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Abstract

The preservation of mangrove ecosystem requires knowledge on soil Morphology, 
Physical and Chemical Characteristics, for understanding the requirements for their sus-
tainability and preservation. Seven pedons of mangrove soil, five under fluvial and two 
under marine influence, located in the Subaé River basin were described and classified. 
Samples of horizons were collected for physical and chemical analyses, including Pb and 
Cd. The moist soils were suboxidic, with Eh below 350 mV. The pH of the pedons under 
fluvial influence ranged from moderately acid to alkaline, and pedons under marine 
influence was around 7.0. Mangrove soils under fluvial influence were characterized 
with the highest Pb and Cd concentrations in the pedons, which could be perhaps due 
to it closeness to the mining company Plumbum, while the lowest Pb concentrations was 
registered in the pedon furthest from the factory. Because the pedons had at least one 
metal above the reference level they were considered potentially toxic. The soils were 
classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico, according to 
the Brazilian Soil Classification System and as Thiomorphic orthic Gleysol (salic) sodi-
cluvissol (potentially toxic, very poorly drained) according with FAO. The pedon under 
marine influence was classified in the same subgroup, but the metal concentrations met 
the acceptable standard.

Keywords: pedogenesis, hydromorphism, heavy metals, contamination, pollution
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1. Introduction

1.1. The mangrove soils

Mangrove forests are tropical and subtropical ecosystem characterized by the presence of 

plant species adapted to high temperatures and organic matter content, and fluctuating salini-
ties and oxygen conditions.

Mangroves provide ecosystem services of great social, economic and environmental impor-

tance. They are nurseries for several species of birds, fish and shellfish; they hold a complex 
community supporting benthic organisms that live in salt water and, they are sources of sub-

stantial part of the proteins (shellfish, crustaceans and fish) consumed or marketed by the 
riverside communities [1]. Despite their ecologic, social and economic functions, and benefits 
to coastal communities, mangroves are disappearing worldwide at the rate of 1–2% per year 

due to industrial development, rapid urbanization, population growth and anthropogenic 

activities [2].

Geology, oceanography, biology, geomorphology and pedology researchers, among others, 
classify the mangrove substrate as sediments or soils [3]. Hereafter, the mangrove substrate will 

be referred to as soil because it meets the criteria used by the Soil Survey Staff [4]. That is, they 

have the capacity to support life (i.e. microorganisms such as bacteria and macro organisms 
such as plants), filter water, recycle and purify waste and to provide food for the populations 
that leave riverside. Mangrove soils occur in coastal environments of tropical and subtropi-

cal regions and they are originated from sedimentary material deposited by river and marine 

actions or from the alteration of the sedimentary substrate (parent material). The sediments are 
further altered by organisms adapted to flood, anaerobic and salt conditions [3, 5–7].

Mangrove formation in different regions of the globe is related to sedimentation processes 
occurring in the Quaternary Period, as well as to the relative variations of sea level, in marine 

regressions and transgressions of the last 8–12 thousand years before the present [3, 7–9].

The textural, physical and geotechnical parameters, clay minerals, and pollen records in sedi-

ments from a paleo-delta, in southwest coast of India, throw insights on climate change and 

environment of deposition during the Holocene. Variations in the textural characteristics of 

sediments evaluated reveal a change in depositional environment of deltaic facies, apparently 

from marine to fluvial environment during mid-Holocene marine regression. Further, sand 
and silt mixture in the upper part of borehole suggests that fluvial environment was influ-

enced by the variation in the intensity of monsoon [10].

With the end of the Holocene, the last transgression began, and the sea drowned the valleys 

excavated by hydrography and reworked the Pleistocene sediments forming Holocene sedi-

ments, which filled lagoons, bays and coastal strands [6]. Evaluation of major delta processes 

indicates that deceleration in sea-level was the key factor in Holocene delta formation [9].

Once formed, these points and islands sheltered on their inner side protected areas that from 
lagoons evolved to swamp areas with mangroves [8]. The sediments deposited in the marshy areas 

underwent to general pedogenic processes of addition, removal, transformation, translocation of 
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materials and energy, and specific processes related to aggradation, salinization, gleization, sul-
furization, bioturbation and paludization that result in the formation of different mangrove soils.

The local sedimentation processes depends on the geological, geomorphological, climatic and 

vegetation factors, quantity and quality of the mineral and organic materials fluvio-lacustre 
and marine deposited of each region [3]. There exist a significant interaction among highland, 
estuary (physiographic basin), ocean and atmosphere, as a result of local influence and envi-
ronment specific factors such as climate, relief, and organisms altered formation processes. 
The sediments deposited in the fluvio-marine plains of calmer regions, over time transform 
into soils through pedogenetic process [3, 11].

Mangroves ecosystems are located in lower landscape environments. The soils formed in 

mangroves ecosystems are located in lower landscape because of that they are constantly 

receiving fluvial and marine additions of mineral and organic material to their surface (aggra-

dation) [12]. The sediment accumulation is facilitated by vegetation, especially by mangrove 

species with complex root system and by flocculating salinity effect that leads to the deposi-
tion of fine clay particles carried out by rivers. The rates of sediment deposition in mangrove 
environments in different part of the world vary according to the characteristics of the local 
[13]. According to [14] it is difficult to determine the rate of mud sedimentation beneath man-

groves the author observed deposition rates from 1 to 8 mm year−1, in different regions. The 
more common rate of vertical accumulation is close to 5 mm year−1 [15].

The primary contribution of the Mekong tropical delta helped to understand the stratigraphy 

and history of the formation of mud inland deposits on time scales of centuries and millen-

nia [8]. The sediment accumulation ranges from 0.47 [16] to 10 cm year−1 [8]. The energy of 

the rivers, ocean waves and currents, downstream relief features, root density of mangrove 

species, among other factors determines an uneven and unstable sedimentation pattern. The 
sedimentary or crystalline nature of the rocks occurring in the basins that drain the mangrove 

environments influence: the mineralogy and the texture of the deposited material [3]; the dis-

tribution and extension of quaternary deposits [6, 14, 17]; the distribution of the particle size 
of the mangrove soils [18]; and the geomorphology of the coastal region.

The frequent floods in the mangrove soils by marine salt water trigger the process of saliniza-

tion. Because of the high concentrations of Na+ in the marine water many mangrove soils 

have high rate of sodium saturation coupled with high salt concentrations [12]. Another effect 
of constant flooding of mangrove soil by fluvial and marine influence is the reduction of 
oxygen supply and high biological oxygen demand (BOD). These two factors will result in 
the formation of an environment with low concentration of oxygen that in turn will influence 
the chemistry of sulfur and iron.

Sulfates are abundant in sea water and together with Fe are important elements in the bio-

geochemical cycles of mangrove areas [3]. For sulfur the combination of high organic mat-
ter content, reactive Fe sources and a large quantity of sulfates, readily available, makes the 
mangrove soils an environment conducive to the occurrence of bacterial reduction process of 

sulfidization. The oscillations of redox conditions, due to seasonality, plant action, fauna or 
anthropogenic interventions may result in a more oxidizing condition in the soil, promoting 

sulfide oxidation (sulfurization) [12]. The reduction of iron forms in mangrove soils leads to 
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the formation of a process known as gleização [19]. Moreover, the reduction condition leads 

to the accumulation of organic material due to the low energy yield from the main mineraliza-

tion pathway, replacing the aerobic microbial metabolism in a process called Paludization 

[12]. Also, variation in hydroperiod and soil moisture content affect the amount of organic 
matter in the sediments [20].

The high concentration of organic matter in estuarine environments is explained by factors, 
such as the bioturbation [12] of the local fauna and the contribution of organic material (leaf, 
branches and roots) from the mangrove vegetation. The concentration of C-organic tend to 
be higher in the first horizons where there is a greater amount of roots, algae (diatoms) and 
remains of animal in decomposition [21, 22]. The deposition of these materials associated with 

the hydromorphism reduces the rate of decomposition of the organic compounds.

