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Abstract

This chapter proposes a state-space model for the DC motor built for separately excited
voltage and considering two inputs: supply voltage and load torque. The three states of
the resulted model are represented by angular speed, angular displacement, and current
supply, and either of these states can be an output variable for the simulation model.
Consequently, the system’s model has two inputs and three outputs. Using this model,
LabVIEW functions and programming structure of a simulator based on the virtual
instrument is built, through which it is possible to observe the dynamic characteristics of
the DC motor in different operating conditions. In this way, students can verify, by
simulation, the operation of the DC motor as a dynamic system observing and measuring
its reaction in different operating conditions.

Keywords: modeling, simulation, human-computer interface, front panel, diagram block
virtual instrument

1. Introduction

One of the most used actuators in control systems is direct current (DC) motor. It is the means by

which electrical energy is converted to mechanical energy. DC motors have a high ratio of

starting torque to inertia and therefore they have a faster dynamic response. DC motors are

constructed using rare earth permanent magnets, which have high residual flux density. As no

field winding is used, the field copper losses are zero and hence, the overall efficiency of the

motor is high. The speed-torque characteristic of this motor is flat over a wide range, as the

armature reaction is negligible. Moreover, speed is directly proportional to the armature voltage

for a given torque. The armature of a DC motor is specially designed to have low inertia [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The speed of DC motors can be controlled by applying variable armature voltage. These are

called armature voltage controlled DC motors. Wound field DC motors can be controlled by

either controlling the armature voltage or by controlling the field current [2]. In this chapter,

we consider modeling and simulation of an armature controlled DC motor. There are many

types of DC motor and their detailed construction is quite complex, but it is possible to derive

the equations for a satisfactory dynamic model from basic electromagnetic relationships [3].

The general output variable of this actuator can be angular speed or angular displacement

motion, but coupling the motor axle with wheels or drums and cables, translational motion

can be obtained.

2. Building the simulation model

The physical model of an armature controlled DC motor [4] is given in Figure 1, where:

ea, ia—armature supply voltage and current; ef, if—field voltage and current; Ra, La—armature

winding resistance and inductance; e—back electromotive force (e.m.f.); ω(t)—angular speed;

Tm(t)—electromagnetic torque; TL(t)—load torque.

When the armature is supplied with a DC voltage of ea volts, the armature rotates and pro-

duces a back e.m.f eb. The armature current ia depends on the difference of ea and eb, so

applying Kirchhoff’s law it can obtain:

ea tð Þ � eb tð Þ ¼ Ra � ia tð Þ þ La �
dia tð Þ

dt
(1)

The mathematical model of the mechanical system is:

Tm tð Þ ¼ J �
dω tð Þ

dt
þ F � ω tð Þ þ TL tð Þ (2)

where Tm ¼ km � ia is the torque Tm produced by the motor, J is the moment of inertia, F is the

frictional coefficient and TL is the load torque applied to the shaft of the motor considered to be

time dependent. Based on these relationships considering that the back e.m.f. is proportional to

Figure 1. Armature controlled DC motor.
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the speed of the motor, i.e., eb tð Þ ¼ ke � ω tð Þ and also considering that in SI (commonly used)

ke ≈ km = k, is obtained:

dia tð Þ

dt
¼

1

La
� ea tð Þ �

Ra

La
� ia tð Þ �

k

L
� ω tð Þ

dω tð Þ

dt
¼ �

F

J
� ω tð Þ þ

k

J
� ia tð Þ �

1

J
� TL tð Þ

(3)

Considering the angular displacement α(t) instead of angular speed ω(t) as output variable, it

is necessary to include the relationship between these:

ω tð Þ ¼
dα tð Þ

dt
(4)

Generally, the mathematical model used is the transfer function [4, 5], but in this chapter it is

proposed a Multiple Input Multiple Output (MIMO) mathematical model in a state-space

form. Based on Eqs. (3) and (4), this model can build for use into a program simulation.

