into several subspaces. It can minimize the mean output power of the noise and

interference. Their weights are determined by finding the vector to suppress undesired modes

and incident angles [38]. One challenge associated with MVDR imaging is sensitive to the

assumed look direction, which depends upon possibly unknown scattering characteristics [33].

Through adding a diagonal loading term, αI, to S
_

ωð Þ, to obtain a non-singular S
_

ωð Þ, in which α

is proportional to the power of the received signals [39]. The incident angle and wavenumber of
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the signals are acquired through searching an array steering vectors that is orthogonal to the

noise subspace. The MUSIC algorithm can provide the location or the direction-of-arrival of the

active sources in the field with its high spatial resolution capability. Han et al. [40] used the time-

frequency MUSIC [41] beamforming procedure to eliminate the effects of the direct excitation

signals and the boundary-reflected wave signals. It is better than TFM for adjacent defect

imaging when the signal-to-noise ratio is lower than 20dB [42]. Figure 5 plots the comparison of

the flow chart of the MVDR and the MUSIC algorithm.

Decomposition of the time-reversal operator (DORT) refocuses the wave energy back on

multiple scatters, even for those that are neither small nor perfectly resolved. The whole DORT

process is described in detail in Ref. [43]. DORT algorithm has the capability of individually

imaging these scatters by back-propagating the eigenvectors obtained from eigenvalue decom-

position of the time-reversal operator, providing separate information about each scatterer.

When the scatterers are relatively large compared to the excitation wavelength, a single

scatterer may generate multiple significant eigenvalues. In this case, the back-propagation of

the eigenvectors can provide a certain amount of information about the relatively large scat-

terers. Time-reversal multiple signal classification algorithm was originally proposed by

Schmidt [44]. Lehman and Devaney [45] developed a combined DORT and MUSIC algorithm,

termed DORT-MUSIC, to image multiple buried cylinders in the seismo-acoustic application.

He et al. [46] adopted the DORT-MUSIC in space-frequency domain for separating imaging

from both the actuator-to-damage and the sensor-to-damage. The dispersion, multimode, and

multireflection nature of Lamb waves have serious influence on the imaging performance of

DORT, MUSIC, and DORT-MUSIC.

Figure 5. Comparison of the flow chart of the MVDR and the MUSIC algorithm.
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Synthetic aperture focusing technique (SAFT) focuses the acoustic field along the 1D linear

array toward the location of scatterer based on the angular and the distance information. It is

first proposed for body waves defect detection. Sicard et al. [47] presented an F-SAFT algo-

rithm for Lamb waves imaging in which the dispersion nature of Lamb waves is considered.

Furthermore, multidefects detection in an isotropic plate was realized. Other algorithms for

far-field defect imaging based on the wavenumber analysis have the spatial-wavenumber filter

(SWF) [48–50] and wavenumber filtering algorithm [51]. Ren and Qiu [49, 52] proposed a

scanning spatial-wavenumber filter-based diagnostic imaging method for online characteriza-

tion of multi-impact event. The procession does not rely on any modeled or measured

wavenumber response. The formulae of SCFT and the SWF are expressed as Eqs. (15)–(18),

respectively.

ISCFT x; dð Þ ¼ ifft
X

f ∈Ω

s kx; d; fð Þ

0

@

1

A, s kx; d; fð Þ ¼ fft u x; tð Þð Þexp 2πdi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2

cp f � 2hð Þ=2
� �2

� k2x

v

u

u

t

0

@

1
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ISWF k; trð Þ ¼
X

u x; trð Þ⊗ϕ xð Þ










 ¼
X

4π2A trð Þδ k� kacosθað Þδ k� kacosθð Þ










, (16)

A trð Þ ¼ u trð Þeiωtre�ikala , (17)

ϕ xð Þ ¼ eikax1cosθ; eikax2cosθ;…; eikaxmcosθ;…; eikaxMcosθ
� �

, (18)

where ISCFT is the imaging result of SAFT, u(x,t) is the spatial response acquired by the linear

array, d is the propagation distance, kx is the wavenumber in x direction; ISWF is the imaging

result of the SWF, u(x,tr) is the response acquired at time tr, ⊗ indicates the convolution opera-

tion, ϕ(x) is the original spatial-wavenumber filter, a is the number of the transducer, θa, la are the

angle and the distance of the damage respectively, ka is the wavenumber at direction θa.