1.2. Interaction between mangrove vegetation and soil morphological, chemical and 

physical characteristics

Soils of mangrove ecosystems are the result of complex interactions between abiotic factors, 

such as tidal oscillations and biotic factors as the activities of the species and organisms [23].

Soils provide essential nutrients for mangrove species growth and physical structure for plant 

anchorage and stability. They also influence wildlife conservation, and balance the environ-

mental condition. The soil type and its morphological, physical, chemical and physicochemi-

cal characteristics are resultant of interactions between factors such as topography, climate, 

hydrodynamic processes, tidal margin and long-term sea level changes. Therefore, mangrove 

soils have a unique history in any environment [15].

Mangrove soils are generally characterized by reducing conditions and highly variable soil 

salinity [24, 25]. The physiographical position of mangroves within the estuary influence the 
soil properties (pH, Eh, electrical conductivity) and composition (clay mineralogy, organic 
matter and metal concentration) greatly affects soil attributes and environmental functions 
[26, 27]. Mangrove growth is also affected by soil texture, salinity, redox potential, and tem-

perature [28, 29]. The texture of soils is broadly distinguished into sandy loams and silt loams, 

but there is great variability from one region to another.

In a mangrove environment, soils and vegetation have a strong interaction with each other, 

resulting both in the formation process of the former and in the characteristic of the growing 

environment of plants, which develop in communities directly influenced by soil character-

istics. The plant species of the mangroves have their development influenced by the physical 
and chemical soil characteristics [30] which may compromise the growth and structure of spe-

cies [31]. Texture, potential redox, pH, cation exchange capacity, organic carbon and electro 

conductivity can influence nutrient uptake by plants, despite the difference of selectivity of 
each species to remove nutrient from the same environment [32–34].

The concentration of organic matter in mangrove forest varies with the plant species age. 
There exist interrelationships between mangrove vegetation and soil characteristics. As 
the species age, the productivity and the production of litter and organic detritus that are 
deposited in the forest floor and within the soil profile increase [35]. After decomposition of 
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the organic material the accumulation of organic matter increases. The larger organic matter 
content of mangrove soils influence the status of nutrient in the soil as well as pH and redox 
potential soils among others [35].

On the other hand, the distribution of mangrove species along the coast has been attributed 
to: the eco-physiological response of plants to one or more series of environmental gradients; 
the combination of factors such as frequency and duration of flooding, substrate flooding, 
pore water salinity and pore water potential [14] and; the change in the environment deposi-
tion during the Holocene, and to neotectonic factors, such as changes in sea level and varied 

intensity of the southwestern monsoon [10]. Due to this strong interaction and specificities 
of the estuarine environment, mangroves are considered fragile ecosystems, highly sensitive 

to changes in the environment, mainly due to anthropic actions, which tend to disrupt the 

system by modifying the environment.

There are about 50 species of mangroves found in the world adapted to tidal oscillations, tem-

perature, salinity and soil texture. The mangrove species most commonly found are Rhizophora 

mangle (red mangrove), identified by the tangle of aerial roots that promote the exchange of 
oxygen, Avicennia germinans (black mangrove), identified by projections called pneumato-

phores, projected in the soil surrounding the trunk of the tree and Laguncularia racemosa (white 
mangrove) species that projects salts in its leaves. These species may present high growth rates 
in soils without nutritional limitations [36]. There is a relationship between the soil character-

istics and mangrove species [25, 37]. For instance, Rhizophora is found in environments with a 

more alkaline pH, as well as high levels of N, P and C; Laguncularia in soils with sandy loamy 

texture; and Avicennia germinans in environments with lower tidal influence.

As upland soils, the evaluation of mangrove soils may provide suitable indicators of the mac-

rofaunal and nutrient status [38, 39] as well as the effect of anthropogenic impact as indicated 
by the presence of organic and inorganic contaminants.

1.3. Impact of anthropogenic activities on mangrove

In spite of the increased awareness of the value and significance, the mangroves are threat-
ened worldwide by the risk of disappearing, due to economic and social pressure.

Given the importance of mangrove forests and the impacts of global climate change and 
anthropogenic activities on this ecosystem, mangroves should be legally protected however, 

less than 10% fall into this category [40, 41]. According to the Brazilian Law No. 12.727/2012 
of the Forest Code [42] classifies the mangrove forests as Areas of Permanent Preservation. In 
general, the destruction of these forests is linked to anthropic interests, activities and needs 

such as industrial demand, population growth, or poor coastal management, which reflect the 
alteration, degradation and loss of the natural habitat of several species [43].

Uncontrolled industrialization and urbanization in coastal regions, has damaged the man-

grove ecosystem threaten biodiversity, human health [44, 45] and marine life. Heavy metals 

are considered as anthropogenic pollutants of great impact on mangrove ecosystems [46]. The 

effect of heavy metals in mangrove environments is worrying because these ecosystems are 
a nursery for several species (e.g. fish, crabs, oysters), which are consumed and marketed by 
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the riverine population. In Brazil and in the world, the effect of metals has been reported on 
soils, plant species and animals of mangroves [11, 41, 47]. Oil spill can cause lethal impacts to 
plants by preventing transport of oxygen [48]. Enterprises and activities associated with these 

pollutants have been observed located closer to mangroves, becoming potential threatening 

ecosystems [46].

Because they are in environments bordering large human settlements, mangroves are under 
great pressure of use and occupation across the globe. In addition to being exploited, with-

out a rational system of use and management, plants and animals are collected for different 
purposes. In addition to that, the mangrove directly affected by: the discharge of solid and 
liquid wastes from the cities that border the rivers and drain their waters to the sea; and by 
the disorderly occupation of people who drain and bury the mangrove for expansion of urban 

centers. In the municipality of Santo Amaro, Bahia, Brazil, in addition to all the previously 
related problems, the mangroves were contaminated by waste from Pb processing in a factory 

located on the banks of the Subaé River.

2. Study of case: mangrove soil contamination from lead processing 

industry

Industrial activities are known for the deleterious effects on mangroves, particularly for the 
presence of high concentrations of toxic elements such as lead (Pb), cadmium (Cd), mercury 
(Hg), arsenic (As), and zinc (Zn) that cause adverse effects to fauna and flora of mangrove 
forests, directly or indirectly affecting human health.

Negative effects of the presence of toxic elements from industrial activities in mangroves have 
been reported [11], due to galena processing activities in the municipality of Santo Amaro-
Bahia. The mining-metallurgical complex installed in 1960, 2.5 km Northwest of the city for 

the production of lead alloys (Pb), in addition to atmospheric contamination, left a liability of 
around 500 thousand tons of slag (21% Cd and up to 3% of Pb) that resulted in the contamina-

tion of the Subaé River and its estuary due to overflow of the tailings pond.

It is believed that Santo Amaro has the highest urban lead contamination in the world, with 
serious effects on human health, as indicated by the incidence of metal-induced diseases in 
the population and by the environment contamination.

Studies indicate that the presence of heavy metals in the mangroves of the Subaé River Basin 
cause social, economic and health impacts, as the ecosystem is a source of subsistence and 

income for riverside residents, who may be consuming contaminated fish [49, 50]. Negative 

effects on the mangroves of Santo Amaro and São Francisco do Conde were reported by [11], 

which is presented in this study of case. The study characterized and classified mangrove 
soils from Subaé Basin and evaluated the Pb and Cd distribution in horizons of mangrove.

2.1. Materials and methods

The mangroves evaluated in this study are located in the Subáe Basin, Bahia, Brazil, in the 
municipalities of Santo Amaro and São Francisco do Conde (Figure 1). The Subaé River basin 
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is a part of the river basin complex “Recôncavo Norte”, located in Northeastern of Bahia, with 
a total area of 18,015 km2. This area is drained, aside from the Subaé River, by: Subaúma, Catu, 
Sauípe, Pojuca, Jacuípe, Joanes, Açu and the secondary rivers from “Baia de todos os Santos” 
(BTS) and the Inhambupe River [51].

