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1. Introduction  
 

1.1 Background  
Humanoid robots, like the Honda’s ASIMO1, have been developed and such machines will 
be expected to help people to do a variety of tasks in every day life. Then robots that exist in 
the same dynamic environment as humans should be able to interact with humans using 
natural language. 
However, when it comes to developing robots that understand language and work in 
dynamic environment, there are two problems to be solved in usual methods of the natural 
language processing. 
One problem is that of the language grounding which was also pointed out by Roy (Roy, 
2003). In natural language processing systems, meanings of words are defined by other 
words circularly. That is, the words are not connected to objects, movements, colors or other 
physical features in the real world. However, connecting words to the real world is needed 
when a robot is to perform a concrete action following a human’s utterance. For example, 
when a person orders a robot to “kick the red ball”, if the word “red” is not connected to a 
specific color representation in accordance with the real world then the robot cannot realize 
the order. 
Another problem is that the top-down approach, which is very common in natural language 
processing systems, cannot deal with a dynamic environment. For example, SHRDLU 
(Winograd, 1972) is a system that connects words to a virtual world where some blocks exist. 
This system can understand utterances that refer to the virtual world such as “put the red 
cylinder on the green box” and can perform such actions when told, because the designer 
describes knowledge about the limited and static virtual world to the system in advance. On 
the other hand, SHRDLU cannot reply to utterances that refer to things out side of the 
virtual world such as “is the weather fine today?”. Hence, the top-down approach is not 
appropriate to design a robot that has to understand language and work in an open and 
dynamic environment.  Therefore, the bottom-up approach is needed. In the bottom-up 
approach, a robot dynamically learns the connection between words and the real world and 

                                                 
1 ASIMO, http:/www.honda.co.jp/ASIMO 
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can update this knowledge through interaction with humans. Recently, a field called 
Cognitive Developmental Robotics (Asada et al., 2001) has been proposed, paving the way 
for this type of research. Cognitive Developmental Robotics aims to construct an intelligent 
robot which can behave adaptively by learning through interaction with the environment. 
The behaviorism approach “Embodied Intelligence”, advocated by Brooks (Brooks, 1991), is 
another bottom-up approach. 
For above mentioned reasons, a framework in which the robot makes connections between 
words and the real world by itself is an efficient way to develop machines that can perform 
universal tasks and understand natural language in dynamic environments. Thus 
approaches where robots acquire language developmentally like humans have attracted 
attention as one possible method to design the robot. Here we would like to suggest such a 
language acquisition mechanism for a humanoid robot. Our target language is Japanese, 
and we will use italic when giving Japanese examples. 

 
1.2 Related Work 

There are several research groups working on language acquisition for embodied systems. 
Iwahashi et al. proposed a mechanism whereby a robot arm acquires nouns, verbs, word 
order and concepts of movements from pairs of movement video and an audio explanation 
(Iwahashi et al., 2003). In this research, movement was modeled using a hidden Markov 
model (HMM). The system acquires nouns from audio using statistical learning. Verbs are 
also acquired by statistical learning and an embedded mechanism that can represent the 
trajectory of moving object. 
Tani et al. described a system using a recurrent neural network (RNN), where a movable 
arm robot acquires nouns and verbs from pairs of an action pattern and a two word phrase 
(Tani et al., 2005).  
Ogura et al. developed a mechanism where a humanoid robot acquires nouns, verbs, and 
word order using Self Organizing Incremental Neural Network (SOINN), and understands 
three words utterances (Ogura et al., 2006).  
In the above research, utterances lack the naturalness of natural Japanese language we use, 
because they do not use particles at all. Fukui et al. experimented with machine language 
understanding of more natural utterances using an AIBO2 (Fukui et al., 2004). In their 
research, the action representation is a row of numbers which indicates an action, such as 
kicking, heading or making steps, etc. and the AIBO learns words or phrases from pairs of a 
simple sentence and a pattern of movement.  
However, the above mentioned systems do not deal with the understanding of compound 
sentences containing more than one verb. It is rather obvious that it is much more natural to 
give orders to robots by using compound sentences such as "go to the next room and bring 
me a book". Earlier research has concentrated only on spatial concepts such as colors, shapes 
movements or actions, ignoring the necessity to acquire other concepts, such as time or 
negation, for understanding compound sentences. 

