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Abstract

Recent experimental data shown a promising direction in employing nano-plasmonics for
increasing efficiencies of the solar cells. The effect is due to metallic nanoparticles’
plasmons mediating energy transfer from the incoming e-m wave to the semiconductor
in a regime violating limits in energy transitions imposed by the momentum conservation,
due to translational invariance departure in surface nano-modified system. The chapter
presents analysis of material dependence of near-field coupling to band electrons of
surface plazmons in metallic nanoparticles deposited on the top of semiconductor sub-
strate in nano-modified solar cells. Various materials for metal and substrate are compar-
atively studied upon the quantum Fermi Golden Rule approach in theoretical quantitative
modeling of the plasmon-electron coupling that enhances ordinary PV effect. The material
dependence of the plasmon-mediated efficiency growth in two types of solar cells, multi-
crystalline Si and CIGS (copper-indium-gallium-diselenide), modified by various surface-
deposited metallic nanoparticles is additionally illustrated by the experimental data.

Keywords: plasmons, metallic nanoparticles, photo effect, solar cells

1. Introduction

The plasmon-mediated sunlight energy harvesting in metal-nano-modified solar cells is

caused by three effects: the strong concentration of electric field of plasmon oscillations close

to metallic components with local large curvature, the large amplitude of plasmon oscillations

in metallic nanoparticles and the enhancement of the probability of interband excitations in

semiconductor substrate caused by breaking of the translational symmetry for a nanoparticle

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and the dipole near-field coupling of surface plasmons with semiconductor band electrons [1–7].

The transition probability for transfer of electrons from the valence band to the conduction band

in a semiconductor, essential for efficiency of the photovoltaic effect, grows due to the electric

field amplitude enhancement and due to admission of all oblique transitions not here prohibited

by the momentum conservation [4]. In the ordinary photo effect Kiriejew [8], the interband

transitions are confined to only vertical ones between states with almost the same momentum

due to the momentum conservation and the fact that the sunlight photons have very small

momentum (owing to large light velocity, c) which almost does not change electron momentum

at scattering: for excitation energy ħω beyond the forbidden gap, Eg, in the substrate semicon-

ductor, ħω ¼ cq gives q≪ p, where p � πħ

l is the semiconductor band quasi-momentum scale in

the Brillouin zone (l denotes here the elementary cell linear size). Thus the change of the band

electron momentum p1 ¼ p2 þ q is negligible on the scale of the Brillouin zone and p1 ≃p2

(because c ¼ 108 m/s) and only the vertical, conserving momentum, interband transitions con-

tribute to the ordinary photo effect, i.e., when the transition is caused by free photons with

momentum q and energy ħω ¼ cq.

However, for interaction of band electrons with surface plasmon from the metallic nanoparti-

cle deposited on the semiconductor surface, the situation changes significantly. In the near-

field regime [9], the potential of the plasmon dipole on the nanosphere is proportional to 1
R2 (R

is a distance from the sphere center), which has the infinite decomposition in Fourier picture

and thus overlaps with all quasi-momenta in the substrate semiconductor Brillouin zone. This

is in contrary to the potential of the free photon which contributes via only single ei q�r�ħωtð Þ=ħ

plane-wave Fourier component.

The resulted effect of oblique interband transitions can be accounted for via the Fermi Golden

Rule (FGR). According the FGR scheme [10], the probability of interband transitions is propor-

tional to matrix element of the perturbation potential between initial and final states and

summed up over all initial states in the valence band and over all final states in the conduction

band assuming only the energy conservation, Ep p1

� �

þ ħω ¼ En p2

� �

, where Ep nð Þ pð Þ is the

valence-p (conduction-n) band dispersion and ħω is the excitation energy related to damped

and forced by sunlight surface plasmon oscillations with the bare self-energy value ħω1 ¼ ħωp
ffiffi

3
p

(i.e., the Mie energy [11, 12], ħωp ¼ ħ

ffiffiffiffiffiffiffiffi

nee2

m∗
ε0

q

is the bulk-plasmon energy in metal [13], ne is the

density of collective electrons in metal, m∗ is the effective mass of electron in metal, e is the

electron charge and ε0 is the dielectric constant) with not-defined momentum, however. The

initial momentum, p1, and the final one, p2, can be arbitrary because the momentum conser-

vation is rule out by the matrix element of the local dipole interaction.