To build the state-space MIMO model, the input, state, and output vectors are defined [6]:

1. input vector u(t), whose two components are represented by armature voltage ea(t) and load

torque TL(t), that is,

u tð Þ ¼
ea tð Þ

TL tð Þ

� �

(5)

2. state vector x(t), whose three components are represented by armature current ia(t), angular

displacement α(t) and angular speed ω(t), that is,

u tð Þ ¼

ia tð Þ

α tð Þ

ω tð Þ

2

6

4

3

7

5
(6)

3. output vector y(t), whose three components we consider to be the same with state vector

components (Relation (8)) so it is possible to simulate these three physical variables.

Having these vectors, it is possible to write Eqs. (3) and (4) in the matrix form:
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(7)

Act on systems general equations, this matrix equation can be written in the compact form:

_x tð Þ ¼ A � x tð Þ þ B � u tð Þ (8)
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Bring on output vector definition, the input-output equation can be written in the matrix form:

y tð Þ ¼

1 0 0
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or in the compact form:

y tð Þ ¼ C � x tð Þ þD � u tð Þ (10)

Having now the mathematical model, described by matrices A, B, C, D:
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It is possible to simulate the DC motor. Several studies, such as [7] [8], show that computer

simulation enhances learning effectiveness especially in technical disciplines such as studying

the behavior of dynamic systems.

3. Designing of virtual simulation tool

A program developed in LabVIEW is called a virtual instrument (VI), and it has two compo-

nents: the block diagram that represents program itself and the front panel that is the user

interface [9].

3.1. Front panel of the virtual instrument

The front panel of the virtual instrument and is built with controls and indicators, which are

the interactive input and output terminals. The Controls simulate the instrument input devices

and supply data to the block diagram of the VI and the Indicators simulate the instrument

output devices and display data that are acquired or generated [10, 11].

The front panel has two components, one is used to set the parameters of the simulation and

another is used to collect the results obtained from simulation. The user via the Tab Control

button accomplishes switching between the two components.

The first component, called Simulation Process, contains elements (Control type) through

which the user can:

• set the motor parameters (DC Motor Parameters): Ra [Ω], La [H], k [N �m=A], J [kg �m2], F

[ N �mð Þ= rad � sð Þ];

Electric Machines for Smart Grids Applications - Design, Simulation and Control112



• set simulation time:

• choose, from the list, the shapes for the input variables and set their parameters (ampli-

tude and duration);

• choose simulation previews for current and/or displacement and/or speed

An overview of the entire first component of the front panel is shown in Figure 2.

This part of the front panel also contains elements of graph indicator type through which a

preview of the input and output variables can be displayed.

The second component, called Simulation Results, allows the user to the acquisition of infor-

mation about the dynamic behavior of DC motor.

This contains Controls through which the user:

• can select the display state-space equations form and select the transfer function, both

models are represented by coefficients calculated based on the DC motor parameters sets

on the front panel, Figure 3; and

• can select and display the graphical results of the simulation, that is, the graphical

responses for the imposed outputs shown in Figure 4.

For each selected output variable, a window opens, which displays parameters that are rele-

vant to this dynamic system, such as the peak value (maximum value) and time of its occur-

rence, the steady-state value and its determining time, rise time, falling time, overshoot. For

displacement, in case the load torque is greater than the active torque occurs motor reversing, a

flashing message (OVER TORQUE) and a proper light indicator, also displaying the time of its

occurrence, signal this situation like as shown in Figure 4.

Figure 2. (a) Controls used to set the simulation parameters; (b) indicators used to preview of the simulation.
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http://dx.doi.org/10.5772/intechopen.79202

113



Figure 3. DC motor models.

Figure 4. DC motor simulation results.
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The entire component SIMULATION RESULTS of the front panel is shown in Figure 5.

3.2. Block diagram of the virtual instrument

After the front panel is built, the code using graphical representations of functions to control

the front panel objects is added. The block diagram represents the program under which the

simulator runs and contains the graphical source code. Front panel objects appear as terminals

on the block diagram. Block diagram objects include terminals, subVIs, functions, constants,

structures, and wires, which transfer data among other block diagram objects.