The regional climate is Af (tropical rain forest climate), according to Köppen’s classification, 
i.e., tropical humid to sub-humid and dry to subhumid, with average annual temperature 

of 25.4°C (maximum average of 31°C and minimum of 21.9°C) and annual average rainfall 
varying from 1000 to 1700 mm in the rainiest months and from 60 to 100 mm in the driest 
months [52]. About 2/3 of the territory of Santo Amaro has smooth, wavy relief, coastal pla-

teau, marine and fluvial marine waters.

The region of study is in the Northeaster face from San Francisco craton (Recôncavo 
Sedimentary Basin), of Meso-Cenozoic age, delimited by a subparallel system of normal 
faults. The geology of the area is composed by rocks of the following groups: Santo Amaro 
(Candeias formation: interleaved shale and silt, with levels of limestone and dolomite, 
sandstone); Island Islands (interleaved shale and sandstone, loam, calciferous sandstone, 
carbonaceous shale, silicon and calcilutite); and Brotas (Sergi Formation: fine sandstone to 
conglomerate, conglomerate and subordinate pellet), as well as reservoirs of marshes and 
mangroves [53].

The sample area mangrove areas, there is a predominance of Vertisols, Argisols, Neosols, 
in addition to Gleysols [54] are class of soil prevailing in the area. The plant species found 

in the study area are: Rhizophora mangle (Red mangrove, RM), Laguncularia racemosa (white 
mangrove, WM) and Avicennia schaueriana (black mangrove, BM). The sample location, 
the profile code, the prevailing vegetation and the geographical coordinates are shown 
in Table 1.

Figure 1. Location of the estuarine zone of the Subaé river, Bahia, Brazil. (a) Location of Santo Amaro in the Brazilian 
region. (b) Study area in Santo Amaro. (c) Location of the pedons.
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2.2. Soil sampling

Based on aerial photography data, the closeness to the factory, field observation, tide tables, 
and information provided by local fishermen, seven pedons (P) were selected and sampled, 
of which five pedons represented the fluvial lowland of the Subaé River (P1 to P5) in higher 
areas and 2 of them in lower areas, closer to the sea (P6 and P7) (Figure 1). The pedons P1, P3, 
P4, P5 and P6 are located at Cajaíba island, which divides the Subaé River into two branches 
near its mouth, in an anthropic undisturbed environment (P7) as compared with the man-

grove forest along the river banks on the continent; and one pedon in the neighboring area of 
the former Plumbum Mining (P2).

The sites for vertical cuts of soils were defined by following the tide table: when the tide is low, 
some fluvial dams are formed on the river banks, which enabled the morphological descrip-

tion of profiles and the sampling process, carried out according to [55]. After describing the 
profiles horizon and layer samples were collected, stored in plastic bags, and maintained in a 
cold chamber at 4°C, for subsequent chemical and physical analyses.

2.3. Analytical procedures

2.3.1. Oxidation and reduction potential and pH measurements

The oxi-reduction potential (Eh) and pH level of all pedon horizons and layers were measured 
in the field. The Eh readings (Hanna HI 8424) were obtained by using a platinum electrode 
and corrected by adding potential of the calomelane reference electrode (+244 mV) and the 
pH levels were measured with a glass electrode, which was previously calibrated with stan-

dard pH solutions at 4.0 and 7.0, after balancing samples and electrodes.

2.3.2. Laboratory

Soil samples were air-dried, around 35°C, crumbled, and ground with a soil hammer mill, 

using a 2 mm sieve, to obtain air-dried fine soil.

For texture test, soluble salts were previously removed with 60% ethylic alcohol and organic 
matter by hydrogen peroxide. The pipette method was used with some modifications: 20 g 

Mangrove Identification Vegetation Latitude Longitude

Santo Amaro P1 WM 0533387 N 8,610,674 E

São Brás P2 WM and RM 0529852 N 8,606,114 E

São Bento das Lajes P3 RM and WM 0532483 N 8,605,736 E

Santo Amaro P4 RM and WM 0532395 N 8,607,834 E

Santo Amaro P5 RM, WM and BM 0531579 N 8,605,970 E

Ilha Cajaíba P6 RM and BM 0534697 N 8,602,227 E

Ilha de Araçá P7 WM and BM 0532211 N 8,601,506 E

Table 1. Geographic coordinates of the profiles and respective vegetation predominant along the Subaé Basin.
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of sample was dispersed in 100 mL of water and 10 mL of 1 mol L−1 sodium hexametaphos-

phate [56]. After that samples were kept overnight to settle down in bottom, the samples were 
shaken for 16 h at 30 rpm in a Wagner agitator, model TE-161, following the other procedures 

of the method. The samples were assessed to the following chemical properties: electrical con-

ductivity (EC) in the saturation extract; pH in water (1:2.5 soil:solution ratio); exchangeable 
Ca2+, Mg2+ and Al3+, through titration after extraction with a 1 mol L−1 KCl solution; Na and 
K by flame photometry, following extraction through Mehlich-1; H + Al extracted through 
0.5 mol L−1 calcium acetate at pH 7.0, and determined with 0.025 mol L−1 NaOH. Based on the 
obtained data, it was calculated the sum of bases (S), cation exchange capacity (CEC), and base 
saturation (V). The phosphorus content was determined by photocolorimetry. All determina-

tions were carried out as described by [56]. Organic carbon was determined by the dry method 
(muffle) for classification according to [57]. The sulfur content was determined by sample 

digestion with HCl 1:1, and then calculated by gravimetry after precipitation with BaCl
2
 [56]. 

In order to assess the existence of thionic sulfur in the soil, a 0.01 m soil layer, at field capacity, 
was incubated at room temperature for 8 weeks. Soils with ΔpH [pH(KCl) − pH(H

2
O)] values 

lower than 0.5 units after incubation were considered thionic [57].

Metals were extracted and determined by method 3050B [58], by which 0.5 g of the dry soil 

fraction was ground in an agate mortar and digested in 10 mL of a HNO
3
:H

2
O deionized 

solution, at a 1:1 proportion, with addition of 10 mL H
2
O

2
 for organic matter oxidation, in a 

digestion block heated to 95 ± 5°C for about 2 h. Samples were cooled for 15 min, then 5 mL 
of a HNO

3
 solution was added again. To complete digestion, 5 mL of concentrated HCl and 

10 mL of deionized H
2
O were also added. After digestion, the samples were cooled, filtered, 

completed to 50 mL and the metals Pb and Cd, determined with an atomic absorption spec-

trophotometer (model AAS Varian AA 220 FS).

2.3.3. Soil classification

Based on the morphological description and the analytical results, pedons were classified 
according to the Brazilian System of Soil Classification (SiBCS) [57], the U.S. Soil Taxonomy 

[54], and the World Reference Base for Soil Resources [59].

3. Results and discussion

The results of morphological and physical analyses of pedons located on a plain relief, directly 

exposed to tides, under fluvial (P1 to P5) and marine (P6 and P7) influence, from fluvial-
maritime sediments, deposited on a sediment rocky mineral (shale), are shown in Table 2.

The seven pedons are poorly drained, due to constant flooding by the tide, and, under anaero-

biose conditions, they favor the waterlogging process, which affects the removal, transloca-

tion, and transformation processes of Fe compounds, resulting in bluish and greenish colors, 
with red or yellowish mottles in horizons and layers (Table 2).