 
1.3 Our language Acquisition Model 

We will develop a language acquisition mechanism that can deal  with compound sentences. 

                                                 
2 AIBO, http://www.sony.jp/products/Consumer/aibo/ 
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In a compound sentence, connectives (in Japanese for instance indicating conjunction or 
negation) join main and subordinate clauses. We try to acquire concepts of time and then 
ground connectives to them.  
Below are explanations of four levels of our language acquisition model based on research 
on human language acquisition.  
(a) First, infants acquire the phonology of their mother tongue. In this acquisition step, 
infants use categorical perception (Eimas & Miller, 1980), though we are not concerned with 
phonology acquisition. Assuming that phonology is already acquired and phonologies are 
connected to characters, we use textual inputs for our system.  
(b) Second, the morphology is acquired. Infants learn segmentation of words from 
continuous speech gradually, using prosody and statistical information (Jusczyk, et al., 1999). 
Such statistical segmentation has already been developed as a morphological analyzer for 
textual Japanese such as MeCab3.  Therefore, we use such an analyzer to overcome the 
problem of word segmentation in our system. Utilizing this analyzer, our system has 
knowledge of word segmentation from the beginning. 
(c) Third, the words which are segmented are grounded to appropriate meanings in the real 
world. Nouns are acquired by fast mapping from very few language inputs, because infants 
ground nouns to their meanings using some innate constraints of cognition (Markman, 
1989). Verbs and adjectives have not been studied that thoroughly. Our system does not 
abstract and acquire nouns, verbs, or adjectives yet. 
(d) Finally, we know that infants also infer things inductively (Heit, 2000). Therefore, we 
believe that infants ground abstract words to meaning, such as connectives that include 
partial time concept, by inductive inference from actual examples.  
Our system acquires connectives by abstracting from pairs of a sentence and an action using 
the “Three Examples Based Inductive Learning” method which is based on Inductive 
Learning (Araki & Tochinai, 2000). In this algorithm, we use our system’s innate learning 
ability and innate cognitive ability. The former is the ability to compare if one string 
contains the other string, and then to parameterize the common part; the latter is the ability 
to recognize movements based on the final posture of the robot. This learning algorithm is 
one of original points of this paper, and the acquired connectives have compositionality and 
can create various new meanings by combining known words or phrases. Moreover, the 
humanoid robot is taught actions by users using the direct physical feedback. Direct 
physical feedback means a teaching method where the user teaches the robot by moving its 
arms, legs, or head directly. Thus teaching method is also original. 

 
2. Suggested Method 
 

2.1 System Overview 

Our system is shown in Fig. 1 and it is outlined below. 
(a) A user inputs a command in natural language (Japanese) from a keyboard for the 
humanoid robot. The user can input both a command representing a simple action (see 2.2) 
and a command representing a compound action (see 2.3). 

                                                 
3 MeCab: Yet Another Part-of-Speech and Morphological Analyzer, http://mecab.sourceforge.jp/ 
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(b) The robot applies rules (see 2.8) or examples (see 2.7) that have been previously acquired, 
and performs an action. If there is no rule or example which should be applied, the robot 
does not perform any action. 
(c) When the robot performs an action, the user makes the judgment whether the 
performance is correct or not, and if it is not, the user teaches it the right action (feedback 
process). After that, the system adds a pair of input command and taught action to the 
example database. 
(d) If the humanoid robot does not perform any action, the user teaches it a proper action by 
direct physical feedback (see 2.4). Then the system adds a pair of command and action to the 
example database. 
(e) Finally, the system generates rules which represent meanings of connectives from the 
example database by Three Examples Based Inductive Learning process (see 2.8). 
 

