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Chapter

Chemical Detection of 
Short-Lived Species Induced in 
Aqueous Media by Atmospheric 
Pressure Plasma
Yury Gorbanev and Annemie Bogaerts

Abstract

Non-thermal atmospheric pressure plasmas are widely used in biomedical 
research and clinical applications. Such plasmas generate a variety of reactive 
oxygen and nitrogen species upon interaction with ambient surroundings. These 
species further interact with a biological substrate and are responsible for the 
biomedical effects of plasma. Liquid water is an essential part of any biological 
systems. Some of the most reactive species induced by plasma in aqueous media 
are radicals and atoms. Hence, the presence of certain chemical components in a 
plasma ‘cocktail’ presents an important task for both understanding and further 
development of plasma systems with specific purposes. In this chapter, we discuss 
various methods of detection of the plasma-generated short-lived reactive species. 
We dissert various plasma-induced radicals and atoms (•OH, O2•

−/•OOH, •NO, O), 
together with non-radical short-lived species (−OONO, O3, 

1O2). Electron paramag-
netic resonance (EPR) is the most direct method of radical detection in water-based 
media. Special attention is paid to the limitations of the detection methods, with an 
emphasis on spin trapping used in EPR analysis.

Keywords: plasma-liquid systems, reactive species, free radicals, spin trapping, 
electron paramagnetic resonance

1. Introduction

Low-temperature, or ‘cold’ atmospheric pressure plasmas (CAPs) are gain-
ing increasing attention in diverse fundamental and applied scientific activities 
[1]. The research on the industrial applications of cold plasma includes its use in 
plasma-assisted catalysis and thin film deposition [1–3], wastewater treatment 
[4, 5], photoresist removal [6], pre-treatment of polymeric solutions for the 
production of enhanced nano-fibres [7], etc.

Biomedical applications are the most burgeoning field of CAP research [8]. 
Cold plasma is used to modify or produce surfaces with high bacterial resistance, 
an important property in a clinical setting [8, 9]. Other applications include various 
sterilisation processes [10], deactivation of bacteria and viruses [11, 12], wound 
healing [8], and the emerging CAPs cancer treatment [8, 13]. The effects of CAPs 
on biological substrates are largely defined by the reactive oxygen and nitrogen 
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species (RONS) such as •OH, O2
•−/•OOH, O3, 

1O2, O, •NO, H2O2, ONOO−, NO2
− 

[14]. These species are formed either in the plasma itself, or upon its interaction 
with surrounding air [14, 15]. Water is an essential component of every biological 
system. Thus, information on both the composition of the mixture of RONS created 
by plasma, and their interactions with aqueous media is extremely important for 
tailoring-desired plasma effects [16].

Chemical modelling coupled with various analytical techniques (optical spec-
troscopy methods, mass spectrometry, etc.) is used to assess the composition of 
the gas phase plasma [1, 14, 17]. Recent works in computational chemistry have 
addressed the interaction of gas phase RONS with and within aqueous media 
[18, 19]. However, monitoring of the reactive species in liquid is paramount for 
benchmarking of the models. Most importantly, it provides experimental, and 
hence the most direct information on RONS present in the liquid.

Two main paths are used for CAP utilisation in biomedical research and 
applications: first, pre-treatment of a relevant medium with further application to 
the biological target [20, 21] and second, direct application of plasma treatment 
to cells in aqueous media [22], or ‘dry’ cells [23] (We note that generally all cells 
are grown in culture medium and/or washed prior to plasma exposure; thus, the 
‘dry’ cell surface is never devoid of water, even less, so is a tissue in clinical applica-
tions [24]). In the first scenario, the effects of plasma are attributed to long-lived 
chemical species, which can remain in solution after plasma treatment, such as 
H2O2, NO2

−, and NO3
− [20, 25]. These long-lived species are usually detected using 

a variety of analytical techniques, of which colorimetry is commonly employed 
[20, 22]. The second path implies the presence of short-lived radical and atomic 
species: O, •NO, •OH, O2

•−, as well as non-radical chemical compounds such as, 
e.g., singlet oxygen 1O2. Aside from creating direct oxidative stress [14], these spe-
cies can regulate various cellular processes by, e.g., altering cellular uptake of metal 
ions [26]. These short-lived radicals were also shown to initiate radical reactions in 
liquid media [27].