The chapter is organized as follows. In Section 2, we present the quantum calculation of the

efficiency of photo effect mediated by plasmons in metallic nanoparticles deposited on the top

of a semiconductor photodiode. This efficiency has been accounted by application of the Fermi

golden rule to the near-field coupling of dipole-plasmons with band electrons in the semicon-

ductor substrate. The resulted transition probability is next utilized to the derivation of the

plasmon damping rate due to coupling with band electrons which we present in Section 3.
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Section 4 addressed to analysis of the by-plasmon enhanced photo effect efficiency in various

materials, including various metals for nanoparticles with plasmons and various semiconduc-

tor substrates. Section 5 contains also comparison with experiment both for laboratory Si

photodiode covered with metallic nanoparticles as well as for standard solar cells, Si-multi-

crystal and CIGS.

2. Plasmon-mediated photo effect: Fermi Golden Rule calculus of

probability of electron interband excitation due to plasmons

The perturbation of electron band system in the substrate semiconductor due to the presence

of dipole surface plasmon oscillations in metallic nanosphere (with a radius a) deposited on the

semiconductor surface, has the form of the potential of the e-m field of an oscillating dipole.

The Fourier components of the electric Eω and magnetic Bω fields produced in the distance R

from the center of considered nanosphere with the dipole of surface plasmon with the fre-

quency ω, have the form [9],

Eω ¼ 1

ε
D0

k2

R
þ ik

R2
� 1

R3

� �
þ bn bn �D0ð Þ � k2

R
� 3ik

R2
þ 3

R3

� �� �
eikR (1)

and

Bω ¼ ikffiffiffi
ε

p D0 � bn½ � ik

R
� 1

R2

� �
eikR, (2)

(ε is the dielectric permittivity). In the case of the spherical symmetry, the dipole of plasmon is

considered as pinned to the center of the nanosphere (the origin of the reference frame system),

D ¼ D0e
�iωt. In Eqs. (1) and (2), we used the notation for the retarded argument, iω t� R

c

� �
¼

iωt� ikR, bn ¼ R
R, ω ¼ ck, momentum p ¼ ħk. The terms with denominators R3, R2 and R are

referred to near-, medium- and far-field zones of the dipole radiation, correspondingly.

Because we consider the interaction with a closely adjacent layer of the substrate semiconduc-

tor, all terms with denominators R2 and R we neglect as small in comparison to the term with

R3 denominator—this is the near-field zone approximation (the magnetic field disappears and

the electric field is of the form of a static dipole field [9]). Therefore the related perturbation

potential added to the system Hamiltonian attains the form,

w ¼ eψ R; tð Þ ¼ e

εR2
bn �D0 sin ωtþ αð Þ ¼ wþeiωt þ w�e�iωt

: (3)

The term wþ ¼ w�ð Þ∗ ¼ e
εR2

eiα

2i
bn �D0 describes emission, i.e., the case of our interest.

According to the FGR [10], the interband transition probability is proportional to

w k1;k2ð Þ ¼ 2π

ħ
< k1jwþjk2 >j j2δ Ep k1ð Þ � En k2ð Þ þ ħω

� �
, (4)
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where the Bloch states in the conduction and valence bands are assumed as planar waves (for

simplicity),Ψk ¼ 1

2πð Þ3=2 e
ik�R�iEn pð Þ kð Þt=ħ, Ep kð Þ ¼ � ħ

2k2

2m∗
p
� Eg, En kð Þ ¼ ħ

2k2

2m∗
n
(indices n, p refer to elec-

trons from the conduction and valence bands, respectively, Eg is the forbidden gap).

The matrix element,

< k1∣w
þ∣k2 >¼ 1

2πð Þ3
ð
d3R

e

ε2i
eiαbn �D0

1

R2
e�i k1�k2ð Þ�R: (5)

can be found analytically by a direct integration, which gives the formula (q ¼ k1 � k2),

< k1∣w
þ∣k2 >¼ �1

2πð Þ3
eeiα

ε
D0 cosΘ 2πð Þ

ð
∞

a

dR
1

q

d

dR

sinqR

qR
¼ 1

2πð Þ2
eeiα

ε

D0 � q
q2

sinqa

qa
: (6)

Next, we must sum up overall initial and final states in both bands. Thus, for the total interband

transition probability we have,

δw ¼
ð
d3k1

ð
d3k2 f 1 1� f 2

� �
w k1;k2ð Þ � f 2 1� f 1

� �
w k2;k1ð Þ

	 