2.4. Full wavefield imaging techniques

With the aid of the laser ultrasonic system, the strategy used for capturing the full propagation

wavefield relies on experiment settings in which one transducer at a fixed position and the

second transducer as a movable point, actuator-sensor synchronization and signal registration

at one point, in a repetitive manner at various locations. The time delay is introduced between

consecutive wave excitations in order to wait until the wave fully attenuates. Researchers

adopted the compressive sensing algorithm [53, 54] or combined binary search and com-

pressed sensing [55] to improve the efficiency of full wavefield data acquisition. Once time-

space wavefield data are acquired, data analysis can be implemented in time-space domain

and frequency-wavenumber domain. The original signal process techniques are used for

studying the amplitude information to observe the wave reflection with the root mean square

and cumulative kinetic energy methods. Moreover, advanced signal processing techniques

with 2D Fourier transform [44], such as wavenumber filtering, frequency-wavenumber analysis,

space-frequency-wavenumber analysis, local wavenumber domain analysis, give the possibility
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of damage size estimation [56, 57]. Mode separation can be performed similarly for reflection

separation [58].

The imaging techniques based on time-domain signal process have the integral mean value

(IMV), the root mean square (RMS), and the weighted root mean square (WRMS) [59] that can

be expressed as Eqs. (19)–(22), respectively.

IMV u tð Þð Þ ¼
1

t2 � t1

ðt2

t1

u tð Þdt ≈
1

n

X

n

k¼1

uk, (19)

RMS u tð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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WRMS u tð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, (21)

wk ¼ w tkð Þ ¼ km, m ≥ 0 (22)

where u(t) is the received signals at n points. For a discrete signal ur=u(tr) sampled at n points

with time intervals Δt, following relation can be written as uk=u(tk), tk=t1+(k-1)Δt, Δt=(t2-t1)/

(n-1), k=1,2,…,n. w(t) is a weighting factor, which decreases the importance of the time samples

closer to the beginning of the sampling process and increases the importance of the samples

closer to its end. t1 and t2 denote the beginning and the end of the sampling process, respec-

tively. The weighting factor wk=k (m=1), the importance (weight) of particular time samples,

increases linearly with time t; this importance (weight) increases as a square function of time t

when the weighting factor is wk=k
2 (m=2).

The effectiveness of the applied algorithms is strongly dependent on the calculation parame-

ters (weighting factor and time window), excitation frequency, and damage types. The exten-

sion of the time window leads to the increase in differences in the WRMS values between the

damaged and undamaged areas. The constant weighting factors do not provide efficient

results due to the high influence of the incident wave at excitation point. The statistical analysis

of the calculated WRMS values was adopted to successfully supplement the visual assessment

of the defect imaging [60].

The multidimensional Fourier transform maps the time-space domain signals into the

frequency-wavenumber domain and realizes defect imaging; the formula of the transform can

be expressed as

I ω; kx; ky
� �

¼

ð

∞

�∞

ð

∞

�∞

ð

∞

�∞

u x; y; tð ÞW x� a; y� bð Þe�i ωtþkxxþkyyð Þdydxdt, (23)

where u(x,y,t) is the full wavefield data; a and b are the coordinates of the window function in x

and y dimension; W is the window with various of types, including rectangle window, Gauss

window, and Hanning window. For a Hanning window with a diameter of Dr, W can be

expressed as
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The wavenumber adaptive image filtering is introduced in reference [61] and further expanded

in reference [62] in which the data are transformed from Cartesian coordinates to polar

coordinates. In the frequency-wavenumber domain, the filtering is applied to separate the

different modes or forward and backward waves, as shown in Eq. (25).

~S ω; kr;θið Þ ¼ I ω; kr;θið ÞW kr;ωð Þ, (25)

where ~S ω; kr;θlð Þ is the separating waves in frequency-wavenumber domain, I(ω,kr;θi) is the

frequency-wavenumber result of the u(t,r;θ) in polar coordinates; θi is the specific angle index;

W(kr,ω) is a 2D window function operating as a filter in frequency-wavenumber domain.

Finally, the filtered data are successively transformed back to the time domain in polar coordi-

nates and Cartesian coordinates.