Generally, Gleysols have a massive structure, identified in all horizons and layers of the pedons 
under study (Table 2). Although the consistency was not measured in the field, the flooding con-

dition resulted in very or extremely hard soils when dry. The transition between horizons was 
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Horizons Depth Color Structure Transition Texture 

class1

Sand Silt Clay

cm Hue Mottle g kg−1

P1—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–8 Gley 
1–10 GY 
4/1

7. 5 YR 
5/6

Massif Flat and 
diffuse

Very 

clayey

16 196 788

2Agn 8–20 Gley 
1–10 GY 
4/1

7.5 YR 
5/6

Massif Flat and 
diffuse

Very 

clayey

29 192 778

3Agn 20–34 Gley 
1–10 GY 
4/1

7.5 YR 
5/6

Massif Flat and 
diffuse

Very 

clayey

39 122 839

4Agn 34–55 Gley 
1–10 GY 
4/1

— Massif Flat and 
diffuse

Very 

clayey

66 102 832

P2—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–20 Gley 
1 10Y 
2.5/1

10YR 4/6 Massif Flat and 
diffuse

Medium 459 208 333

2Agn 20–32 Gley 
1 10Y 
2.5/1

— Massif Flat and 
diffuse

Medium 476 213 311

3Agn 32–61 Gley 1 
10Y 3/1

— Massif Flat and 
diffuse

Medium 494 185 321

4Agn 61–83 Gley 1 
10Y 4/1

— Massif Flat and 
diffuse

Medium 383 295 322

5Agn 83–102 — — Massif — Clayey 308 271 421

P3—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–5 Gley 1 
5G 4/1

2.5YR 4/8 Massif Flat and 
diffuse

Medium 477 254 270

2Agn 5–25 Gley 1 
5G 4/1

— Massif Flat and 
diffuse

Medium 609 86 305

3Agn 25–49 Gley 
1 5GY 
4/1

10 YR 3/6 Massif Flat and 
diffuse

Clayey 486 124 390

4Agn 49–71 Gley 1 
5G 4/1

— Massif — Clayey 439 209 352

P4—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–7 Gley 1 
5G 3/1

Gley 1 
5G 2.5 /1 
and 7.5 
YR 4/6

Massif Flat and 
clear

Medium 666 78 255

2Agnj 7–18 Gley 2 
10B 3/1

10B 4/1 Massif Flat and 
clear

Medium 378 419 203
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Horizons Depth Color Structure Transition Texture 

class1

Sand Silt Clay

cm Hue Mottle g kg−1

3Agnj 18–41 Gley 1 
5G 5/1

Gley 2 
10GB 4/1 
and Gley 
1 5G 6/2

Massif Flat and 
clear

Sandy 910 3 88

4Agnj 41–60 Gley 1 
5G 4/1

— Massif Wavy and 

abrupt

Medium 688 63 249

4Crgnj 60–70 Gley 1 
10GY 
3/1

2.5 YR 
2.5/4

— — Medium 648 109 244

P5—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–15 Gley 1 
5G 4/1

5YR 4/6 Massif Flat and 
gradual.

Very 

Clayey

26 150 824

2Agn 15–26 Gley 2 
10B 4/1

5YR 4/6 Massif Flat and 
gradual

Very 

Clayey

27 233 740

3Agn 26–43 Gley 2 
10B 3/1

— Massif Irregular and 

Abrupt
Very 

Clayey

27 38 935

4Agn 43–60 Gley 
2 5 PB 

5/1

— Massif Irregular and 

Abrupt
Medium 269 677 54

4Crgn 60–70 Gley 1 
5G 5/2

— Massif — Clayey 211 238 551

P6—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–15 Gley 
1 5GY 
3/1

7YR 3/3 Massif Flat and 
diffuse

Medium 439 458 103

2Agn 15–33 Gley 1 
10Y 3/1

— Massif Flat and 
diffuse

Silty 86 828 86

3Agn 33–48 Gley 1 
5G 3/1

— Massif Flat and 
clear

Very 

clayey

119 272 609

4Agn 48–60 Gley 1 
5G 4/1

— Massif — Very 

clayey

315 27 659

P7—Gleysol thiomorphic orthic (salic) sodic luvissol, very poorly drained

Agn 0–9 Gley 1 
10Y 3/1

7YR 3/3 Massif Flat and 
diffuse

Medium 321 637 42

2Agn 9–17 Gley 1 
10Y 4/1

— Massif Flat and 
diffuse

Medium 291 686 24

2Crgn 17–28 Gley 1 
10Y 4/1

— Massif Flat and 
abrupt

Silty 100 836 64

1Classification according to Embrapa [57].

Table 2. Morphological properties and physical attributes of pedons from mangrove soils in the Subaé river basin, Santo 
Amaro, Bahia, Brazil.
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flat and diffuse (P1, P2, P3, P4, P6, and P7) or gradual (P5), showing sedimentation with layers 
consisting of material with similar composition and homogenized by the action of organisms.

In mangroves, there is a constant sedimentation of fine dust (silt and clay) brought by tidal 
variation, which may be explained by the low-energy environment [60]. Texture varied from 

medium to very clayey, with a predominance of the finer over the sandy fraction (Table 2). 
Also, irregular variation of texture between the soil horizons and layers, in all pedons, indi-
cates major changes in the environmental conditions of the system [61]. Clay in the pedons 

ranged from 2.4 to 93.5%, showing wide texture variability, to, is a characteristic of mangrove 

soils [21]. In most horizons and layers from P1 to P5, the pedons influenced by the river, there 
is a prevalence of the clay fraction, while in the pedons influenced by the sea, P6 and P7, silt 
and clay are predominant.

3.1. Pedons formed under fluvial influence

From the pedons under fluvial influence, P1 located on the edge of the mangrove of the sam-

pled region was shallowest (0.55 m). All horizons and layers had a 1 10GY Gley color, which 
indicates a flooded environment and oxidation process promoted by roots and soil microor-

ganisms. Along P1, a more homogenous texture distribution was observed when compared 
to the other pedons, which may be related to the fact of being in a zone with lower fluvial 
influence, on the riverbank (continent); therefore, in a more protected environment (Table 2).

The deepest pedon was P2 (1.02 m), due to its location at a higher position, so that it is not 
completely flooded for a long time. The layers and horizons of this pedon had a 1 10Y Gley 
color in the whole profile, due to its continuous drying cycles, as well as the presence of very 
fine to thick roots, up to the horizon 5 Agn. The horizon textures of this pedon were medium, 
and the last was the most clayey, possibly indicating accumulation of particulate material in 

the aforementioned horizons (Table 2).

The pedons P3, P4, and P5 have similar depths (around 0.70 m), with colors varying from 1 5G 
4/1 Gley to 2 10B 4/1 Gley and a texture ranging from medium (P3 and P4) to very clayey (P5), 
indicating pedons formed in accumulation and storage regions, respectively. In P4, a horizon 

(4 Agnj) with shell deposition was found, attributed to two possible causes: presence of oysters 
that use the stem and roots of the plant species Rhizophora mangle (predominating in the area) 
as habitat and fall on the ground and are incorporated with time; or as a shell disposal area for 
the fishermen, still on site, as a result of shell fishing (information provided by local fishermen).

The sequence of Ag horizons or layers was identified in P1, P2, and P3 and the Agr sequence 
in P4 and P5, with material discontinuity (fluvial nature), evidenced by stratifications, with 
an irregular texture variation (Table 2) and in-depth organic C content, found in all pedons, 
indicating fluvial sediment storage [59]. In these soils, there are moderate a horizons and the 

Cr layer of P4 and P5 corresponds to a soft rocky mineral, derived from blue-greenish shales 

of the island group, also called “green rust” [62].

3.2. Pedons formed under marine influence

Pedons formed under marine were shallower than those formed under fluvial influence 
(Table 2), which is related to a longer submersion time and the location in a marine estuary, 
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favoring greater particle removal. This behavior is very clear in P7, located in the southern 
part of the island, in the mouth of “Baía de Todos os Santos”, where parental material is 
almost exposed, in addition to sparse or almost absent presence of vegetation.

Dark brown mottles (7YR 3/3) of horizons Agn of P6 and P7 occur due to oxidation of reduced 
Fe forms in microenvironments created by roots and soil biota [61, 63]. The texture of these 

pedons ranged from medium in the surface to very clayey, indicating an alternation of differ-

ent materials deposited over time (Table 2). In P7, high silt percentage may be related to the 
greater particle deposition in the area, the scarce presence or absence of vegetation, and pres-

ence of soft rock at a depth of 0.17 m. The sequence of Agn horizons or layers was identified 
in P6 and Agn-Crg in P7, for the same reasons as explained for pedons under fluvial influence.

3.3. Chemical properties

The results of chemical analyses of pedons under fluvial (P1–P5) and marine (P6 and P7) 
influence are shown in the Tables 3 and 4. Of the seven pedons, four had only an A horizon 
(P1–P3, and P6) and three had an A horizon and a C layer (P4, P5, and P7). All pedons are 
formed by a gley horizon, or a reductive environment, due to tidal movements that maintain 

the soil waterlogged most of the time.