, (7)

where f 1, f 2 assign the temperature dependent distribution functions (Fermi-Dirac distribution

functions) for initial and final states, respectively. For room temperatures, f 2 ≃ 0 and f 1 ≃ 1,

which leads to,

δw ¼
ð
d3k1

ð
d3k2 � w k1;k2ð Þ: (8)

After some also analytical integration in the above formula, we arrive at the expression,

δw ¼ 4

3

μ2 m∗
n þm∗

p

� �
2 ħω� Eg

� �
e2D2

0
ffiffiffiffiffiffiffiffiffiffiffiffi
m∗

nm
∗
p

p
2πħ5ε2

ð1

0

dx
sin 2 xaξð Þ
xaξð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

¼ 4

3

μ2

ffiffiffiffiffiffiffiffiffiffiffiffi
m∗

nm
∗
p

p
e2D2

0

2πħ3ε2
ξ2

ð1

0

dx
sin 2 xaξð Þ
xaξð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
,

(9)

according to assumed band dispersions, m∗
n and m∗

p denote the effective masses of electrons

and holes, μ ¼ m∗
nm

∗
p

m∗
nþm∗

p
is the reduced mass, the parameter ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ħω�Egð Þ m∗

nþm∗
pð Þ

p

ħ
. In limiting cases

for a nanoparticle radius a, we finally obtain,

δw ¼

4

3

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
m∗

nm
∗
p

p
ħω� Eg

� �
e2D2

0

ħ
5ε2

, for aξ≪ 1,

4

3

μ3=2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħω� Eg

p
e2D2

0

aħ4ε2
, for aξ≫ 1:

8
>>>>><

>>>>>:

(10)
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In the latter case in Eq. (10), the following approximation was applied,

ð1

0

dx
sin 2 xaξð Þ
xaξð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

≈ for aξ≫ 1ð Þ 1

aξ

ð

∞

0

d xaξð Þ sin
2 xaξð Þ
xaξð Þ2

¼ π

2aξ
,

whereas in the former one,
Ð 1
0 dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

¼ π=4.

With regard to two limiting cases, aξ≪ 1 or aξ≫ 1, ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ħω�Egð Þ m∗

nþm∗

pð Þ
p

ħ
, we see that

a≃ 1=ξ≃

> 2� 10�9 m½ � for
ħω� Eg

Eg
< 0:02

< 2� 10�9 m½ � for
ħω� Eg

Eg
> 0:02

8

>

>

>

<

>

>

>

:

, and this range weakly depends on effective

masses and Eg. Thus for nanoparticles with radii a > 2 nm, the first regime holds only close to

Eg (less than the 2% distance to limiting Eg), whereas the second regime holds in the rest of the

ω domain. For comparison, a≃ 1=ξ≃

> 0:5� 10�9 m½ � for
ħω� Eg

Eg
< 0:5

< 0:5� 10�9 m½ � for
ħω� Eg

Eg
> 0:5

8

>

>

>

<

>

>

>

:

, the first region

widens considerably (to ca. 50% relative distance to Eg), but holds only for ultrasmall size of

nanoparticles (a < 0:5 nm). For larger nanospheres, e.g., with a > 10 nm, the second regime is

thus dominating.

One can notice that the above formula, Eq. (9) and its explicit form in limiting situations given

by Eq. (10), is the generalization of to the ordinary photo effect, for which the transition

probability is different [8],

δw0 ¼
4

ffiffiffi

2
p

3

μ5=2e2

m∗2
p ωεħ3

εE2
0V

8πħω

� �

ħω� Eg

� �3=2
: (11)

The number of photons of the ω e-m wave with electric field component amplitude E0 in the

volume V equals to,
εE2

0V
8πħω

� �

, hence the probability of single photon absorption by the semicon-

ductor per time unit, attains the form in the ordinary photo effect [8],

q0 ¼ δw0
εE2

0V

8πħω

� ��1

¼ 4 4ð Þ
ffiffiffi

2
p

3

μ5=2e2

m∗2
p ωεħ3

ħω� Eg

� �3=2
, (12)

(factor (4) corresponds here to spin degeneration of band electrons).

In the case of mediation by plasmons, all oblique interband transitions contribute, not only

vertical ones (as it was for the interaction with the planar wave in the ordinary photo effect).