This chapter disserts methods of detection, identification and quantification of 
short-lived chemical species in solutions in contact with CAPs.

2. Detection of plasma-generated RONS in liquids

2.1 Hydroxyl and superoxide radicals

Upon interaction with water and oxygen moieties, CAPs generate hydroxyl 
radicals •OH and superoxide radical anions O2•

−. These short-lived species possess 
highly oxidising and cytotoxic properties, and are suggested to be one of the main 
causes of biomedical activity of cold plasma [14, 28].

In aqueous systems, these radicals are often detected using optical methods. 
These methods usually employ induction of colour or degradation of dyes (colorim-
etry) [29]. In this method, a coloured dye is degraded by plasma-generated species, 
and the loss of colour is quantified using UV-vis spectrophotometry. Some of the 
most commonly used dyes used to assess ROS are methylene blue and methylene 
red [29, 30], often used in research associated with CAPs for water treatment and 
pollutant removal [30, 31]. However, the main difficulty in employing this method 
is the non-specific degradation of such dyes. For example, decolouration of methy-
lene blue not only occurs via reaction with •OH radicals but also with other CAP-
induced species, e.g., ozone [32]. Superoxide radical anions can also be detected by 
degradation of dyes [33] with the same limitations.
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Similarly, induction/decay of fluorescent properties of chemical molecules is 
also used. Degradation of some fluorophores was used to detect oxygen-centred 
radicals on surfaces in contact with processing plasmas [34].

Terephthalic acid (TA) has been reported to detect •OH radicals in plasma-
liquid systems [35–37]. The method is based on the induced fluorescence due to the 
formation of hydroxy-substituted TA (Scheme 1). This presents a simpler and more 
selective method of detection of the hydroxyl radicals, as demonstrated by Attri 
and co-workers [37]. However, possible oxidation of terephthalic acid by RONS [38] 
is usually ignored. Another method based on aromatic hydroxylation was recently 
suggested by Zhang et al. Using salicylic acid as a substrate, the authors obtained 
mono- and disubstituted products, which were analysed by HPLC [39].

Other alternatives include different chemical probes, such as, e.g., dimeth-
ylsulphoxide, followed by quantification of the formed formaldehyde HCHO or 
methanesulfinic acid [35, 40] (Scheme 2). However, other reactions leading to both 
production and degradation of HCHO can occur in a plasma-liquid system, as was 
shown by Ma et al. [40]. The kinetics of these complex chemical processes needs to 
be considered for quantitative assessment of the hydroxyl radical in liquids.

Shirai et al. observed chemiluminescence at the plasma-liquid interface when 
alkaline solutions of luminol were exposed to CAP, presumably due to reactions with 
•OH and O2•

− [41]. Bekeschus et al. compared the amount of superoxide produced by 
different plasmas in liquid using colorimetric analysis with cytochrome C [42].

Furthermore, the information on the availability of radical species in liquids 
exposed to CAPs is often obtained using electron paramagnetic resonance (EPR) 
spectroscopy. EPR is the most direct method of radical detection in liquids [43, 44]. 
The method is based on the detection of paramagnetic species, e.g., free radicals 
with an unpaired electron. In EPR, several methods of radical detection are used 
[45]. Free radicals such as hydroxyl and superoxide are very short-lived and cannot 
be detected directly. Hence, spin probes and spin traps are employed. An example 

Scheme 1. 
Detection of the OH radical using induced fluorescence via the reaction with terephthalic acid.

Scheme 2. 
Reactions of dimethylsulphoxide used in detection of the •OH radical. Production and loss pathways of HCHO 
are indicated with green and red arrows, respectively.
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of a spin probe is 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine 
(CMH). CMH is a cyclic hydroxylamine, which reacts with superoxide radicals to 
form a nitroxide radical detected by EPR: =N▬OH → =N▬O• [46]. However, this 
method is mostly used in biological systems rather than plasma-liquid systems. The 
selectivity is not explicitly known, and possible difficulties may arise from interfer-
ences by other plasma-induced ROS.