 
Fig. 1. System overview 

 
2.2 Element of Action 

In their work on understanding of order expressions for actions, Shinyama et al. discussed 
about ”the vagueness in instructions and the mistiness in spatial points” (Shinyama et al., 
2001). Regarding the vagueness in instructions, robots have to determine whether a user’s 
utterance instructs to perform something or not. Although, for example, ”can you raise your 
hand?” has a form of a question, it may instruct the robot to raise its hand. Concerning the 
vagueness of spatial points, robots have to determine where the point of the user’s 
instruction is. For example, ”raise your hand” has vagueness of height which the hand 
should be raised to.f 
In our previous work (Hasegawa et al., 2007), to make the acquisition of connective simpler, 
we defined an action as a body movement trajectory of the shortest distance between 
starting and final positions. The final position which the robot should reach is obtained from 
user’s input. Furthermore, we resolve the vagueness by teaching and averaging. The robot 
determines a final position of an action as an average point from all inputs taught by all 
users who input the same command. Within this definition, the system can not deal with 
actions where the final position changes continuously and intermittently, for example, “to 
wave a right hand”. However, the action is represented as a combination of two actions 
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which are ”to move the right hand to the right side” and ”to move the right hand to the left 
side”. 
Then, it is necessary to define a minimum unit of action for segmentation of complex 
movements. We try to perform segmentation based on language inputs from users. Thus, 
we define that a minimum unit of action is an action which is represented by one sentence 
containing only one verb. We call it Element of Action (hereafter abbreviated as EoA). We 
also call a command representing EoA an EoA command. It can be summarized as follows. 
(a) EoA shows final physical position of action. 
(b) EoA command contains only one verb. 
For example, ”migi-te wo agete (raise your right hand)” or ”migi wo muite (look to the right)” 
are EoA commands. This definition of actions has one important problem. The problem is an 
ignorance of a spatial context dependence of actions. For example, in the input “put your 
right hand on your left hand”, the final position of the right hand depends on the spatial 
position of the left hand. By our definition of actions, the system can not learn the correct 
action. However, we regard this as the verb acquisition or the verb understanding problem, 
because the system has to understand that the verb ”put” requires two objects usually. We 
plan to handle it in our future work. Therefore, in our current system verbs are not 
analyzed. In the connective acquisition, our system deals with the verbs which require only 
one object in a limited way. 

 
2.3 Connectives 

A connective is defined as follows. 
(a) A word which is a conjunction or a conjunction particle. 
(b) A segment connecting two sentences, which contains a conjunction or a conjunction 
particle. 
Connectives connect two EoA commands. We also call a command that contains a 
connective a connective command. For example, ”migi-te wo agete kara migi wo muite (face to 
the right after raising your right hand)” is a connective command, and “kara (after)” is a 
connective. According to our definition of connectives, they can contain more than two 
verbs to connect two EoAs. We define an action which contains more than one verb as a 
compound action to distinguish it from a single EoA. Compound actions are performed by 
inputting connective commands. There are not so many types of connectives, but their usage 
slightly depends on individual interpretations regarding timing, speed or quantity of action. 
Thus we consider that robots should learn the meanings of connectives from various users. 
In this case, such knowledge is being acquired like common sense. We use average of all 
inputs and feedbacks to simulate this process. 