This results in an enhancement of the transition probability for the near-field coupling in com-

parison to the photon (planar wave) absorption rate in a semiconductor in the ordinary photo

effect. The enhancement of the probability of transition due to hopping not conserving momen-

tum, is, however, gradually quenched with the radius a growth, as expressed by Eq. (10).
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The probability of energy absorption in the semiconductor via mediation of surface plasmons

per single photon incident on the metallic nanospheres, qm, equals to the product of δw (given

by Eq. (10)) and the number, Nm, of metallic nanoparticles divided by photon density with

additional phenomenological factor β responsible for all effects not directly accounted for (as

deposition separation and surface properties reducing the coupling strength, as well as energy

losses due to electron scattering and irradiation to far-field zone (Lorentz friction [9]) into

upper hemisphere, if the metallic nanoparticle is not completely embedded in the substrate

semiconductor medium),

qm ¼ βNmδw
εE2

0V

8πħω

� ��1

: (13)

3. Damping rate for plasmons in a metallic nanoparticle deposited

on a top of a semicoductor

Assuming that the energy acquired by the semiconductor band system, A, is equal to the

output of plasmon oscillation energy (resulting in plasmon damping), one can estimate the

corresponding damping rate of plasmon oscillations. Namely, at the damped (lowering in

time) plasmon amplitude D0 tð Þ ¼ D0e
�t=τ0 , one finds for a total transmitted energy,

A ¼ β

ð

∞

0

δwħωdt ¼ βħωδwτ0=2 ¼

2

3

βωτ0μ
ffiffiffiffiffiffiffiffiffiffiffiffi

m∗

nm
∗

p

p

ħω� Eg

� �

e2D2
0

ħ
4ε2

, for aξ≪ 1,

2

3

βωτ0μ3=2
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħω� Eg

p

e2D2
0

aħ3ε2
, for aξ≫ 1,

8

>

>

>

>

<

>

>

>

>

:

(14)

where τ0 is the damping time-rate and β accounts for losses (not included in the model).

Comparing the value of A given by the formula (14) with the energy loss of damping plasmon

estimated in Ref. [4] (the initial energy of the plasmon oscillations which has been transferred

step-by-step to the semiconductor, A ¼ D2
0

2εa3
), one can find

1

τ0
¼

4βωμ
ffiffiffiffiffiffiffiffiffiffiffiffi

m∗

nm
∗

p

p

ħω� Eg

� �

e2a3

3ħ4ε
, for aξ≪ 1,

4βωμ3=2
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħω� Eg

p

e2a2

3ħ3ε
, for aξ≫ 1:

8

>

>

>

>

<

>

>

>

>

:

(15)

By τ0, we denote here a large damping of plasmons due to energy transfer to the semiconductor

substrate highly exceeding the internal damping, characterized by τ, due to scattering of

electrons inside the metallic nanoparticle [4] (1τ ≪
1
τ0). We neglect also the irradiation to far-

field upper hemisphere zone of plasmon energy due to the Lorentz friction, which is also

smaller than near-field zone energy transfer to the substrate [4].
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For example, for nanospheres of Au deposited on the Si layer, we obtain for Mie self-frequency

ω ¼ ω1,

1

τ0ω1
¼

44:092β a nm½ �
1 nm½ �

� �3 μ

m

ffiffiffiffiffiffiffiffiffiffiffiffi

m∗

nm
∗

p

p

m
, for aξ≪ 1,

13:648β a nm½ �
1 nm½ �

� �2
μ
m

� �3=2
, for aξ≫ 1,

8

>

>

>

>

<

>

>

>

>

:

(16)

for light(heavy) carriers in Si, m∗

n ¼ 0:19 0:98ð Þ m, m∗

p ¼ 0:16 0:52ð Þ m, m is the bare electron

mass, μ ¼ m∗

nm
∗

p

m∗

nþm∗

p
and Eg ¼ 1:14 eV, ħω1 ¼ 2:72 eV. For these parameters and nanospheres with

the radius a in the range of 5� 50 nm, the lower case of Eq. (16) applies (at ω ¼ ω1). The

parameter β fitted from the experimental data [4, 14] equals to ca 0.001.