The second method is the formation of radical adducts in reactions of spin traps 
(organic molecules, usually nitrones) with free radicals (Scheme 3). The formed 
spin adducts are organic nitroxides with longer half-lives compared to the analysed 
radicals, and thus detectable by EPR [47, 48]. In the past decade, the spin trapping 
of CAP-induced radicals in liquids has gained vast attention. Numerous groups 
have performed detection of •OH and O2•

−/•OOH radicals in aqueous media by 
EPR. Tani et al., Takamatsu et al. and Uchiyama et al. performed the detection of 
radical species in plasma-treated liquids by using various spin traps [49–51]. Tresp 
et al. assessed the concentrations of the •OH and O2•

− radicals by monitoring the 
radicals adducts of 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) 
and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin traps in liquid samples [52]. We 
have previously performed detection of hydroxyl and superoxide radicals, as well 
as hydrogen atoms, in CAP-treated water with DMPO, 5-(diethoxyphosphoryl)-
5-methyl-1-pyrroline N-oxide (DEPMPO) and N-benzylidene-tert-butylamine 
N-oxide (PBN) spin traps [15, 22, 44]. We note that according to their pKa values, 
superoxide radical exists in its anion form O2•

− in a physiological solution (pH 7–7.6), 
but the radical adducts are protonated forms ▬OOH [53].

The advantage of spin trapping over other methods is that the non-selectivity of 
a spin trap is not a drawback. Indeed, the characteristic features of the EPR signals 
are different for different radical adducts due to the hyperfine coupling: interaction 
with magnetic moments of nearby nuclei with non-zero spin numbers (14N, 1H, 13C, 
17O, etc.). The hyperfine values of an adduct therefore depend on the structure of a 
specific adduct: DMPO-OH and DEPMPO-OH have different chemical structures 
and thus different features of their EPR spectra (see, e.g., [15, 44]). Also, if a spin 
trap (e.g., DEPMPO) forms adducts with several radicals such as •OH and O2•

−, 
the amounts of both adducts can be obtained from the same EPR spectrum [45]. 
This feature enables studying the source of the radicals produced by CAPs by using 
isotopically labelled water (H2

17O, 2H2O) to distinguish between the radicals formed 
from the gas phase water and the liquid water [15, 44, 54]. More recently, the use of 
PBN and DMPO spin traps helped identify the nature of the radicals generated by 
CAPs from organic solvents (chloroform and N,N-dimethylformamide) [7].

However, despite being a very versatile and the most direct method of radical 
detection in liquids, spin trapping and EPR analysis have limitations, which need to 
be considered in experimental settings. Before proceeding to the detection of other 
short-lived species, we first address in the following section the factors limiting the 
applicability of spin trapping and EPR analysis in CAP-liquid systems.

Scheme 3. 
Formation of nitroxide radical adducts in reactions with CAP-induced radicals by DMPO and DEPMPO spin 
traps.
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2.2 Limitations of spin trapping

Quantification of the radical adduct (i.e., concentration in the analysed 
solution) can be achieved by calibrating an EPR spectrometer with solutions of 
a stable radical compound, e.g., a stable nitroxide (2,2,6,6-tetramethylpiperidin-
1-yl)oxyl (TEMPO) or its derivatives [15, 22, 44]. However, obtaining concentra-
tion values of radicals (rather than the formed adduct) in liquids is hindered due 
to various side reactions of the analysed radicals: recombination (e.g., •OH into 
H2O2), reactions with scavengers (solvated electrons, hydrogen atoms, possible 
physiological media components [22, 37, 42, 48]). Comparison of reaction rate 
coefficients of these processes needs to be performed. Otherwise, EPR with spin 
trapping provides only semi-quantitative data: the amounts of a radical adduct 
formed under different conditions follow the same trend as the initial concentra-
tion of the free radical.