Profile Depth S pH 

(H
2
O)

pH incubation levels1

cm (%) 02 15 30 days 45 60 ΔpH3

P1—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–8 3.6 6.7 6.3 6.3 6.6 6.8 4.9 1.4

2Abgnj 8–20 3.6 6.4 7.1 4.0 3.3 3.1 2.5 4.6

3Abgnj 20–34 3.5 6.2 7.1 3.1 3.1 2.9 2.6 4.5

4Abgnj 34–55 3.7 6.1 8.1 4.2 3.9 3.3 3.1 5.0

P2—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agnj 0–20 3.8 5.8 6.3 5.0 3.7 2.7 3.0 3.3

2Agnj 20–32 3.6 6.0 6.1 3.1 2.4 1.7 2.2 3.9

3Agnj 32–61 3.8 5.9 7.0 3.0 2.2 2.1 2.3 4.7

4Agn 61–83 3.6 6.5 7.5 — — — — —

5Agn 83–102+ 3.8 7.0 7.5 — — — — —

P3—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agnj 0–5 4.0 6.0 7.0 3.7 2.9 2.6 2.4 4.6

2Agnj 5–25 3.9 4.7 6.1 3.4 3.1 3.0 2.9 3.2

3Agnj 25–49 3.8 5.8 7.0 3.0 2.4 2.4 2.3 4.7

4Agnj 49–71+ 3.7 6.4 7.5 3.4 2.5 2.6 2.3 5.2

P4—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–7 3.8 6.4 6.6 5.8 5.4 4.7 4.2 2.4

2Agnj 7–18 3.8 4.7 6.6 3.1 2.4 1.7 2.3 4.3
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The thiomorphic nature of profiles or layers is determined by the ΔpH value after soil incuba-

tion, and soils with ΔpH values >0.5 are identified this way, observed for most of the layers, 
except for the horizons Agn and 4Agn of P5 and 2 Agn and 2 Crgn of P7. The results for the 
thiomorphic nature are according to the total S content, higher than the minimum content 

required (0.75%) to characterize the presence of sulfide materials [64], ranging from 3.3 (2Agnj 
of P6) to 4.0% (Agnj of P3) (Table 3), which is normal for mangrove soils [65, 66].

Organic C contents in pedons formed under fluvial influence (P1, P2, P3, P4, and P5) ranged 
from 47.0 in the 4 Agn horizon in P2 to 53.4 g kg−1 of 4 Agn in P5, with higher nominal values 
than those of soils formed under tidal influence (45.7 in the 2Crgn layer of P7 at 51.7 g kg−1 in 

the 3 Agn of P6 and Agn horizons of P7) (Table 4). However, for both environments, pedons 
were classified as orthic, because the organic C content was below 80 g kg−1.

Profile Depth S pH 

(H
2
O)

pH incubation levels1

cm (%) 02 15 30 days 45 60 ΔpH3

3Agnj 18–41 3.9 5.8 6.9 3.5 2.4 2.2 2.2 4.7

4Agnj 41–60 3.9 4.9 7.0 3.0 2.4 2.2 2.4 4.6

4Crgnj 60–70 3.7 3.6 6.9 2.8 2.5 2.0 2.3 4.6

P5—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–15 3.8 6.6 6.2 6.5 6.3 6.4 6.4 −0.2

2Agnj 15–26 3.8 5.5 6.3 3.4 2.9 2.7 2.7 3.6

3Agnj 26–43 3.4 5.4 6.7 3.0 2.8 2.6 2.4 4.3

4Agn 43–60 3.7 7.4 7.1 7.0 6.6 6.4 7.3 −0.2

4Crgn 60–70+ 3.7 7.6 7.8 7.5 6.4 7.3 7.4 0.4

P6—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agnj 0–15 3.3 5.8 7.2 4.0 3.1 3.2 3.0 4.2

2Agnj 15–33 3.4 6.5 7.1 3.6 3.4 3.7 3.0 4.1

3Agnj 33–48 3.3 5.5 7.3 3.1 3.0 1.7 2.3 5.0

4Agn 48–60 3.3 5.3 7.2 — — — — —

P7—Gleysol thiomorphic orthic (salic) sodic luvissol, very poorly drained

Agnj 0–9 3.9 7.3 7.3 6.6 5.7 5.9 2.9 4.4

2Agn 9–17 3.8 7.2 7.4 6.7 6.4 7.0 7.1 0.3

2Crgn 17–28 3.6 7.0 7.1 6.6 6.6 7.0 7.0 0.1

1Sixty-day incubation.
2It corresponds to pH value on site, humid sample.
3It corresponds to the difference between pH level in the beginning (0) and in the end (60 days).

Table 3. Values for sulfur (S%), pH
H2O, and pH

incubation
 of mangrove soils in the Subaé river basin, Santo Amaro, Bahia, 

Brazil.
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In all pedons, percentage of sodium saturation (PST) values (Table 4) (47% in the 2 Agnj horizon 
of P4 at 69% in the Agn horizon of P1) exceeded the threshold values that classify a soil as sodic 

Horizons/layers Depth CE Ca Mg Al H + Al Na K SB T V PST P C.org.

cm dS 

m−1
cmol

c
 kg−1 % mg kg−1 g kg−1

P1—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–8 40 3.0 14.0 0.2 3.0 51.2 3.6 71.7 75 96 69 5.3 48.8

2Agn 8–20 38 3.8 15.6 0.2 4.8 52.3 3.3 74.8 80 94 66 5.5 49.8

3Agn 20–34 36 3.6 16.9 0.2 5.6 55.5 3.4 79.4 85 93 65 5.7 51.6

4Agn 34–55 42 4.5 15.5 0.2 7.1 49.0 4.0 73.1 80 91 61 4.9 50.2

P2—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–20 35 2.1 7.6 0.1 5.4 14.9 1.2 25.9 31 83 48 5.2 50.6

2Agn 20–32 35 4.5 4.3 0.1 5.3 19.2 1.2 29.2 35 85 56 5.1 54.0

3Agn 32–61 33 3.2 6.7 0.1 4.6 16.4 1.2 27.5 32 86 51 5.2 51.0

4Agn 61–83 31 2.5 10.0 0.1 1.4 18.1 1.9 32.6 34 96 53 5.2 49.6

5Agn 83–102+ 22 3.7 9.6 0.0 1.8 16.0 2.0 31.3 33 95 48 5.4 53.4

P3–Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–5 36 2.7 8.4 0.0 1.9 22.4 1.4 34.8 37 95 61 5.1 50.7

2Agn 5–25 43 2.5 8.0 0.0 8.8 27.7 1.1 39.4 48 82 58 5.0 51.0

3Agn 25–49 44 3.3 10.8 0.0 7.1 35.2 1.6 50.8 58 88 61 4.9 53.0

4Agn 49–71+ 38 3.5 11.3 0.1 5.3 39.5 2.0 56.2 61 91 64 5.4 51.9

P4—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–7 31 1.5 5.3 0.0 2.6 18.1 1.1 26.0 29 91 63 5.1 51.6

2Agnj 7–18 27 1.6 4.2 0.7 6.1 11.7 1.1 18.7 25 75 47 5.1 52.1

3Agnj 18–41 30 2.2 4.6 0.0 4.3 12.8 1.2 20.8 25 83 51 5.3 52.9

4Agnj 41–60 29 2.3 7.4 0.5 6.7 19.2 2.2 31.0 38 82 51 5.1 53.1

4Crgnj 60–70 29 7.8 4.6 3.3 12.3 51.2 1.1 64.7 77 84 66 5.1 50.1

P5—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–15 28 2.9 14.1 0.1 3.6 56.5 3.4 76.9 81 96 70 5.2 53.1