The basic structure in constructing the virtual instrument is a While Loop that continues to run

the program until the user presses the STOP SIMULATOR button on the front panel.

The program is running in two sequences according to the main algorithm shown in Figure 6.

The user selects one of the shapes (step, pulse or ramp) and the values for the two variables

input ua and TL and depending on constructive parameters of the DC motor, whose all values

are set also by the user on the front panel, the state-space model is generated. By numerical

simulation, based on this model, output variables are determined, and also, state-space and

transfer functions models of the DC motor are displayed. The chosen output variables that

represent the dynamic parameters of the system (maximum value, steady-state value, rise

time, falling time, overshoot) are calculated.

The first sequence of the program and the MathScript Node are used to introduce the DC

motor model into the program, and it is shown in Figure 7. The main element of the first

sequence is the Control and Simulation Loop in conjunction with MathScript Node. Control

and Simulation Loop is one of the components of the LabVIEW Control Design and Simulation

Module. With this module, the plant and control models using transfer function, state-space

Figure 5. Second component of the front panel of the simulator.
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model, or zero-pole-gain model can be constructed, and also system performance with tools

such as step response, pole-zero maps, and Bode plots can be analyzed through simulation

techniques. The simulation time is set from corresponding control on the front panel, and this

is the only parameter of the loop.

The state-space model of the DC motor is placed into Control and Simulation Loop through a

MathScript. MathScript is a high-level, text-based programming language. MathScript includes

more than 800 built-in functions, and the syntax is similar to MATLAB and allows creating

custom-made m-file, like in MATLAB. To process scripts in LabVIEW, LabVIEW MathScript

Window or a MathScript Node can be used. If it is necessary to integrate MathScript functions

(built-in or custom-made m-files) as part of a LabVIEW application and combine graphical and

textual programming, as found in this application, MathScript Node is used [12, 13].

Figure 6. Main program algorithm.
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DC motor parameters are introduced into the model, and these can be changed interactively

via the corresponding buttons on the front panel. The output from the MathScript Node is SS

(state-space) object called motor and is a 2D matrix, which is a representation of the state-space

system dynamic equations corresponding to the general forms (8) and (10). From this output,

the matrices A, B, C, and D can be extracted, but also other information, such as properties,

state names, transport delay. This object, together with the input vector, is used to generate the

output vector yT = [ia, α, ω] through the LabVIEW simulation function State-Space. Each of the

three components of the output vector can be identified using the Index Array function that

returns the element or subarray of the n-dimensional array corresponding to the index value.

After identifying any of these three components, these can be visualized on the front panel,

through a graphic indicator. The obtained vector is also processed through the Collector

function. This function collects a signal at each time step of the simulation and returns a history

of the signal value and the time at which this function recorded each value in the history. Based

on the signal history, the values of the dynamic regime, in the next sequence, can be identified.

For each of the two components of the input vector ua respectively TL standard signals are

established, used to time domain analysis, namely: step, pulse, and ramp. The user can choose

at any time and for each of the two components either of these signals through corresponding

controls on the front panel. This choice is made by using a case structure and for the input

selection, is used a control placed on the front panel button like is shown in Figure 8.

Figure 7. The first sequence of the simulator.

Figure 8. Selection of the input signals.
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In the second sequence, shown in Figure 9, an identification of values is performed that

characterize the operation in dynamic regime of the DC motor.

As mentioned earlier, the second sequence is used for extracting the information, obtained

through simulation. Display of the equations of these models is done through CD Draw State-

Space Function respectively CD Draw Transfer Function Equation, in Control Design and

Simulation Toolkit.

By considering the DC motor like a MIMO system, having two inputs and three outputs are

obtained six transfer functions that are displayed in a matrix form. To give to user the possi-

bility to choose any of the six transfer functions, a control is provided on the front panel (Select

transfer function) through which is generated the line and column index where the transfer

function can be found (Figure 10).