Different spin traps have different affinity towards different radicals 
expressed by the rate coefficients of the respective reactions [44, 45]. Moreover, 
the stability of the formed radical adducts varies in orders of magnitude. Under 
physiological conditions (pH, temperature, etc.), the half-life of the radical 
adduct with superoxide radical of the DMPO spin trap is 45 s, with DEPMPO, it 
is 14 min, and with 3,5-dimethyl-5-(iso-propoxycarbonyl)-1-pyrroline N-oxide 
(3,5-DIPPO), it is 55 min [55]. The decay of spin adducts occurs naturally in liq-
uids and depends on many factors: temperature, concentration of the adduct and 
other components of the solutions, etc. The half-life of the DMPO-OOH radical 
adduct was shown to be a function of pH by Buettner et al. [56]. The rapid decay 
of DMPO-OOH proceeds via formation of DMPO-OH, and in the presence of 
electron acceptors, it can lead to a complete disappearance of the EPR signal 
due to the loss of the radical moiety (Scheme 4). It was also reported that the 
stability of DMPO-OH was substantially reduced in the presence of nitrogen 
oxides [57].

Hence, the choice of a spin trap is a very important factor, which may affect both 
the quantitative and the qualitative results. Selectivity, adduct stability and last but 
not least commercial availability of a spin trap should be taken into account when 
preparing for the analysis of radical species in liquids.

The limitations discussed above are known in biological systems, with limited 
production and diversity of RONS. With CAPs, various atomic and radical reactive 
species can be simultaneously delivered to the liquid. Our previous work showed 
that nitroxides can decay via reactions with the same species from which they were 
formed [58]. Our results demonstrated that the loss of nitroxide moiety in plasma-
exposed water occurred via reactions with •OH radicals, H atoms and oxygen species 
(atomic oxygen and/or ozone) with pseudo-first-order kinetics (Scheme 5). Hence, 
to perform even relative measurements of RONS induced in water by CAPs, a study 

Scheme 4. 
pH-dependent degradation pathway of the radical adducts of the DMPO spin trap.
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of the product (spin adduct, aromatic substitution product, etc.) concentration 
development over time may be necessary to exclude possibilities of the increasing 
analyte degradation.

Another factor affecting the analysis is the potential decay of the nitrone spin 
traps themselves. Upon plasma exposure, it was shown that DEPMPO spin trap was 
partially degraded, yielding carbon-centred radicals, which were trapped by the 
remaining DEPMPO [42]. Similarly, PBN can undergo degradation into tert-butyl 
hydronitroxide [59].

A number of ‘false-positive’ results have been identified for spin trapping. For 
instance, a nucleophilic addition via the Forrester-Hepburn mechanism, either 
direct [60] or metal-catalysed [61] (Scheme 6), may lead to the formation of 
nitroxides with the same structure as the radical adducts. It is thus important to 
perform control experiments with no CAP-induced RONS, to assess the possible 
interference from such reactions.

2.3 Solvated electrons

Many types of plasma set-ups either have discharges to the surface of the liquid 
(e.g., floating electrode plasmas with no gas flow), or an electron-rich afterglow 
(most plasma jets, with the exception of COST jet-type set-ups) [15, 16, 23]. In such 
cases, not just the RONS, but the electrons too may interact with the CAP-exposed 
liquid [16, 62]. Solvated electrons contribute to the additional charge in the liquid 
and induce electrochemical reactions [63], affecting potential substrates.

Rumbach et al. have demonstrated that both electron transfer and neutral 
reactions occur when CAPs interact with aqueous media. The authors report an 
optical technique employing a series of individual diode lasers for the spectroscopic 
detection of solvated electrons [63, 64]. Another (chemical) approach describes 
the analysis of the pH of the saline solutions in an electrochemical system where 
a cathode is substituted by a plasma jet. In such system, the pH changes as a result 
of the chlor-alkali process initiated by plasma electrons [65]. To the best of our 
knowledge, no other works describe chemical detection of solvated electrons in 
plasma-liquid systems.

Scheme 5. 
Degradation of nitroxides (radical adducts) via reactions with CAP-induced species.

Scheme 6. 
Metal-catalysed Forrester-Hepburn mechanism of nucleophilic addition of a water molecule to the DMPO 
nitrone spin trap, leading to the formation of the nitroxide with the DMPO-OH structure.
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Several reviews and reports describe possibilities of chemical detection of sol-
vated electrons [66, 67]. The methods include indirect detection, e.g., EPR analysis 
of the DMPO-spin trapped benzyl radicals, which were formed upon reaction of 
benzyl chloride with solvated electrons [68]. These methods could prove very use-
ful in plasma-liquid systems, although their direct applicability (limitations due to 
selectivity, etc.) needs to be determined.