 
2.4 Teaching Method 
A humanoid robot learns EoAs and compound actions by being taught by human how to 
move its body. 
There are some methods already developed where a human supervisor teaches actions to 
humanoid robots. In one of them, a user shows actions to a humanoid robot equipped with 
vision and the robot imitates ”seen” actions (Mataric, 2000) (Schaal, 1999). Another is where 
a user makes a humanoid robot learn actions from human’s motion capture (Nakaoka et al., 
2003). However, these methods can teach actions beyond an allowance of a robot’s body 
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structure while our method also helps the user and robot itself to know the functional limits, 
because its body is not exactly the same as a human’s. The robot can not perform an action 
immediately if it exceeds its physical capabilities. Though there is a way where a user 
teaches combinations of primitive movements implemented to a robot beforehand, it is 
difficult to teach new primitive movements and perform corrections. 
Therefore, we decided to implement a direct physical feedback method where humans teach 
actions to a robot by actually moving its body parts. We claim it is a universal and natural 
method which allows teaching within the limits of any humanoid robot’s body structure. 
This approach also allows robots to reproduce movements with very high certainty. Our 
direct physical feedback has the merits, but on the other hand the method to teach very 
complicated actions where many joints must be moved simultaneously and one user is not 
enough to perform the feedback. Therefore, we do not consider our teaching method as a 
general teaching method but as an additional method which complements other methods. 
The direct physical feedback has an advantage in teaching the haptic actions. For example, 
in the teaching method through a vision or a motion capture, it is difficult to teach an action 
where a robot pushes a button or a robot touches something. Because the strength and 
quantity of such actions is very delicate, our method should be faster and easier to use. 

 
2.5 Humanoid Robot 

For our experiments, we used a humanoid robot (KHR2-HV4) shown in Fig. 2. The robot is 
equipped with 17 motors, no sensors and it sends signals describing its motors’ state only. 
We use all 7 motors which are placed in the upper half of the robot’s body. The particular 
motors are abbreviated as follows. [H]:Head, [LS]:Left Shoulder, [LA]:Left Arm, [LH]:Left 
Hand, [RS]:Right Shoulder, [RA]:Right Arm, [RH]:Right Hand. All motors’ 180 degrees 
movements were divided into 10 ranks, 18 degrees each. 
 

 
Fig. 2. KHR2-HV 

                                                 
4 Kondo Kagaku Co. Ltd, http://www.kondo-robot.com/ 

www.intechopen.com



Connectives Acquisition in a Humanoid Robot Based on an Inductive Learning Language 
Acquisition Model 

 

71 

 

2.6 Representation of Action 

An EoA or compound action is represented as a matrix shown in Fig. 3. We call the matrix 
as an action matrix. If a user moves the robot’s body, then it measures all the angles of 
motors in degrees and digitalizes them every 1 second. A row of an action matrix 
corresponds to 1 second, and each row corresponds to every motor’s state in this particular 
second. If a motor does not move, degree of its angle is described as ”x”. An action matrix 
has 28 rows and 8 columns, but the number of lines depends on hardware’s restrictions. To 
make the acquisition of connectives simpler we do not use motor speed information yet but 
we plan to use it when acquiring adverbs. Therefore the row of speed is still not used and 
the matrix can not represent EoAs containing changing speed, for example ”migi-te wo 
hayaku agete (raise your hand quickly)”.  
 

 
Fig. 3. Action matrix 

 
2.7 Example 
The system makes examples from actual inputs from users. An example is a pair of a natural 
language part and an action matrix part. A natural language part is an EoA command or 
connective command. EoA commands and connective commands input by users are 
segmented into morphological elements first using MeCab. Then the system changes ending 
of verbs (which vary depending on conjugation) to original forms by a morphological 
analyzer. We perform morphological analysis to make learning more effective. It means that 
analyzing morphological elements and absorbing a variety of changing verb endings will be 
accomplished only by increasing the number of inputs. Therefore, we use a morphological 
analyzer instead of a vast amount of inputs. An action matrix is generated automatically 
based on its correspondence to the natural language part. The correspondence between 
those parts is being learned from users’ input and feedback. 