Harley et al. [63] presented a baseline-free, model-driven, statistical damage detection, and

imaging framework for guided waves measured from partial wavefield scans in which the

sparse wavenumber analysis, sparse wavenumber synthesis, and data-fitting optimization to

accurately model damage-free wavefield data. Kudela et al. [64] combined the time-distance

mapping technique and novel Lamb waves focusing technique to realize crack detection.

Meanwhile, the temperature effect is compensated by using the temperature-dependent dis-

persion curve. Pai et al. [65] presented a dynamics-based methodology for accurate damage

inspection of thin-walled structures by combining a boundary effect evaluation method for

space-wavenumber analysis of measured operational deflection shapes and a conjugate-pair

decomposition method for time-frequency analysis of time traces of measured points. Li et al.

[66] proposed a correlation filtering-based matching pursuit signal processing approach to

realize precise value of time of flight and locating and sizing the delamination in composite

beams. Through analysis, the reflection intensity of Lamb waves from an elliptical damage

realized defect sizing [67]. Perelli et al. [68] combined the wavelet packet transform and

frequency warping to generate a sparse decomposition of the acquired dispersive signal.

Tofeldt et al. [69] presented a 2D array and wide-frequency bandwidth technique for Lamb

waves phase velocity imaging. Through a discrete Fourier transform, a spectral estimate is

obtained for the 2D array in the frequency-phase velocity domain. The variation of the phase

velocity is then mapped using a stepwise movement of the 2D array within the complete

measurement domain.

3. Intelligent recognition techniques

There are mainly two steps for defect recognition in structure integrity evaluation, i.e.,

feature extraction and classifier design. Time-frequency and time-scale analysis techniques
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are adopted for feature extraction, including dynamic wavelet fingerprinting, wavelet trans-

form (CWT, DWT, and wavelet packet decomposition), and statistical features [70]. While

the processing of the feature extraction with these techniques may be very time consuming

[71] and cannot ensure the feature data are optimally suitable for mapping the state of

structures. Additionally, overtrain may be induced with the available dataset for these

methods. So, many techniques have been developed to optimize the feature extraction

process. The principal component analysis (PCA) is one of the most widely used linear

mapping techniques for feature reduction [72, 73]. Nonlinear mapping techniques reduce

dimensionality following the criterion which minimizes the difference between interpoint

distances of the initial and detection/monitoring feature space, including Sammon mapping,

self-organizing maps, and the generative topographic maps [74]. In the following part of this

section, we focus on the introduction of the pattern recognition model that attracted rela-

tively more attention in structure integrity evaluation, such as support vector machine,

Bayesian methodology, and neural networks.

3.1. Support vector machine

Support vector machine (SVM) is a supervised learning classifier that uses a kernel function

to form a hypothesis space in a high-dimensional feature space for linear and nonlinear

classification. The principle schematic diagram of support vector machine is plotted in

Figure 6. The kernel function may be a linear, polynomial, sigmoid, or custom kernels. Given

a set of training examples that are belonging to two categories, an SVM training algorithm

builds a model that assigns the examples to one category or the other. In this case, the SVM is

a nonprobabilistic binary linear classifier that is not common in practical application. For

nonlinear classification and regression problems, the input data are mapped to another

linearly separable space using a nonlinear kernel function ϕ and the normal linear SVM.

The least squares support vector machine (LS-SVM) is an improved variant of SVM. It can

increase the convergence rate for complex problems [75]. The general formula of the LS-SVM

can be expressed as

Figure 6. Principle schematic diagram of support vector machine. (a) Linearly separable space with linear function and

(b) linearly separable space with nonlinear function.
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y xð Þ ¼ wTϕ xð Þ þ b, (26)

where the term ϕ(�) is a nonlinear mapping function, w∈Rn and b∈R are the mode parame-

ters.