As already mentioned, extraction of values that characterize the dynamic regime is made from

the history signal. The history signal is a vector obtained as output from MathScript Node and

represents the result of simulation. Just as in the first sequence, extraction of components from

this vector is done through the Index Array function that returns the subarrays for the three

outputs. Each of the three subarrays is composed of the values of output variables and values

of the time variable on the simulation interval so that it is also possible to determine the

corresponding time for each value that characterizes the dynamic regime.

3.3. Determination of dynamic regime values

The peak value that is the maximum absolute value of each of the output variables is com-

puted using Array Max&Min function that returns the maximum and minimum values found

in subarrays, along with the indexes for each value [7]. Since the peak value can be positive or

Figure 9. The second sequence of the program.
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negative, depending on the direction of rotation, the maximum value is displayed for the

maximum positive value and the minimum value for the maximum negative value. Selection

is made through a CASE structure based on the comparison of absolute values corresponding

to the maximum and the minimum values of displacement. Once determined the maximum

value, based on its index, the moment of its appearance is searched.

The steady-state value Sv and the moment of its appearance TSv are computed using a SubVI

named Vstat whose algorithm is shown in Figure 11.

This value is determined for each of the three components of the output vector. It considers the

steady state to be reached if the difference between two consecutive absolute values for out-

puts variable is less than the constant c = 10�6.

The algorithm shown above applies to current, to displacement and/or to speed, and each of

them can be represented by the subarray S(n). The moment of appearance of the steady-state

value TSv is determined by reading the index i of the Sv in subarray S(n), and with this index,

the value with the same index i is searched in subarray T(n), which is an array of the time

values. Implementing of this algorithm in the virtual instrument structure is made by the

SubVI Vstat, and this is shown in Figure 12.

For extracting the values S(i) of the subarray S(n) a while loop is used, whose condition

terminal i is incremented until it fulfills the condition:

S ið Þj j- S i-1ð Þj j ≤ c (12)

The rise time is computed through the difference between time TSv, when is identified the

steady-state value, and the time when is generated the proper input variable. The time when is

generated the input variable is taken from controls which determine the moment of start

through a local variable or Property Node [9] StartS, as shown in Figure 13.

Figure 10. Functions used to display the equations of the model.
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Figure 12. Implementation of the algorithm Vstat.

Figure 11. Algorithm used to compute steady-state value.
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It is known that, if the load torque exceeds the active torque of the electrical machine, the

“overturn” occurs. Therefore, it is necessary that the simulator be able to determine the

overturning moment.

Identifying the phenomenon of “overturn” and the overturning moment is achieved using a

SubVI named SENS, whose algorithm is shown in Figure 14.

Identifying the phenomenon of overturning is done by analyzing the sequence of values Sd(n)

for angular displacement and the determination of the overturning moment is done by com-

paring the successive values Sd(k-1) and Sd(k) in the sequence considered. Thus, the phenom-

enon is considered to occur if:

Sd kð Þ-Sd k-1ð Þ ≤ c1 (13)

where c1 = �0.01 is a negative constant used to make the comparison.

If the torque shape is a pulse, the stop moment TTs and its index are identified in the sequence

of time values and based on this index are removed all values with the index higher than this,

from sequence Sd(n). Obviously, the comparison is done only if two successive values from the

sequence Sd(n) are different from zero.

By fulfilling the condition (13), the value Sot (=Sd(k-1)) is identified, corresponding to the

overturn, in the sequence of values for angular displacement Sd(n), starting with the appear-

ance of the inversion of rotation. To signal the state of overturn, the value “true” is assigned to

the boolean variable Ovt, otherwise the variable receives the value “false.”

Indication of the overturning state is made on the front panel by a red color of a LED indicator

(that otherwise is green) and by blinking message “OVERTURN,” that becomes visible only

when this phenomenon occurs.

Figure 13. Computation of the rise time.
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In cases where the torque is step or ramp shape, considering the fact that these shapes did not

have the stop time, it is not necessary to identify this moment in the times sequence values. In

these cases, the overturn moment Sot is searched by identifying the condition given by (15) for

successive values in sequence of values for angular displacement Sd(n). Completion of the

algorithm is carried on, as in the case of the torque having pulse shape.