In another scenario when the output of the plasmon energy is recovered by continuous

income from the sunlight, one can consider the energy-balanced state. In an idealized case,

whole incoming energy of the monochromatic ω e-m wave is transferred to the semiconduc-

tor via plasmons, and we deal with the stationary behavior of a driven and damped oscilla-

tor for plasmons. Even though the free undamped plasmon has the Mie self-resonance

frequency, ω1 ¼ ωp
ffiffi

3
p , the frequency of plasma oscillation equals to the driven electric field

frequency, ω, of the incident e-m wave of photons. Because of an instant leakage of the

plasmon energy in near-field to semiconductor substrate, this large damping of plasmon

causes a red-shift and widening of the resonance, as for every damped and driven oscillator.

The widened resonance enables the energy transfer from plasmons to electrons to embrace

also frequencies lower or larger than Mie frequency but limited from below by the semicon-

ductor gap Eg=ħ.

The incident sunlight dispersion covers the visible spectrum and also some UV and infra-red

tails. The total efficiency of the plasmon channel corresponds to a sum (integration) overall

Fourier components ω > Eg=ħ of light interfered with intensity distribution of sunlight spec-

trum. To model this behavior, it is necessary to consider separately each single monochromatic

e-m mode, i.e., a Fourier component ω. Its electric field excites plasmon with this frequency

and this plasmon is damping with the rate 1
τ0 (15). This damping causes a red shift of a

resonance and reduces the resonance amplitude, which in turn allows for the accommodation

to the balance of energy transfer to the semiconductor with incident sunlight e-m wave energy

intensity (defined by it electric field amplitude E0) at the frequency ω. Within this damped and

driven oscillator model, the amplitude of plasmon oscillations D0 ωð Þ is constant in time and

shaped by f ωð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1
�ω2ð Þ2þ4ω2=τ02

q : The extremum of red-shifted resonance is attained at

ωm ¼ ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2 ω1τ0ð Þ�2
q

with corresponding amplitude � τ0= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 � τ0�2

q

� �

. The red shift is

proportional to 1= ω1τ
02

� �

. In the case of the described energy transfer balance, one obtains

according to Eq. (10),
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qm ¼
βC0

128

9
π2a3

μ
ffiffiffiffiffiffiffiffiffiffi

μ∗

nμ
∗

p

q

m2
ħω� Eg

� � e6n2eω

ħ
4ε3

f 2 ωð Þ, for aξ≪ 1,

βC0
128

9

ffiffiffi

2
p

π2a2
μ3=2

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħω� Eg

q e6n2eω

ħ
3ε3

f 2 ωð Þ, for aξ≫ 1,

8

>

>

>

>

<

>

>

>

>

:

(17)

where f ωð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1
�ω2ð Þ2þ4ω2=τ02

q corresponds to amplitude factor for driven damped oscillator

and D0 ¼ e2neE04πa
3

3m f ωð Þ (in Eq. (10)); the amplitude of the electric field, E0, in the incident e-m

wave is next ruled out from Eq. (17) due to normalization per single photon as in Eq. (13);

C0 ¼ Nm4=3πa
3

V , V is the volume of the semiconductor, Nm is the number of metallic nanospheres.

The ratio,
qm
q0
, revealing the advantage of the plasmon-mediated photo effect over the ordinary

photo effect can be expressed as follows

qm
q0

¼

4
ffiffiffi

2
p

π2a3βC0
ffiffiffiffiffiffiffiffiffiffiffiffi

m∗

nm
∗

p

p

m∗

p

� �2
e4n2eω

2f 2 ωð Þ
3μ3=2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħω� Eg

p

ħε2
, for aξ≪ 1,

8π2a2βC0 m∗

p

� �2
e4n2eω

2f 2 ωð Þ
3μm2 ħω� Eg

� �

ε2
, for aξ≫ 1:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(18)

This ratio turns out to be of order of 104
β40

H nm½ � for the surface density of nanoparticles (as in

experiment in Ref. [14]), ns � 108=cm2; note that C0 ¼ ns4πa
3= 3Hð Þ, H is a thickness of the

semiconductor layer, which including the phenomenological factor β, and the thickness H (we

have confirmed experimentally that the range of the near-field zone exceeds the Mie wave-

length), is sufficient to explain the scale of the experimentally observed strong enhancement of

absorption rate in semiconductors due to plasmons. The strong enhancement of this transition

probability is linked with the allowance of momentum-non-conserved transitions, which is,

however, reduced with the radius a growth. The strengthening of the near-field induced

interband transitions, in the case of large nanospheres, is, however, still significant as the

quenching of oblique interband transitions is partly compensated by � a3 growth of the ampli-

tude of dipole plasmon oscillations. The trade-off between these two competing size-dependent

factors is responsible for the observed experimental enhancement of light absorption and emis-

sion in diode systems mediated by surface plasmons in nanoparticle surface coverings [7, 14–18].