2Agn 15–26 20 3.5 14.7 0.2 7.2 42.7 4.8 65.7 73 90 59 5.4 50.2

3Agn 26–43 38 5.1 13.0 0.3 11.1 59.7 4.8 82.7 94 88 64 5.3 52.4

4Agn 43–60 44 8.6 9.8 0.1 0.9 43.7 2.2 64.3 65 99 67 5.6 47.0

4Crgn 60–70+ 33 4.9 10.1 0.1 1.0 20.3 3.3 38.5 40 97 51 6.2 52.7

P6—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 0–15 36 3.4 11.3 0.1 6.3 38.4 3.1 56.1 62 90 62 5.7 46.6

Morphology, Physical and Chemical Characteristics of Mangrove Soil under Riverine and Marine…
http://dx.doi.org/10.5772/intechopen.79142

147



Horizons/layers Depth CE Ca Mg Al H + Al Na K SB T V PST P C.org.

cm dS 

m−1
cmol

c
 kg−1 % mg kg−1 g kg−1

2Agn 15–33 46 6.3 16.2 0.1 5.6 58.7 4.2 85.4 91 94 64 5.1 48.5

3Agn 33–48 41 5.4 19.6 0.6 10.9 70.4 4.5 99.9 111 90 64 5.4 51.7

4Agn 48–60 57 5.5 11.6 0.1 3.7 71.5 5.4 94.0 98 96 73 5.2 50.2

P7—Gleysol thiomorphic orthic (salic) sodic luvissol, very poorly drained

Agn 0–9 45 4.5 12.8 0.2 2.2 54.4 3.1 74.9 77 97 71 7.1 51.7

2Agn 9–17 48 5.5 10.7 0.2 1.9 58.7 3.0 77.7 80 98 74 5.3 48.7

2Crgn 17–28 42 7.5 15.7 0.2 2.1 67.2 2.8 93.2 95 98 71 5.7 45.7

Table 4. Chemical attributes of pedons in the mangrove in the Subaé river basin, Santo Amaro, Bahia, Brazil.

(PST ≥ 6), which results in clay dispersion and, probably, in soil organic matter dispersion. 
High Na+ levels in all pedons, associated with high pH levels, contribute to the halomorphism 

processes. Excessive salts in the layers or horizons whose EC values ranged from 20 dS m−1 

(2 Agn of P5) to 57 dS m−1 (3 Agn of P6) led to the classification of pedons as salic, since these 
values are much higher than the threshold values to classify soils as salic (EC ≥ 7 dS m−1) [57] 

(Table 4). The salic nature hinders water absorption by terrestrial plants, but is less relevant for 
mangrove plants that are adapted to EC levels exceeding those of the classification.

Sorption complex of pedons is dominated by cations Na+ > Mg2+ > Ca2+ > K+ and, in almost all 

horizons and layers, the Mg2+ content was higher than Ca2+, which is common in estuarine 

environments, and may be attributed to pedogenetic processes, such as soluble salt addition, 
mainly by seawater intrusion and fluvial deposition in a drainage region of fertile soils, as the 
Vertisols in the region.

Most of the pedons had CEC values between 25 (2 Agnj and 3 Agnj of P4) and 111 cmolc kg−1 

(3Agn of P6). Cation exchange capacity (T) values between 22.47 and 45.36 cmolc kg-1, in 
mangrove soils of the Iriri River in “Canal da Bertioga” (Santos, São Paulo, Brazil) [66]. These 

values are high due to a great contribution of organic matter and a predominance of the Na+, 

Mg2+, Ca2+, and K+.

Although being located in an environment with high deposition of organic and mineral com-

pounds, the studied pedons showed low P availability, with contents from 4.9 (4 Agn of P1) 
to 7.1 mg kg−1 (Agn of P7), compared to the contents in Gleysols (19–35 mg kg−1) in “Bertioga 
Canal” [66]. The Al content in all pedons was close to zero and the acidity in the environment 
was due to H, as shown by an evaluation of the difference between potential acidity and 
exchangeable acidity.

Even the pedons under study presenting similar characteristics, pedons formed under river-

ine influence showed some different characteristics from those observed for pedons formed 
under marine influence, as follows.
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3.4. Pedons formed under riverine influence

The pH levels of pedons under riverine influence (P1–P5), assessed in the field, ranged 
from moderately acid (pH 6.1–6.5) in the 2A horizon of P1 and P3 to moderately alkaline 
(pH 7.1–8.1) in the 4A horizon of P2 (Figure 2). Studying the mangrove soils under riverine 
influence in the Marapanim river (Pará, Brazil), Amazon Coast, [21] found pH values similar 

to those obtained in this study. Just as it was observed for physical characteristics, the shal-

lower pedon (P1) and the deepest pedon (P2) showed chemical characteristics different from 
the others under riverine influence.

The pH level of P1 increased at a greater depth, showing a value within the alkaline range 

(8.14), attributed to a higher concentration of Na+, Mg2+ and K+ when compared to the others 

(Table 4). The higher pH values of P2 were registered in the deepest horizons, probably as 
a result of Mg2+ accumulation (Table 4), something which may have happened because of 
closeness to rocks or leaching of the element in the higher layers. Mg2+ accumulation and the 

simultaneous increased pH values at a greater depth, in pedons under riverine influence, was 
not observed only for P4 (Figure 2, Table 3). The pH value in P3, P4, and P5 ranged from 6.2 
to 7.5, and it tended to increase at a greater depth, something which may be explained by Mg2+ 

and Na+ accumulation in the profile (Figure 2, Table 3).

The Eh values of P1 (328–261 mV) and P2 (337–271 mV) were higher in the surface horizons 
and layers and they decreased at greater depths. According to [61–68], decreased Eh values 

at greater depths is usual in estuarine environments. Although this proposition is applicable 
to all of the pedons assessed, it was observed that, in P3 and P4, the horizons with the highest 

Figure 2. Distribution of pH and Eh in depth in the mangrove soil profiles in the Subaé river basin, Santo Amaro, Bahia, 
Brazil.
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Figure 3. Correlation between Eh and pH in the field of the seven pedons from mangrove soils in the Subaé river basin, 
Santo Amaro, Bahia, Brazil.

Eh values were concentrated in the subsurface layers (Figure 2). Water level fluctuation has 
led the Eh values to range from 66 to 74 mV. The Eh values in this study ranged from oxic 
(>300 mV) to suboxic (100–300 mV) (Figure 2), in the reduction range from Mn4+ to Mn2+, 

usually between 200 and 300 mV [69] and they do not reach typical values for anoxic environ-

ments (Eh < 100 mV, pH 7), as those obtained by other studies [61, 63, 68, 70]. It was observed 

by [71] substantial variation in the redox conditions for Rhizophora woods in the Cananeia 
Lagoon System, Brazil, triggering variation in the redox conditions. The suboxic values in this 
study may be explained by the collection of samples from the edge of mangroves, sites that, 

according to [72], favor a quicker drainage and, as a consequence, aeration.

The inverse and significant correlation between pH and Eh (r = −0.705, p < 0.001, n = 30), 
displayed in Figure 3, is mainly due to the presence of Fe oxides. The most common electron 
acceptors in saturated soils, whose reduction tends to buffer Eh for several weeks and, thanks 
to the proton consumption, they cause an increase in the pH level [73].

The Crgn horizon observed in P4, which indicates the presence of carbonate material (shells), 
showed a Ca concentration of 7.8 cmolc kg−1 (Table 4), but one of the lowest pH

H2O levels 

(3.6%) (Table 3), something which may be attributed to the sulfur concentration (3.7%). Sulfur 
compounds may contribute to decrease the pH levels in the environment, solubilizing some 

chemical elements [74].

3.5. Pedons formed under marine influence

Pedons under marine influence (P6 and P7) showed pH values around 7.0 along the whole 
profile (Figure 2), something which may be attributed to a higher Ca2+ and Mg2+ concentration 

(Table 4). Eh values, mainly on the surface of these soils, were lower than those observed for 
pedons formed under riverine influence. These results confirm the inverse relation between 
pH and Eh already pointed out.