 
3. Generation of Rule by Three Examples Based Inductive Learning 
 

3.1 Distinction Examples of EoAs and Compound Actions 

All inputs from users are stored in an example database. Therefore, the system needs to 
distinguish examples of EoAs and compound actions (Fig. 4). Firstly, the system brings out 
any three examples from the example database. In natural language part, if one example’s 
string includes the other two example’s string, then the system distinguishes such example 
as an example of compound action, and the other two examples as an example of EoAs. 
Next, the system extracts EoA example’s final state of motors from action matrix part (Fig. 
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5). Because there are some examples which are the same language part and different final 
state of motors, their final states are averaged. 
 

 
Fig. 4. Distinction of EoA and compound action 
 

 
Fig. 5. Final states of motor 
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3.2 Abstraction of Meanings of Connectives by Three Examples Based Inductive 
Learning 

Meanings of connectives are abstracted from examples of compound actions which contain 
connectives (Fig. 6). In this paper, as our targets are compound sentences which have one 
connective, we do not implement recursiveness of Inductive Learning in our method. 
Therefore, the abstraction of the method is performed one time. 
(a) The system brings out any example of compound action containing two EoAs. 
(b) In natural language part, the system parameterizes substrings of EoA commands of the 
connective command string as @1 and @2. Then, the remaining part of the string is assumed 
to be a connective. 
(c) Next, in the action matrix part of compound action, the system finds rows which 
accomplished final positions of EoAs, and parameterizes the rows as @1 and @2. Then, the 
structure of the remaining matrix represents the meaning of the connective. 
(d) Lastly, a rule becomes a pair of a parameterized natural language part and a 
parameterized action matrix part. 
In a parameterized action matrix, the structure, for example the sequence of parameters or 
the time delay from the first parameter to the next parameter of action matrix, represents 
meaning of connective. Originally Inductive Learning makes abstraction reflexively by 
abstraction among rules. However, in our system, Three Examples Based Inductive 
Learning makes one abstraction for the first step. Therefore, we can deal only with two EoAs 
combinations. 
 

 
Fig. 6. Gengeration of rules by Three Examples Based Inductive Learning 

 
3.3 Averaging of Rules 

Rules are classified into 6 structures as follows. 
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(a) There is no parameter. 
(b) There is only parameter @1. 
(c) There is only parameter @2. 
(d) There are @1 and @2 in normal ascending order. 
(e) There are @1 and @2 in reverse ascending order. 
(f) There are @1 and @2 in the same raw. 
There are rules about a connective having different structure of action matrix, because the 
users’ feedbacks slightly differ for actions with the same connectives. Therefore, the system 
has to average the examples contained in each structure. Firstly, the system distinguishes 
each rule about one connective as 6 structures. Then, in each structure, positions of 
parameter rows are averaged.  

 
3.4 Adaptation Value of Rules 

When there are averaged rules which have different structure, the system needs a criterion 
to select the best one. For this reason, the system calculates adaptation values of rules. The 
system counts the number of rules which have identical structure. Then the system regards 
the number as the adaptation value of the rule. Because the more number of teachings of the 
same rule’s structure increases the higher the credibility of the rule becomes, a rule which 
has the largest adaptation value is referred if there are more rules which can apply. 

 
3.5 Application of Examples and Rules 

When a user makes a command in natural language, the system tries to perform the given 
action by applying previously taught examples and abstracted rules. The process is outlined 
below.  
(a) Firstly, the system tries to apply rules. If input commands contain a connective string 
inside the rules database, then a rule which have the highest adaptive value is chosen.  
(b) Then, the system chooses two EoA examples for parameters in natural language part 
from the rules database. Following the structure of the action matrix of the rule, final states 
of motors of the two EoA examples are inserted in parameters and the action matrix is 
performed by the robot. 
(c) Secondly, if the system can not apply any rules, the system tries to perform the input 
command by applying actions from previous examples. Then, an example which has the 
same string as the input command is chosen and the robot performs an action based on the 
example’s action matrix corresponding to its equivalent in language part. 
(d) Finally, the robot performs no action if there is no rule or example which can be applied 
to the input command. Because the meanings of connectives are abstracted, the system can 
deal with unknown combinations of EoAs. There is an uncountable number of EoAs. Their 
combinations are a product of the EoAs number and EoAs number minus one, however it is 
not necessary to teach a robot this amount of combinations when using our method. 