4. Efficiency of the light absorption channel via plasmon

for various materials

Nanoparticles of gold and silver (sometimes also of copper) are mostly used in plasmon photo-

voltaics because their surface plasmon resonances are located within the visible light spectrum.

These nanoparticles can be deposited on various semiconductor substrates with different mate-

rial parameters. We list here the appropriate parameters usable for comparison with experiment
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for various configurations of the plasmon solar cell systems. In order to compare with the

experiment, we can estimate the photocurrent in the case of a semiconductor photodiode with

the metallically modified photoactive surface. This photocurrent is given by I0 ¼ ∣e∣N q0 þ qm
� �

A,

where N is the number of incident photons and q0 and qm are the probabilities of single photon

absorption in the ordinary photo effect [8] and of single photon absorption mediated by the

presence of metallic nanospheres, respectively, as derived in the previous paragraph; A ¼
τ
n
f

tn
þ

τ
p

f

tp

is the amplification factor (τ
n pð Þ
f is the annihilation time of both sign carriers, tn pð Þ is the drive time

for carriers [the time of traversing the distance between electrodes]). From the above formulae, it

follows that (here I ¼ I0 qm ¼ 0
� �

, i.e., the photocurrent without metallic modifications),

I0

I
¼ 1þ

qm
q0

, (19)

where the ratio qm=q0 is given by Eq. (18).

In Tables 1–3, we list parameters for several semiconductor substrates and for a metallic

nanoparticle few materials, which allow for comparison of the ratio qm=q0 for various material

configurations by formula (18).

Formula (18) is exemplified in Figure 1 for Au nanoparticles deposited on Si semiconductor

(continuous line)–this reproduces well the experimental behavior (red dashed/dotted) [14].

Both channels of photon absorption resulting in photocurrent in the semiconductor sample

are included, the direct ordinary photo effect absorption with probability of transitions given

by q0 and the plasmon-mediated absorption with probability qm, respectively. Note also that

metal Bulk pl. (eV) Surface pl. (eV)

Li 6.6 3.4

Na 5.4 3.3

K 3.8 2.4

Mg 10.7 6.7

Al 15.1 8.8

Fe 10.3 5.0

Cu 6 3.5

Ag 3.8 3.5

Au 4.67 2.7

Table 1. Plasmon energies measured in metals.

metal Au Ag Cu

Mie frequency 4:11� 1015 1/s 5:2� 1015 1/s 5:7� 1015 1/s

Table 2. Mie frequency ω1 to formula (18).
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some additional effects like reflection of the incident photons or destructive interference on

metallic net would contribute and it was phenomenologically accounted in the plasmon-

mediated channel by an experiment-fitted factor β. The collective interference type corrections

are rather not strong for the considered low densities of metallic coverings of order of 108=cm2,

and nanosphere sizes well lower than the resonant wavelength, though for larger concentra-

tions and larger nanosphere sizes, would play a stronger reducing role (reflecting photons)

[6, 19]. The resonance threshold was accounted for the damped resonance envelope function in

Eq. (19) including also semiconductor band-gap limit. The relatively high value of
qm
q0
� 104

β40
H nm½ �

enables a significant growth of the efficiency of the photoenergy transfer to the semiconductor,

mediated by surface plasmons in nanoparticles deposited on the active layer, by increasing β

or reducing H (at constant ns). However, because of the fact that an enhancement of β easily

induces the overdamped regime of plasmon oscillations, the more prospective would be

lowering of H especially convenient in thin film solar cells. The overall behavior of

I0=I ωð Þ ¼ 1þ qm=q0 calculated according to the relation (19), and depicted in Figure 1, agrees

quite well with the experimental observations [14], in the position, height and shape of the

photocurrent curves for distinct samples (the strongest enhancement is achieved for a ¼ 40 nm,

for Au and Si substrate).