Eh values of these pedons showed some characteristics different from those observed for 
the pedons under riverine influence: while the values for pedons under riverine influence 
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were between 250 and 350 mV, those under marine influence varied: P6 (276–292 mV) and 
P7 (276–290 mV). These results may be explained by the fact that pedons under marine influ-

ence remain submersed for a longer time than those formed under riverine influence. There 
is no tendency to decrease Eh values at greater depths and the range of Eh values in P6 

(13 mV) and P7 (14 mV) is lower than the range for Eh values in the pedons formed under 
riverine influence.

3.6. Heavy metals

Soils may naturally show high concentrations of heavy metals derived from weathering 

conditions of the source material rich in these elements or due to anthropogenic influence, 
through the urbanization and industrialization processes. The environment where mangrove 

soils are formed, such as those assessed in this study with CEC values between 25 and 100 

cmolc kg−1 (Table 4) had a great capacity to retain metals coming from tidal waters, fresh 
water, rainwater flow, and atmospheric and anthropogenic precipitation. The presence of 
metals in mangroves is a matter of concern because this environment is the cradle of several 
animal species used as human food (fish, crab, oyster, etc.).

The Brazilian environmental legislation does not have specific rules for heavy metal concen-

trations in coastal environments. In this study, in order to assess the normality level of heavy 

metal concentrations in pedons under riverine (P1–P5) and marine influence (P6 and P7) 
(Table 5), we used Resolution 420/2009, from the Brazilian National Environmental Council 
[75], which provides for soil quality criteria and values regarding the presence of chemical 

substances and it classifies the metal contents observed on the soil as preventive values (the 
threshold concentration of a certain substance on the soil, which is capable of support its main 

functions) and investigation values (concentration of a certain substance on the soil above the 
threshold for potential hazards to human health); and the values established by the National 
Oceanic and Atmospheric Administration [76], which classify the heavy metal content levels 

on the soil as background, preventive threshold (TEL) and hazard to the biota for marine 
sediments (PEL).

3.7. Pedons formed under riverine influence

Lead is among the heavy metals with a greater effect on the aquatic environment, because it 
is, at the same time, toxic, persistent, and bioaccumulative within the food chain [77]. Among 
the pedons under study, P1 had the highest contamination degree, with a Pb concentration 

at all layers above the prevention threshold established by [75] (Table 5). The 4 Abgn horizon 
of P3 also showed lead concentration levels above the prevention threshold. According to the 
[76] classification, all layers and horizons of pedons formed under riverine influence showed 
Pb concentration values between 1 and 3.5 times higher than the TEL value. The 4 Crgnj (P4) 
layer was an exception, since it showed a Pb concentration level below the background. In 

contrast, Pb concentration value in the 2 Abgn (P1) layer, 111.3 mg kg−1, was very close to 

the PEL value (112 mg Pb kg−1). The Pb concentration levels registered in P1 are a matter of 
concern, because the pedon is located at an area frequently used by the riparian population to 

collect shellfish, both for eating and selling.
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Horizon/layer Pb Cd Zn Mn Fe

mg kg−1 dag kg−1

P1—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 85.1 ± 5.7 0.9 ± 0.1 73.4 ± 1.0 128.7 ± 5.0 3.6 ± 0.2

2Abgn 111.3 ± 2.1 1.3 ± 0.1 92.4 ± 0.7 141.2 ± 2.5 5.2 ± 0.0

3Abgn 77.9 ± 2.2 1.2 ± 0.1 95.1 ± 3.5 188.4 ± 0.4 4.6 ± 0.5

4Abgn 82.9 ± 3.1 1.2 ± 0.0 86.4 ± 1.0 235.6 ± 7.5 4.5 ± 0.5

P2—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 58.8 ± 1.8 0.6 ± 0.0 55.2 ± 1.3 90.8 ± 2.0 1.7 ± 0.3

2Abgn 45.9 ± 8.1 0.4 ± 0.1 54.5 ± 2.2 75.7 ± 1.5 1.6 ± 0.2

3Abgn 70.0 ± 8.0 0.8 ± 0.1 55.6 ± 4.7 77.8 ± 1.2 1.9 ± 0.3

4Abgn 55.6 ± 5.5 4.8 ± 7.2 51.4 ± 2.6 99.6 ± 3.9 2.4 ± 0.6

5Abgn 45.0 ± 0.8 0.3 ± 0.0 50.4 ± 3.9 42.8 ± 2.1 2.8 ± 0.1

P3—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 36.5 ± 3.4 0.7 ± 0.1 40.4 ± 0.9 82.6 ± 28.6 1.6 ± 0.1

2Abgn 47.4 ± 2.4 0.6 ± 0.1 43.3 ± 1.1 70.5 ± 1.7 2.1 ± 0.0

3Abgn 53.6 ± 2.4 1.2 ± 0.1 57.8 ± 0.9 98.8 ± 1.3 2.6 ± 0.1

4Abgn 72.5 ± 3.8 1.5 ± 0.2 64.5 ± 1.1 138.2 ± 5.4 2.9 ± 0.3

P4—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 32.0 ± 5.2 0.4 ± 0.2 33.7 ± 1.6 64.0 ± 2.9 1.2 ± 0.1

2Abgnj 35.0 ± 1.9 0.4 ± 0.1 19.5 ± 6.4 39.5 ± 0.2 0.7 ± 0.3

3Abgnj 26.2 ± 2.4 0.4 ± 0.0 23.3 ± 1.5 58.3 ± 1.8 1.0 ± 0.1

4Abgnj 26.6 ± 4.4 0.4 ± 0.0 35.3 ± 1.8 76.1 ± 2.4 1.7 ± 0.0

4Crgnj 14.0 ± 3.6 0.2 ± 0.0 30.9 ± 1.0 98.8 ± 3.8 1.7 ± 0.1

P5—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 54.4 ± 0.6 0.3 ± 0.1 73.1 ± 1.4 241.9 ± 0.2 4.0 ± 0.1

2Abgn 65.5 ± 9.8 0.9 ± 0.2 72.0 ± 3.3 120.3 ± 1.1 3.5 ± 0.0

3Abgn 63.8 ± 7.3 1.4 ± 0.0 73.9 ± 1.7 173.4 ± 2.6 4.2 ± 0.0

4Abgn 45.3 ± 5.4 0.7 ± 0.0 48.2 ± 1.2 240.1 ± 1.8 3.4 ± 0.1

4Crgn 49.5 ± 6.9 1.0 ± 0.1 65.6 ± 0.7 205.8 ± 3.1 4.6 ± 0.1

P6—Gleysol thiomorphic orthic (salic) sodic luvissol, potentially toxic, very poorly drained

Agn 43.7 ± 5.8 0.6 ± 0.1 52.3 ± 1.8 141.4 ± 9.1 2.8 ± 0.1

2Abgn 29.5 ± 1.3 0.4 ± 0.0 62.4 ± 0.7 252.3 ± 4.9 4.5 ± 0.4

3Abgn 6.2 ± 0.6 0.0 ± 0.0 62.2 ± 3.9 280.4 ± 11.1 3.8 ± 0.5

4Abgn 14.7 ± 4.6 0.0 ± 0.0 59.2 ± 0.1 268.7 ± 1.0 3.9 ± 0.0
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Cadmium is a metal of great mobility within the systems and, therefore, it is hard to estab-

lish a distribution characteristic for this metal. Cd values in some horizons of pedons under 

riverine influence, P1 (2 Abgn), P2 (4 Abgn), P3 (4 Abgn) and P5 (3 Abgn), were equal to or 
higher than the prevention values established by CONAMA [75]. Cd concentrations in the 

two pedons under marine influence (P6 and P7) were below the prevention values (Table 5). 
The greater presence of Cd in pedons under riverine influence was also confirmed by the 
NOAA [76] methodology. Only the 5 Abgn (P2), Crgnj (P4), and Agn (P5) layers showed a Cd 
concentration equal to or lower than the values accepted for background [76].

The other layers or horizons showed Cd concentration values above the TEL limits and the 
Abgn layer (P2) showed a Cd concentration level that may cause adverse effects to the biota, 
i.e. a value above PEL (Table 5). The highest Cd concentration levels in pedons under riverine 
influence may be associated with external waste disposal, such as contamination by waste 
disposed during lead mining, in the municipality of Santo Amaro, or, according to [78], in 

urban and industrial activities at the Godavari Estuary, India.