After identifying the value Sot, corresponding to the overturning moment, its index is searched

in the sequence of values for angular displacement Sd(n). Based on the index j thus deter-

mined, the moment Tot, the moment when overturn occurs in the time array sequence T(n) is

searched.

Figure 14. Algorithm used to identify the phenomenon of “overturn” and overturning moment.
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Implementation of the algorithm in the virtual instrument structure is made by the SubVI Over

Torque, Figure 15, and this is realized through a While Loop that runs until the condition (13)

is reached or until all values from the sequence of values for the angular displacement Sd(n) are

tested. Depending on the shape of the input signal (Signal Type), one of the three cases is

selected, noting that cases 0 and 2 (step and ramp) are the same.

In the execution of the search operation in the array sequences, 1D Array Search Function is

used, that searches for the element (Sd(k-1)) in a 1D array (Sd(n)) starting at start index for that

is set with 0 value. Because the search is linear, it is no need to sort the array before calling this

function and LabVIEW stops searching as soon as the element is found. To make the index

increments after each test for two consecutive values from the sequence array, the iteration (i)

terminal of the While Loop is used that provides the current loop iteration count, which is zero

for the first iteration.

Another value of the dynamic regime of DC motor that can be determined by the simulator is

the fall time of the DC motor response. This value can be calculated, and it will be displayed as

well, only for a pulse shape input. To display the value of this variable, proper indicators are

used, which become visible on the front panel only if the input signal type is pulse shape.

To determine this value, the algorithm is used as shown in Figure 16.

Proper indicators became visible on the front panel only for a pulse shape input, when

choosing the value true for the boolean variables B1 and B, otherwise their values will be false.

In the sequence of the time values, the index j is identified, corresponding to the stop moment

TTs, so from the sequence of the current and speed values, all values that have the index greater

than j are removed. They are thus obtained for both current and speed variables, two sequences

of values each with S size, and the values in these sequences are reordered starting at index 0.

Determination of fall time of the DC motor response is accomplished by identifying the

moment when an absolute value for current or speed is zero (or less than a constant c2, close

to zero), according to the relations:

Sc ið Þj j < c2

Ss ið Þj j < c2
(14)

Figure 15. Implementation of the algorithm Over Torque.
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where |Sc(i)| and |Ss(i)| represent absolute values extracted from the sequences of values for

current and speed, respectively.

The corresponding indexes k1 and k2 are identified for that the conditions (16) are achieved,

and based on these indexes, the moments TSc and TSs are searched, corresponding to the

achievement of these conditions.

Implementing the algorithm in the virtual instrument structure is made by the SubVI Fall, and

this is shown in Figure 17.

The algorithm for determining the fall time of the DC motor response is made through a case

structure. The three cases of this structure, corresponding to the three types of signals gener-

ated for DC motor command, are selected by controlling the DC Motor voltage from front

panel through the value signal slide.

Figure 16. Algorithm used to identify the fall time of the DC motor response.
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As seen in Figure 17, actual implementation of the algorithm takes place only in the sequence

1, which corresponds to a step shape command type for which is possible the compute this

parameter of the dynamic regime. In the same sequence, boolean variables B1 and B2 are set to

true. In the other two sequences, only the boolean variables B1 and B2 are set to false values.

In the structure of this SubVI, there is another SubVI (Figure 18) called Stationary Value Fall

that determines just the moments in which the absolute values of current and displacement are

0 (or smaller than c2, constant very close to zero). Its operation is similar to determine the

stationary value in the SubVI Over Torque and consists in checking the differences between

two successive values for displacement or current and to determine when this difference is

zero (or less than constant c2 whose value is set in this case at 10�3).

4. Some results of simulation

To illustrate the operation of the simulator, several captures for the following elements of the

front panel are presented:

Figure 17. Implementation of the algorithm Fall.