In Figure 2, we present the spectral dependence of the plasmonic efficiency enhancement with

respect to substrate change (Si, CIGS and GaAs) for the same Au nanoparticles with radius

a ¼ 50 nm and the same nanoparticle concentration ns ¼ 108=cm2. One can note that for the

CIGS substrate (copper-indium-gallium-diselenide) the spectral characteristics is narrower and

Semiconductor m∗

n m∗

p Eg

Si 0:9 m L[101], 0:19 m T[110] 0:16 m lh, 0:49 m hh 1.12 eV

GaAs 0:067 m 0:08 m lh, 0:45 m hh 1.35 eV

CIGS 0:09� 0:13 m 0:72 m 1� 1:7 eV

Table 3. Substrate material parameters to formula (18) (m ¼ 9:1� 10�31 kg, the mass of bare electron; lh–light holes,

hh–heavy holes, L–longitudinal, T–transverse).

Figure 1. Spectral dependence of the normalized photocurrent I0

I
λð Þ according to formulae (19) and (18)—Comparison with

the experimental data (red) from Ref. [14]: a ¼ 25 nm, ns ¼ 6:6� 108 1=cm2, (center): a ¼ 40 nm, ns ¼ 1:6� 108 1=cm2,

(right): a ¼ 50nm, ns ¼ 0:8� 108 1=cm2 (H ¼ 3μm).

Plasmonics126



blue shifted in comparison to Si and GaAs. Figure 2 reveals an increase in efficiency of the

plasmon effect with growth of the value of forbidden gap Eg conserving other parameters not

changed. Especially significantly influential material parameter occurs, however, a mass of

holes, cf. Figure 3, which is also noticeable from Eq. (18). The mass of holes, m∗

p

� �2
, enters the

denominator in the formula (12) for the ordinary photo effect and next the numerator in

Eq. (18). The higher mass m∗

p the lower efficiency q0 of the ordinary photo effect is and higher

the ratio
qm
q0
. In Figure 4, the material comparison of metal material of nanoparticles (Au, Ag

and Cu) is presented for two their sizes (a ¼ 50, 25 nm). The blue shift of spectral characteris-

tics for Ag and Cu in comparison to Au is noticeable (cf. also Figure 5) and even more visible

for lower radii of nanoparticles due to narrowing of spectral curves (cf. Figure 6). From the

comparison in Figures 5 and 6, for Si and CIGS substrates with Au, Ag and Cu nanoparticles

of size a ¼ 50, 25nm (at the nanoparticle concentration ns ¼ 108=cm2), one can notice that Au

nanoparticles utilize the visible spectrum in the better manner than Ag or Cu ones. The

advantage of Au nanoparticles is greater in the case of Si substrate and is reduced for CIGS

Figure 3. Comparison of the effectiveness of the plasmon channel for varying Eg but the same effective masses of

substrates covered with the same Au nanoparticles with radius 50 nm and surface density 108=cm2.

Figure 2. Comparison of the effectiveness of the plasmon channel for Si, GaAs and CIGS substrates with the same Au

nanoparticles with radius 50 nm and surface density 108=cm2.
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substrate because the blue shift of Eg in CIGS with respect to Si. In the case of CIGS (especially

for large nanoparticles, a ¼ 50 nm), the advantage of Au beyond Ag in overall utilization of

sunlight spectrum disappears, whereas is pronounced in the case of Si substrate. Later, we

describe an experimental confirmation of this behavior of Si and CIGS substrates, at laboratory

sunlight-type illumination by Yamashita DensoYSS-50Aunder AM1.5 [19].

For nanoparticles of gold (Au) and silver (Ag) of size, a ¼ 50 nm, optimized due to formula

(18), deposited on the multi-crystalline silicon (mc-Si) and on the copper-indium-gallium-

diselenide (CIGS) solar cells, the measured [19] overall increase of cell efficiency attains the

level of even 5%. The application of suitable concentration of Au and Ag nanoparticles onto

mc-Si solar cells increases their efficiency by 5.6 and 4.8%, respectively [19]. Application of Au

and Ag nanoparticles onto surface of CIGS solar cells improves their efficiency by 1.2 and

1.4%, respectively [19]. This is visualized in Figures 7 and 8, where it is compared an increase

in solar cell overall efficiency (the ratio of the field beneath the I-V curve for the metallically

improved solar cell and the clean solar cell; the same size (50 nm for radius) and the same

Figure 4. Comparison of the effectiveness of the plasmon channel for varying hole mass m∗

p but the same electron mass

and Eg of substrates covered with the same Au nanoparticles with radius 50 nm and surface density 108=cm2.