SVM is a robust classifier in the existence of noise and more computational efficient than

artificial neural network (ANN) [76]. Das et al. [77] developed an one-class SVM algorithm to

characterize and classify different damage states in composite laminates by measuring the

change in the signature of the Lamb waves that propagates through the anisotropic media

under forced excitations. Park et al. [78] used SVM to enhance the damage identification with

the extracted damage features. In the study, multifeatures were extracted for mapping the state

of structures, including TOF, the root mean square deviations (RMSD) of the impedances, and

wavelet coefficients (WC) of Lamb waves. Then, in Ref. [79], the same authors proposed a two-

step support vector machine (SVM) classifier for railroad track damage identification that

forms optimal separable hyperplanes. In the study, a two-dimensional damage feature space

was built with the root mean square deviations (RMSD) of impedance signatures and the sum

of square of wavelet coefficients for maximum energy mode of guided waves. In the process,

the damage detection was accomplished by the first step-SVM, and damage classification was

carried out by the second step-SVM. Sun et al. [80] adopted genetic algorithm to optimize the

LS-SVM parameters in which normalized amplitude, phase change, and correlation coefficient

were proposed to build the damage features.

3.2. Bayesian methodology

The Bayes’ theorem combines a prior belief and the observation regarding the related param-

eters through the likelihood function to update the distribution of the interested parameters in

which the model parameters u can be updated using the observation data θ, as expressed as

q uð Þ∝ p uð Þp θjuð Þ, (27)

where p(u) is the prior distribution of the model parameters u that can be a vector for multiple

parameters. p(θ|u) is the likelihood function. q(u) is the posterior distribution of updated

parameter u.

q θjx1; x2;…; xnð Þ∝ p θð Þ 1
ffiffiffiffiffiffi

2π
p

σε

� �n

� exp � 1

2

X

n

i¼1

xi �M θð Þ
σε


 �2
( )

, (28)

where M(θ) is a parameterized model describing the relationship between the signal features

and damage information. σ
ε
is the standard deviation of the error term. The posterior distri-

bution of each parameter is estimated by the samples generated with the Markov-Chain

Monte-Carlo method.

Bayesian methodology is a probabilistic detection technique that has the ability to consider the

uncertainties such as measurement uncertainty, and model parameter uncertainty in damage
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detection/monitoring. A multivariate regression model is proposed to correlate damage features,

the phase change, and normalized amplitude, to the actual crack size [81]. It is a baseline crack

size quantification model can also use for more general and complex structures. Prior distribu-

tions of model parameters are obtained using the coupon test data. The posterior distribution of

the parameters and the posterior distribution of θ in a multivariate regression model are

expressed as Eq. (28). A multilevel Bayesian framework is proposed for identifying the position

and the effective mechanical properties of the damaged layers in composite laminates [82] in

which the framework is initially applied to a set of synthetic signals with increasing levels of

noise and complexity. He et al. [83] employed the Bayesian model to determine the crack

number, and then, the Bayesian statistical framework was used to identify the crack parameters

and the associated uncertainties in beam-like structures. The proposed method is able to accu-

rately identify the number, locations, and sizes of the cracks, and is robust under measurement

noise.

Bayesian imaging method (BIM) is used to build the likelihood function using the differences

between the model predictions and the field observations. The structure is discretized into

many small cells, and each cell is assigned an associated probability of damage, such as the

location and size. Next, the overall posterior distribution of the parameters can be obtained by

combining the prior information about the parameters. The marginal posterior distribution of

each parameter is estimated by the samples generated using the Markov-Chain Monte-Carlo

method. Given the parameter samples, the probability of damage in each cell is computed

using the ratio of the number of samples falling into each cell to the total number of samples.

Following the damage probability distribution can be used to construct an image that directly

represents the damage location and size. Peng et al. [84] presented a Bayesian imaging tech-

nique to simultaneously estimate damage location and size, as well as the corresponding

uncertainty bounds. Neerukatti et al. [85] used a sequential Bayesian technique to combine a

physics-based damage prognosis model with a data-driven probabilistic damage localization

approach for effective damage localization and prognosis in complex metallic structures. Sohn

et al. [86] proposed an instantaneous damage diagnosis based on the concepts of time reversal

acoustics and consecutive outlier analysis to minimize damage misclassification without rely-

ing on past baseline data.