Figure 18. The SubVI Stationary Value Fall.
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• DC motor voltage and torque, in the graphical form, used as inputs variable shapes;

• DC motor parameters;

• simulation results in the graphical form for current, displacement and velocity used as

outputs variables;

• numerical results and values for dynamical regime parameters, obtained from the simu-

lation process.

Two types of simulations are used as follows:

• DC motors with different parameters are used and their simulation is done under the

same conditions regarding the shape and parameters of input signals, that is, voltage DC

motor and respectively, load torque;

• for the same type of DC, motor forms and parameters of the input signals can be modified

or not, but in this case, one or more of the DC motor parameters are changed.

The simulation is performed for four DC motors with parameters presented in below table.

Motor A Motor B Motor C Motor D

R [Ω] 2.0 1 0.699 2.3

L [H] 0.0169 0.5 0.279 0.00845

Km [N.m/A] 0.283 0.01 0.215 0.66

J [kg.m2] 0.0112 0.01 0.00279 0.052

F [(N.m)/(rad.s)] 0.058 0.1 0.00415 0.002

Considering the first type of simulation, to the four DC motors, a voltage as the control signal

and a load torque having the shape and parameters, such as shown in Figure 19 are applied.

The voltage applied to the DC motors has a pulse shape, with an amplitude of 24 volts, from 2

to 8 s and the load torque increases linearly up to 1 N.m also from 2 s on an interval of 3.6 s.

In Figure 20a–d, the results of simulations corresponding to the four DC motors are presented.

As observed on the displacement graph, in the cases (a), (b), and (d), due to high load torque,

overturning phenomenon occurs, and this phenomenon is indicated by turning on a LED, a

blinking message, and identifying its moment of appearance. The peak values for current,

Figure 19. The inputs shapes used for simulation.

Electric Machines for Smart Grids Applications - Design, Simulation and Control126



displacement and speed with its moments of appearance and also, the overall displacement

are displayed. Evidently, the user can select, for each DC motor, any of the three output

variables or combinations thereof and the type of the transfer function.

For the second type of simulation, the DC motor D is chosen, and that it will be supplied with

voltage under the shape of a step, impulse and ramp and also, that will be under the influence

of a load torque that has a step shape with a front increased linearly.

Figure 20. The results of the motors simulation. (a) Motor A. (b) Motor B. (c) Motor C. (d) Motor D.

Figure 21. Increasing the load torque amplitude of 6–12 N.m.
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In Figures 21 and 22, the simulation results are compared for the DC motor powered by 24 V

for a load torque increasing from 6 to 12 N.m, respectively for a load torque at 6 N.m and

armature resistance decreasing from 2.3 to 0.3 Ω.

5. Conclusions

It is known that computer simulation is an experimental method based on a set of techniques

by which operating with virtual things, the functioning of a real system or process is under-

stood. To understand the functioning of systems dynamics, simulation environments such as

Matlab or Simulink are used, and these simulations can be made based on corresponding

mathematical models. These simulation environments are very powerful in terms of numerical

calculation but offer few facilities for interactive modification of model parameters and/or the

simulation conditions.

The simulator that we propose combines the computing power of the Matlab-Simulink envi-

ronment with interfacing facilities provided by the LabVIEW programming environment. In

this way, the users can understand the dynamics of a system such as a DC motor, following its

chart of response to different stimuli or different operating conditions. On the other hand, by

obtaining the mathematical model expressed by a transfer function in various operating

conditions of the DC motor, students in modeling complex systems in which the DC motor

represents a subsystem can use this one. Getting results in a graphical form allows users to

compact large amounts of information and easily recognize these phenomena then by other

modes of representation that would be more difficult to understand. They can also understand

the effects of changes in the dynamic system parameters of its operation.

Figure 22. Decreasing the armature resistance of 2.3–0.3 Ω.
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In addition, because LabVIEW is mainly a programming environment for data acquisition, it is

possible to make a comparison between data acquired from a real system and data obtained by

simulation from a mathematical model of this system by creating a hardware-in-the-loop

structure.

The simulator can be extended to study other systemswithminimal changes, using corresponding

mathematical models.
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