2.4 Atomic oxygen, singlet oxygen and ozone

Some of the most reactive and biologically relevant species created by CAPs are 
atomic oxygen O, ozone O3 and singlet oxygen 1O2 [14, 69]. It has been shown by 
Benedikt and co-workers that oxygen atoms are delivered to exposed liquid solu-
tions from the gas phase plasma, where they are generated [70, 71], while compu-
tational results indicate that these extremely reactive atomic species can also be 
formed inside the liquid from hydroxyl radicals [18]. Singlet oxygen and ozone are 
generally considered short-lived (compared to e.g. hydrogen peroxide), although 
they are more stable than the atomic or radical species.

Ozone is often detected colorimetrically using the degradation of coloured 
dyes, e.g., methylene blue. This method of ozone detection is highly non-
selective, since the dyes can be degraded by other CAP-produced RONS, 
including •OH radicals [32]. Kovačević et al. measured ozone delivery to the 
plasma-exposed liquid using iodometry, while the solubilised ozone remaining 
in the liquid after the CAP treatment was detected with decolourisation of indigo 
trisulphonate [72]. However, recently, Tarabová et al. reported that indigo dyes 
decay in reactions with other RONS, e.g., secondary •OH radicals produced in 
liquids after the plasma exposure [73]. The non-selectivity of the iodometric 
method is due to the other oxidising RONS [72]. Fluorescent probes have also 
been used to detect ozone in plasma-liquid systems, albeit not without selectivity 
issues [74].

Benedikt and co-workers detected oxygen atoms in aqueous solutions of phenol, 
with further MS analysis of the formed hydroxylated products [70, 71]. However, 
hydroxylation of phenol can also occur in a reaction with hydroxyl radicals [73, 75].

EPR detection of a combination of CAP-induced O, 1O2 and O3 in aqueous 
media was performed by Takamatsu et al. The authors used 2,2,5,5-tetramethyl-
3-pyrroline-3-carboxamide (TPC) as a chemical detector of oxygenated species in 
liquid [50]. TPC is oxidised to produce a stable nitroxide, which can be detected by 
EPR. While the oxidation of TPC was non-selective, the addition of sodium azide 
NaN3 as a singlet oxygen scavenger allowed to distinguish between the TPC oxidised 
by 1O2 and by all other species.

We have previously used 2,2,6,6-tetramethylpiperidine (TEMP), another 
cyclic amine, to detect O/1O2/O3 produced by an atmospheric pressure plasma via 
its oxidation to 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) [22, 44]. Adding 
NaN3 let us individually assess the concentrations of 1O2 and O/O3 induced by CAPs 
(Scheme 7). Our work showed that although TEMPO was not produced in reactions 
with H2O2 or O2•

−, it could be formed by other plasma-induced RONS: ozone and 
possibly by atomic oxygen [44].

Later, Elg et al. demonstrated that most TEMPO was in fact formed by atomic 
oxygen by comparing ozone densities in the gas phase with concentrations of 
the formed TEMPO [76]. However, the main contributor to the production of 
a stable nitroxide in these reactions would depend on the densities of O and O3 
(and therefore, a specific plasma set-up) in each case. Other limitations of this 
method are related to the loss reactions of nitroxides [58], as described above 
(see Scheme 5).
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2.5 Nitrogen oxides and peroxynitrite

Nitric oxide •NO is considered one of the CAP-induced RONS responsible for 
bactericidal effects and wound healing. Furthermore, its reactions with and within 
aqueous media produce a large variety of secondary RONS [77]. Unlike the more 
persistent products of the •NO transformations such as NO2

− and NO3
−, which are 

detected colorimetrically [20, 48, 72, 73], the radical nitric oxide itself is monitored 
using spin trapping and EPR. Many EPR methods of detection of nitric oxide are 
known in biological milieu. Among these are the use of dithiocarbamate metal 
complexes, oxidation of nitronyl nitroxides, etc. [78].