Gaussian mixture model (GMM) is a probability static method for characterizing uncertainties

based on unsupervised learning. This method organizes itself according to the nature of the

input data with probability distributions without any prior knowledge. The GMM has the

advantages of better robustness of uncertainties and high efficiency with lower computational

complexity with a relatively small number of model parameters. PCA is used to reduce the

dimensions of the extracted multistatistical characteristic parameters of the excited Lamb

waves, then training the damage identification system using the GMM [73]. Several statistical

characteristic parameters, including the root mean square (RMS), variance, skewness, kurtosis,

peak-to-peak (PPK), and K-factor, are extracted as the input for the GMM-processed Lamb

wave-based identification model. Qiu et al. [72] proposed an online updating Gaussian mix-

ture model (GMM), for aircraft wings par damage evaluation under time-varying boundary

conditions in which the formulas are expressed as Eqs. (29) and (30).
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where f={f1,f2,…,fk} is a random sample set composed by k independent random samples. fr
denotes a d-dimensional sample in the sample set, where fr={f1,f2,…,fd}

T and r=1,2,….,k, μi, Σi

and wi are the mean, the covariance matrix and the mixture weight of the ith Gaussian

component, respectively, and i=1,2,…C, C is the number of Gaussian components, ϕi(fr|μi, Σi)

is the probability density of each Gaussian component is a d-dimensional Gaussian function.

3.3. Neural networks

Neutral network is comprised of layouts that are built with artificial neurons, termed nodes.

These nodes in the adjacent layers are connected to each other with various of strengths (weights).

The high weights value indicates a strong connection; vice versa, it is a weak connection. Figure 7

shows the principle diagram of a three-layer neutral network in which the three-layer neural

Figure 7. Principle diagram of a three-layer neural network. (a) Three-layer neural network, (b) forward, and (c) back-

ward.
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network, the forward and the backward principles are plotted in Figure 7(a), (b) and (c), respec-

tively. There exists three types of nodes including input nodes, hidden nodes, and output nodes.

Except the input layer out, there is a transfer function in each node to transfer input data to the

connected nodes in the adjacent layout. The typical transfer function used in a neural network

classifier has the unit step (threshold), sigmoid, piecewise linear, and Gaussian. The training of

neutral networks consists of the forward propagation and the backward propagation. In the

forward propagation process, the input nodes take the feature date into the model. The informa-

tion is presented as activation values, where each node is given a value, the higher value, the

greater activation. Based on the weights, inhibition or excitation, and transfer functions, the

activation value is passed from node to node. The activation values at each node are summed.

Then, the value is modified based on its transfer function. The activation flows through the

network, through hidden layers, until it reaches the output nodes. Then, the difference between

the output value and actual value (error) modified with the backward propagation process with

gradient descent algorithm until satisfy a stop threshold. The diagnostic efficiency and precision

are highly dependent on the network architecture [87]. The traditional artificial neural networks

(ANNs) have been adopted in defect recognition such as welding defects [88], delamination in

composite structures [89], and composite plates structural health monitoring [90]. De Fenza et al.

[91] combined the ANN and the probability ellipse method to determine the location and degree

of defects in aluminum and composite plates.

Benefiting from the flexible configuration of neural networks, researcher developed many

kinds of neural networks used in structure integrity evaluation. Probabilistic neural network

(PNN) combines the Bayes decision strategy with the Parzen nonparametric estimator of the

probability density functions in which the interpretation of the neural network is in the form of

a probability density function. An accepted norm for decision strategies used to classify

patterns is that they minimize the “expected risk.” Park et al. [92] adopted the PNN and SVM

to online monitoring the state of jointed plates in which the extracted damage feature that

constructed with the ToF and the wavelet coefficient obtained from wavelet transforms of

Lamb wave signals. Kohonen neural network (KNN) has two layers, input layer and output

layer, and is used for honeycomb sandwich and carbon fiber composite structures studied in

which the amount of neuron in input layer is determined by input vector dimensions [93]. The

neurons of output layer layout form a 2D plane. In regression neural networks for pattern

recognition, a trained network produces large errors when some parts of the test pattern are

not found in the training pattern. The weight-range selection (WRS) method has a supervised

multilayer perceptron operating with one hidden layer of neurons and trained using a back-

propagation algorithm to eliminate the large errors induced by the case a test pattern not

found in the training set [94]. Anaya et al. [95] adopted an artificial immune system (AIS) and

the notion of affinity was used for the sake of damage detection and used a fuzzy c-means

algorithm is used for damage classification of an aircraft skin panel. Compared with standard

Lamb waves based methods, there is no need to directly analyze the complex time-domain

traces containing overlapping, multimodal, and dispersive wave propagation. Other kinds of

neural networks that have been studied in nondestructive testing have the recurrent neural

network (RNN) [96], deep learning network (DLN), and convolutional neural network (CNN).
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4. Summary and conclusions

In this chapter, we divided the defects imaging techniques into four categories based on the

setting of detection/monitoring system, and the basic principle of them is introduced. Three

kinds of intelligent recognition techniques that have been widely studied in Lamb waves

structural integrity evaluation are also reviewed.