 
4. Experiment 
 

We implemented the system and experimented on learning connectives. Learning 
experiment and evaluation experiment were conducted. 
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4.1 Learning Experiment 

In this experiment, we determine if the learning system works and the learning process 
converges. We made four participants (age 20-30, all male students of graduate school 
majoring in science) input commands and taught actions to the robot. The system 
accumulates previously input knowledge without deleting it when users change. The flow 
of the learning experiment is shown in Fig. 7. 
1. A participant inputs a command in natural language (Japanese) from a keyboard for the 
humanoid robot. A participant can input one of ten designated EoA commands or one 
connective command containing two of those ten EoAs and any connective he wants. Then 
all connectives are free to choose by participants to make this connective learning 
experiment fair.  
2. The robot applies rules or examples that have been previously acquired, and performs an 
action. If there is no rule and no example which could be applied, the robot does not 
perform any action. 
3. In the end the user evaluates the robot’s performance by using marks shown below and 
teaches the robot the action when needed. 
(a) Correct Response: The system’s reply is regarded by participant as a correct movement. 
(b) Semi-correct Response: The system’s reply is close to the correct response but is not 
perfect in the participant’s opinion. We define correct response and semi-correct response as 
proper responses. 
(c) Erroneous Response: Participant regards the system’s reply as incorrect and teaches the 
correct action to the robot. 
(d) No Response: There is no response from the robot due to the lack of particular 
connective rule(s) and previous teaching of the EoA. The participant has to teach the robot a 
correct action. 
4. Repeat them. 
The system has no knowledge in the beginning, therefore all EoAs are taught by 
participants. In this situation, thing we have to pay attention to is the variety of language. 
For example, ”raise your right hand” and ”rise up your right hand” mean the same action. 
Because there are many ways how to represent the same action, users have to teach a vast 
number of EoAs to the robot. This problem can probably be solved by paraphrasing or other 
techniques; however we regard the problem as one of the future works. Therefore, for this 
stage we restricted the number of EoAs to 10 in order to make learning of connectives more 
effective. We prepared in advance a questionnaire which was answered by 10 participants. 
The questionnaire asked what action the participant would like this robot to perform. From 
this questionnaire results we collected 100 actions, and we chose randomly 10 EoAs which 
our robot can perform with its upper body. We used the 10 following EoAs. 
(a) migi-wo muite (look to the right) 

(b) hidari-wo muite (look to the left) 

(c) migite-wo atama-ni oite (put the right hand on your head) 

(d) hidarite-wo koshi-ni oite (put the left hand on your waist) 

(e) Ain shite (perform the Ain3) 

(f) komanechi shite (perform the Komanecchi4) 

(g) keirei shite (salute [me]) 

(h) akushu shite (shake hands [with me]) 
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(i) gattsu pozu shite (clench [hold up] fists in triumph) 

(j) hidarite-wo mae-ni dashite (hold out your left arm) 

 

 
Fig. 7. System flowchart 

 
4.2 Result of Learning Experiment 

The participants input a total number of 210 commands which contained 157 connective 
commands (all 157 connective commands differed). The number of connectives actually 
used by participants was 25 (see Table 1). The process of learning experiment is shown in 
Fig. 8 and 9. Fig. 8 shows accumulative shifts of proper response ratio, error response ratio 
and no response ratio of all responses. The proper response line shows gradual increase, 
while the no response line shows a radical decrease in the beginning and a gradual decrease 
later. This proves that our system kept learning EoAs and connectives from the state of no 
knowledge, therefore it gradually made the robot perform proper movements. We can also 
observe that the system can correct wrong rules, as the erroneous response line shows a 
slight, gradual decrease. It proves that the system could adapt to changing participants (four 
of them in this case) and could change rules correctly due to the feedback process. Fig. 9 
shows a shift per 10 commands of proper response ratio to 157 connectives commands 
excluding EoA commands. The proper response line comparatively gets steady after 
inputting about 80 connective commands. It means, though the system had no enough 
knowledge to reply with proper responses in the beginning, the robot has corrected its 
knowledge enough to perform proper movements later. 
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-kara (and then) ** 