In plasma-liquid systems, •NO has been detected intracellularly using fluores-
cent probes [51, 79] and directly in media by EPR with iron complexes of N-methyl-
D-glucamine dithiocarbamate (MGD) [50]. In the latter reaction, chelated Fe2+ ions 
form paramagnetic complexes with •NO. However, it was shown by Tsuchiya et al. 
[80] that this reaction is not selective: (MGD)2Fe2+ complex reacts with the nitrite 
anion NO2

− with the oxidation of Fe2+ to Fe3+, eventually leading to the formation 
of the (MGD)2Fe2+ adduct with •NO (Scheme 8). Another limitation is the pos-
sible oxidation of the iron ion to Fe3+ (which forms a non-paramagnetic complex 
with •NO) by other plasma RONS, and thus the necessity to use large amounts of a 
reducing agent [58].

Another method to detect nitric oxide in CAP-liquid systems is the transforma-
tion of nitronyl nitroxides such as 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 
3-oxide (PTIO) or its derivatives [48, 51, 58]. PTIO, a stable nitroxide radical, reacts 
with nitric oxide to form 2-phenyl-4,4,5,5-tetramethylimidazoline 1-oxyl (PTI), an 
imino nitroxide radical (Scheme 9). EPR analysis with deconvolution of the spectra 
via radical signal simulations allows differentiating between the two radicals 
[48, 78]. We previously showed that the limitations of the method are related to the 
nitroxide decay pathways (see above). The other issue is the reverse transformation 
(oxidation) of PTI to PTIO in oxygen-containing plasmas, even in the absence of 
nitrogen [58]. This makes detection of nitric oxide in plasma-liquid systems an 
extremely difficult task, when both the absence of the detectable •NO (PTIO) and 
its presence (a ‘false positive’ with dithiocarbamates) can be due to the limitations 
of each method.

Scheme 7. 
Detection of singlet oxygen, atomic oxygen and ozone by oxidation of TEMP. NaN3 is used as a specific 
scavenger for 1O2.

Scheme 8. 
Reaction pathway of the (MGD)2Fe2+ complex interaction with the NO2

− anion to yield a paramagnetic adduct 
(MGD)2Fe2+-NO.
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Lukes et al. used nitrosation and nitration reactions of phenol as a technique 
to detect post-plasma discharge formation of nitrogen oxides (•NO and •NO2) in 
aqueous media [75] (Scheme 10). It can be used to detect these two radicals directly 
during plasma exposure, or the secondary radicals formed during the decay of 
peroxynitrite (see below). As far as we know, no other methods of •NO2 detection 
have been reported specifically in plasma-treated solution, although other ways of 
detecting nitrogen dioxide in aqueous media are available in literature: e.g., spin 
trapping with nitrones [81] or nitroalkanes [82].

The peroxynitrite anion ONOO− is another reactive species induced by CAPs 
in water-based media [14, 72, 83]. Lukes et al. were the first to evaluate its forma-
tion and stability in aqueous solutions exposed to plasma. Peroxynitrite decayed 
rapidly in acidic conditions via peroxynitrous acid decomposition into •OH and 
•NO2, which were detected via phenol derivatisation [75]. The instability of 
peroxynitrite in neutral pH was later demonstrated by Weltmann and co-workers 
[84, 85]. Here, peroxynitrite was detected by exposing solutions of L-tyrosine 
to CAP and further MS analysis of the formed 3-nitrotyrosine. The authors have 
also assessed the interferences from the •NO radicals by introducing an •NO 
donor [85]. When L-tyrosine was added to plasma-treated solutions after the 
exposure, no nitration product was detected, suggesting the short-lived nature 
of peroxynitrite under the applied conditions. Girard et al. developed a method 
of direct spectrophotometrical detection of peroxynitrite based on its absorp-
tion properties in the UV region [86]. Here, peroxynitrite was only detected 
in highly basic solutions, confirming its short life at neutral pH. Xu et al. used 
1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (a hydroxylamine) to detect both 
superoxide radical anion and peroxynitrite anion via EPR analysis of the formed 
4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl [87] (distinguishing between the two 
is not possible with this method [46, 87]).

Scheme 9. 
Reaction of nitronyl nitroxide PTIO with nitric oxide, yielding imino nitroxide PTI.