1. The discrete ellipse imaging algorithm, the hyperbola imaging technique, and the tomog-

raphy imagine algorithms are processed in the detection/monitoring based on sparse

arrays in which the spacing between the adjacent transducers is larger than the wave-

length. Discrete ellipse imaging, the hyperbola imaging algorithm, and their optimal type

are processed with the defect scattering signals. The pixel intensity is drawn in an elliptical

trajectory and the hyperbola trajectory, respectively. Both of the algorithms are imaging

with the amplitude information and sensitive to the dispersion and the SNR of signals. The

imaging performance is closely related with transducer numbers and the signal resolu-

tions. In the tomography technique, the distribution of sensing points has relative regular

forms such as the parallel, square, or circular. The imaging algorithms used in the tomog-

raphy have PRA algorithms, FBP-based algorithm, the ART-based algorithms, and the

novel algorithms such as the HARBUT and FWI. With the dense ray in the detection, defect

sizing can be realized with the tomography techniques, particularly for the HARBUT, and

FWI has attractive performance in accuracy corrosion defect imaging.

2. Compact array in which the spacing of the adjacent transducers is shorter than the wave-

length that with various of shapes have been developed in Lamb waves based defects

imaging, including 1D linear array, 2D rectangular, circular, and spiral arrays. The defect

imaging algorithms based on compact arrays have PA, SA, and the full wavefield tech-

niques. The TFM, SCF, MVDR, MUSIC, SAFT-based imaging algorithms, and the SWF can

be used for full-scale scanning of the plate and realizing defect location. The TFM is an

imaging algorithm with the amplitude information that is sensitive to the dispersion

nature of Lamb waves. The phase information-based algorithms, PCF, SCF, have relatively

more robust imaging performance than TFM. Besides these algorithms, MVDR, MUSIC,

SAFT, and SWF have the potential used for baseline-free detection. The full wavefield

techniques have the ability for defect accuracy imaging by analyzing the received full

wavefield data. Among them, the IMV, RMS, and WRMS are adopted to time-domain

analysis for defect location and sizing. With the 2D Fourier transform, the received time-

space data are mapped into frequency-wavenumber domain, and defect sizing and thin-

ning quantification are realized through analysis of the spatial wavenumber information.

Meanwhile, many optimization techniques with the added windows are adopted to sepa-

rate the scattering waves in frequency-wavenumber domain for reflection waves separa-

tion, defect imaging can be enhanced.

3. SVM, Bayesian methodology, and the neural networks are three kinds of typical classifiers

used in Lamb waves based structure integrity evaluation. SVM maps the input data that

indicates the state of the structures into a hypothesis space with a kernel function that may

be a linear, polynomial, or custom kernel. The classifiers based on SVM have the one-class

Structural Health Monitoring from Sensing to Processing106



SVM, LS-SVM, two-step SVM. Bayesian methodology realizes the observation of data esti-

mation with the prior received data. For the Bayesian methodology, the state of structures is

predicated with the prior distributions of model parameters obtained using the coupon test

data. The related techniques have the multilevel Bayesian model, Bayesian imaging method,

and the GMM. Among them, the GMM is a probability static method with unsupervised

learning property. It has the advantages of better robustness of uncertainties and high

efficiency with lower computational complexity with a relatively small number of model

parameters. Neural networks are a supervise classifier based on the back-propagation algo-

rithm to optimize the model parameters. Benefiting from the flexible configuration of neural

networks, researchers developed many kinds of neural networks for structure integrity

evaluation. During the past decade, ANN, PNN, KNN, CNN, etc., have been applied for

on- or offline structure integrity evaluation with the extracted Lamb waves defect informa-

tion. These neural networks can realize accurate defect recognition in the case they are

trained with enough dataset. Meanwhile, they have low noise tolerance in field applications.
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