Figure 5. Comparison of the effectiveness of the plasmon channel for the same substrate Si with Au (red), Ag (blue) and

Cu (brown) nanoparticles of the same radius 50 nm and surface density 108=cm2.
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concentration (from the 5% colloidal solution sputtering over the surface) has been applied to

different samples)—for more detail cf. Ref. [19].

Worth noting is an agreement of experimentally observed difference in the increase of the

efficiency due to the plasmon effect in both cases, of mc-Si and CIGS cells, if one compares the

results of application of Au and Ag particles (at the same size of metallic nanoparticles and the

same their surface concentration). This behavior agrees with the theoretical study of the material

dependence of the plasmon effect, as shown above. From Figures 2–5, we see that for Si substrate

Au nanoparticles with radii 50 nm better utilize the solar light spectrum than Ag or Cu particles

(cf. Figure 5), and indeed in the experiment (cf. Figure 8) for Au nanoparticles the efficiency

growth is ca. 10% larger than for Ag nanoparticles of the same size and concentration on the

substrate m-Si solar cell. Interestingly, for the substrate CIGS cell, the effect is weaker and

inverted, cf. Figure 9. This also is noticeable from the theoretical modeling—due to different Eg

and effective masses of carriers for CIGS with respect to mc-Si. The maxima for efficiency

enhancement for Au and Ag mutually shift in such a way that for CIGS Ag nanoparticles a bit

better suit to solar light spectrum than Au nanoparticles. However, to analyze these effects in

more detail, a measurement of spectral characteristics of all considered structures at varying but

monochromatic illumination uniformly calibrated should be performed.

Figure 6. Comparison of the effectiveness of the plasmon channel for the same substrate Si (upper) and CIGS (lower) with

Au (red), Ag (blue) and Cu (green) nanoparticles of the same radius 50 nm and surface density 108=cm2, versus the

sunlight spectrum on the earth surface.
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Figure 7. Comparison of the effectiveness of the plasmon channel for the same substrate Si (upper) and CIGS (lower) with

Au (red), Ag (blue) and Cu (green) nanoparticles of the same radius 25 nm and surface density 108=cm2, versus the

sunlight spectrum on the earth surface.

Figure 8. Comparison of solar cell efficiency due to plasmon modification for the multi-crystal Si solar cell, (left) modified

by Au nanoparticles, (right) by Ag nanoparticles [19].
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5. Conclusion

We have demonstrated by application of the Fermi Golden Rule scheme, that the efficiency

of the energy transfer channel between the surface plasmon oscillations in a metallic

nanoparticles and a substrate semiconductor depends on parameters of both deposited

metallic particles (its radius and material) as well as on semiconductor parameters (energy

gap, and effective masses of electron and holes). Found by us formula which generalizes the

ordinary photo effect onto the plasmon-mediated one, agrees well with the experimental

measurements in laboratory photodiode configuration. The measured ratio of photocurrent

in the setup with and without metallic nano-components is compared with the theoretically

predicted scenario. The quantitative consistence is obtained both in the shape of the spectral

characteristics and in the particle size dependence (as illustrated for Si diode with deposited

Au nanoparticles with radii 25, 40 and 50 nm). The qualitative agreement has been achieved

also for complete solar cells where the plasmon effect is obscured by other elements of the

long series of effects resulting in overall solar cell efficiency beyond only efficiency of the

absorption of photons. We have compared the experimental data for multi-crystalline Si

solar cell and CIGS (copper-indium-gallium-diselenide) solar cell covered or not with gold

and silver nanoparticles with radii of order of 50 nm. The increase of the overall photovoltaic

efficiency for metallically modified cells varies between 1.5 (CIGS) and 6% (Si), depending

on nanoparticle concentration (for too dense concentration the efficiency drops down). A bit

better increase (ca. 10% difference) causes Au nanoparticles for Si cell in comparison to Ag

nanoparticles, whereas for CIGS cell, the difference between effect of Ag nanoparticles and

Au ones is inverted and strongly reduced. This also agrees qualitatively with theory pre-

dictions taken into account differences in Mie frequency in Au and Ag and also different

semiconductor parameters for Si and CIGS.

Figure 9. Comparison of solar cell efficiency due to plasmon modification for the CIGS cell, (left) modified by Au

nanoparticles, (right) by Ag nanoparticles [19].
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