Scheme 10. 
Reactions of nitration and nitrosation of phenol by nitric oxide, nitrogen dioxide and peroxynitrite.
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2.6 Hypochlorite formed in physiological media

Both the physiological media used in research in vitro (PBS, DMEM, etc.) and 
the blood and tissues in vivo have high concentration of chloride salts. Chloride 
anions can act as scavengers of the CAPs-generated RONS in media, e.g., the •OH 
radicals [28, 88]. It has been suggested by different research groups that chlorinated 
species such as hypochlorite ClO− (short-lived under physiological conditions [84]) 
can be formed in solutions upon interaction with the plasma RONS [79, 85, 89]. 
Wende et al. have assessed the effects of the potential ClO− presence in situ on the 
overall biomedical efficacy of CAPs [85]. Recently, Piskarev et al. showed that the 
ClO− anion is formed in plasma-treated saline solutions via reactions of the Cl− 
anion with superoxide or hydroxyl radicals from plasma [90].

The detection of hypochlorite in solutions was performed by direct UV detec-
tion [90] or by exposure of a solution of L-tyrosine to CAPs [84, 85]. The latter 
method is based on the MS detection of the chlorinated product of L-tyrosine. The 
UV detection requires large concentrations of hypochlorite, while the MS method 
is highly sensitive with a low detection limit. However, Bekeshus et al. detected no 
hypochlorite formation with their plasma set-up [84]. The formation of hypochlo-
rite (formed from the initial CAP-generated RONS in liquid media), therefore, 
depends on the particular plasma set-up and application conditions.

3. Conclusion and perspectives

A plethora of methods are available for the detection of reactive oxygen and 
nitrogen species induced in liquids by plasma. Chemical ‘detector’ systems based on 
colorimetry, fluorescence, (LC-)MS analysis of the products and EPR spin trapping 
are some of the techniques used in the detection of atomic, radical, molecular and 
ionic short-lived RONS. Each method has its potential and limitations; the latter 
associated with the decay of the products, low selectivity and other factors.

Despite several limitations, spin trapping coupled with EPR analysis as an 
analytical method of radical detection in CAPs systems has a very high value as 
the most direct method of radical detection in liquids. Aside from the liquid media 
itself, it has a potential to be used in plasma-gel systems, which mimic interac-
tion of CAPs with tissue [91], if gels are formed from nitrone molecules [92]. The 
availability of EPR equipment is not necessarily crucial to perform spin trapping 
of RONS. An interesting alternative to EPR analysis of radical adducts was demon-
strated by Guo et al. and Tuccio et al., who used liquid chromatography and mass 
spectrometry systems to analyse the adducts of oxygen-centred radicals of the 
DMPO and DEPMPO spin traps [93, 94].

The emerging role of the chlorinated species in CAP-treated media is gain-
ing attention. ClO− anion, a biomedically relevant species, has been monitored 
using UV absorption spectroscopy and modification of tyrosine. However, 
other detection methods may need to be used, especially in cases when hypo-
chlorite is not detected. For example, colorimetric analysis on the oxidation of 
3,3′,5,5′-tetramethylbenzidine is a simple technique [95], albeit with yet unknown 
limitations due to the presence of other oxidising RONS. Moreover, the highly 
oxidative nature of the hypochlorite anion in plasma-treated physiological solu-
tions is often emphasised, but the possibility of formation of other anions such as 
ClO2

−, ClO3
− and ClO4

− has not been addressed. Since these species are cytotoxic, 
monitoring them in physiological media exposed to plasma can provide valuable 
information on the biomedical effects of CAPs. Possible analyses can include ion 
chromatography [96, 97].
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Finally, some other short-lived yet highly reactive species are overlooked in the 
current research. Among these is the carbonate radical anion CO3•.: a very potent 
oxidising agent causing DNA damage [98], which can be formed in a reaction of 
peroxynitrite with ambient CO2 [99, 100]. The determination of this and other 
reactive species will aid in completing the picture of the plasma-produced ‘cocktail’ 
of reactive species. It can facilitate both the understanding of the existing CAP 
devices and their effects, and the development of new plasma systems with dedi-
cated RONS concentrations for specific applications.
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