Zn concentration levels in the pedons do not pose a potential risk to the biota, with values 
below the prevention values established by CONAMA [69] and the TEL values established by 
the NOAA [76], and the concentration values in all of the P4 layers, the pedon least affected 
by heavy metals, were lower than the background values (Table 5).

As they are significant elements in many source materials, it is difficult to differentiate Mn 
and Fe concentrations having an anthropogenic origin from the natural ones. Mn concentra-

tions in pedons under riverine influence ranged from 39.5 (2 Abgnj of P4) to 240.1 mg kg−1 

(4 Abgn of P5), values that are below the background established by [76].

Horizon/layer Pb Cd Zn Mn Fe

mg kg−1 dag kg−1

P7—Gleysol thiomorphic orthic (salic) sodic luvissol, very poorly drained

Agn 9.0 ± 4.3 0.4 ± 0.0 68.2 ± 20.2 229.3 ± 86.5 3.4 ± 0.0

2Abgn 11.9 ± 5.0 0.2 ± 0.1 50.7 ± 2.6 271.3 ± 11.0 2.7 ± 0.1

2Crgn 15.3 ± 0.0 0.3 ± 0.1 54.8 ± 2.4 284.3 ± 7.6 2.9 ± 0.1

CONAMA (2013)

Prevention 72.0 1.3 300 — —

NOAA (1999)

Background 4–17.0 0.1–0.3 7–38 400 0.99–1.8

TEL1 30.24 0.6 124.0 — —

PEL2 112.0 4.2 271.0 — —

1TEL: It may affect the biological community.
2PEL: It causes some effect on the biological community.

Table 5. Average and standard deviation of heavy metal concentrations in pedons from the mangrove located in the 
Subaé river basin, Bahia, Brazil and reference values for metals.
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Fe concentrations ranged from 0.7 (2 Abgnj of P4) to 5.2 dag kg−1 (2 Abgn of P1). In all pedons 
under study, either of riverine or marine origin, Fe concentration values were above the back-

ground threshold values established by NOAA [76], except for the Agn and 2 Abgn (P2) and Agn 
(P3) layers and all of the P4 layers, which were below the background concentration (Table 5).

3.8. Pedons formed under marine influence

Generally, pedons formed under marine influence had heavy metal content levels lower than 
those in pedons under riverine influence. None of the pedons formed under marine influence 
showed a Pb concentration value close to the prevention values established by CONAMA 
[75]. According to NOAA [76], Pb concentrations in the 3 Abgn and 4 Abgn (P6) layers and in 
the 2 Abgn and Crgn horizons were lower than the background values and only the Agn (P6) 
layer showed a value higher than the TEL value. Recent study in tropical mangroves showed 
that mangrove forest act as a biofilter towards heavy metals [79]. Mangrove species compo-

sitions change from riverine to marine mangroves due to change in salinity condition and 

geomorphology. Thus, higher level of species diversity of mangroves is crucial to maintain 

the health and productivity of coastal ecosystem [79].

Cd concentrations were lower than the threshold value established as background, although 

in the Agn and 2 Abgn (Pedon 6) and Agn (Pedon 7) layers were higher than the background 
value (Table 5).

Mn concentrations ranged from 141.4 in the Agn horizon of P6 to 284.3 mg kg−1 in the 2 Crgn 

layer of P7, with an increase in the subsurface (Table 5). These values were below the back-

ground established by NOAA [76]. Mn values in the soils having a marine origin were higher 

than those obtained in the pedons formed under riverine influence (P2–P4), but similar to P1 
and P5 (Table 5).

3.9. Soil classification

The morphological, physical, and chemical characteristics determined in the seven pedons, 

regardless of the riverine (P1–P5) or marine (P6 and P7) influence have enabled us to classify 
the soils, according to the SiBCS [57], as Gleysol thiomorphic orthic (salic) sodic luvissol. If 
significant areas having pedons similar to those studied herein are mapped, it may be sug-

gested to the SiBCS the Salic nature as the third category level of the theomorphic Gleysols, 
due to CE values higher than 7 dS m−1 at 25°C (Table 4).

Based on the characteristics shown, soils were classified according to the Soil Taxonomy [9] as 

Entisols (Typic Sufalquents), and pedons P5, under riverine influence, and P7, under marine 
influence, are classified as Haplic Sufalquents, since they show, in some horizon, at a depth 
between 20 and 50 cm below the surface, less than 80 g kg−1 of clay in the fine soil portion, and 
the others (P1, P2, P3, P4, and P6) are classified as Typic Sufalquents. According to the system 
World Reference Base (WRB) [71], soils were not classified as Fluvisols Salic Gleyic (Thionic, 
Sodic), except for pedon P7, which did not show a salic horizon, therefore, it was classified as 
Fluvisols Gleyic (Thionic, Sodic).

Soils in all of the pedons, either under riverine or marine influence, showed an identical clas-

sification, up to the fourth category level regardless irregular characteristics distribution of 
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depth, alternation of layers texture and C-org contents, presence of contaminants (heavy met-
als). It was possible to distinguish only from the fifth category level.

According to Embrapa [57], Gleysols are formed, mainly, due to constant or periodic excessive 
water, whether they are stratified or not, something which may, many times, lead people to clas-

sify these soils as intermediate for Fluvic Neosols. Nevertheless, for the thiomorphic Gleysols 
there is no definition as intermediate for this class (Fluvic Neosols), at the fourth category level, 
but, since this is a striking feature of mangrove soils, it was chosen to classify them at the fifth 
category, in order to suggest the riverine nature, rather than using the texture clustering.

Another characteristic that stands out in soils in the region and has a direct influence on its 
occupation, use, and management is the presence of heavy metal contaminants, which may 

occur due to natural factors and processes (source material) or through anthropic processes 
(introduced into the system by harmful actions). All pedons had heavy metal values higher 
than those established by the environmental authorities [75, 76], except for P7 (Table 5). It 
is believed that, for this last pedon, the longer distance from the contamination point when 

compared to the others may have favored its lower concentration.

In the SiBCS, there is no alternative clearly expressed for including heavy metals in the clas-

sification, it may be included as a differential characteristic that affects soil use and manage-

ment for several purposes, also in the fifth category level, based on a chemical attribute that 
reflects environmental conditions. In the system WRB [59], the prefix Toxic may be used as a 
formative element for second level units, in some classes, in order to indicate the presence, in 

any layer within up to 50 cm of the soil surface, of toxic concentrations of organic or inorganic 

substances that are not the ions Al, Fe, Na, Ca, and Mg.

Based on the classification systems of FAO and the Soil Taxonomy, it was chosen to include 
the term potentially toxic in the sixth category level, related to the SiBCS, for the soils classes 

under study having heavy metal concentration above the reference values established by the 

U.S. National Oceanic and Atmospheric Administration [76]. The pedons under riverine and 

marine influence were classified as Gleysol thiomorphic orthic (salic) sodic luvissol (poten-

tially toxic, very poorly drained), except for P7, due to the low metal concentration.

4. Final remarks

1. Mangrove soils in the Subaé river basin showed different morphological, physical, and 
chemical characteristics when they were under riverine and marine influence.

2. Mangrove soils in the Subaé river basin showed holomorphic, hydromorphic, and sulfate-
reducing conditions, showing some clayeying, as indicated by the morphological, physi-

cal, and chemical characteristics.

3. The highest Pb and Cd concentrations were identified in the pedons under riverine influ-

ence, probably due to closeness to the Plumbum Mining factory and the lowest concentra-

tions were found in pedon P7, due to greater distance from the factory.

4. All pedons in the soils under study had concentrations of, at least, one heavy metal (Mn, 
Zn, Pb, Fe, and Cd) above the minimum value warning (TEL), except for pedon P7.
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5. Mangrove soils, regardless of being under riverine or marine influence, were classified as 
Gleysol thiomorphic orthic (salic) sodic luvissol (potentially toxic, very poorly drained), 
due to the low metal concentration.
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