nagara (and at the same time) ** 

mae-ni (before) ** 

ato (after) ** 

-naide (without) ** 

– (–) ** 

-to doji-ni (while) ** 

-kara yukkuri (and after that slowly) * 

sugu (do just after) * 

-to misekakete (pretend to do and after that) * 

ato-de (after that) 

sukoshi[Kanji] matte-kara (after waiting a while) 

ato-de takusan matsu (wait a few minutes and after that) 

tsutsu (and) 

shibaraku shite-kara (after some time) 

sono mama (keep on) 

ato-de (Kanji) (after that) 

soshite (after) 

soshite takusan matte-kara (after waiting couple of minutes ...) 

toki (when ...) 

kara sugu (soon after) 

sukoshi [Kana] matte-kara (after waiting a second) 

takusan matte-kara (after waiting several seconds) 

-to omowasete (after making one think that you do...) 

... furi-shite (pretend to ... and after that) 

Table 1. Connectives from participants 
 

 
Fig. 8. Shift of the system response 
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Fig. 9. Shift of the system response (connective commands) 

 
4.3 Evaluation Experiment 

In this experiment, we determine if rules acquired in the learning experiment are correct. 
We asked four participants to evaluate the rules. The participants (age 20-30, all male and 
majoring in science) were different from the learning experiment participants. 25 
connectives were proposed by participants during the learning experiment. However, there 
were cases where participants made mistakes while teaching. We took them into 
consideration and chose connectives input by participants more than three times as target 
rules of this evaluation. There were ten of such rules obtained (rules marked ”**” or ”*” in 
Table 1).  
By adding two EoAs to each of ten target connectives, we made ten connective commands. 
Then the robot performed those connective commands, and the four participants were 
shown the commands and the actions. The participants evaluated actions with the following 
evaluation values. 
(a) Success: Score=3 
(b) Almost Success: Score=2 
(c) Failure: Score=1 

 
4.4 Result of Evaluation Experiment 

We define a ”correct rule” as a rule which was evaluated as ”Success: Score=3” or ”Almost 
Success: Score=2” by all participants. The overall precision was calculated by Formula (1), 
and the precision of connectives acquisition was 0.7. 
From the evaluation results we can find that the system can acquire connectives which 
signify simple relation of order conjunction (for instance, ”nagara [and at the same time]” or 
”mae-ni [before]”). We partially acquired a concept of time using the embodied system. 
Furthermore the system acquired a connective that represents meaning of logical negation. 
That is ”naide (without)”. The system could not acquire three connectives. First of them, ”-
kara yukkuri (and after that slowly)” was scored 1 by only one participant. This connective 
contains an adverb. However, other participant scored 3 for the same performance. It shows 
that the evaluation of performance requested with the same command depends on 
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participants. In the second case, ”sugu (just before)” was scored only 2 or 1. This connective 
also contains an adverb. The last one, ”misekakete (pretend to do and after that)” is scored 1 
by all participants. It contains a verb and the system still can not understand verbs correctly. 
The robot still can not represent verb meaning. Therefore, the connectives including verbs 
are not acquired. We plan to work on a mechanism to acquire verbs in the near future. 
 

timesmoreorthreeappliedrulesofnumberthe

rulescorrectofnumberthe
Precision =  

 
         (1) 

 
Rule Evaluation 

(participants A, B, C, D) 
sum 

@1 kara @2 (@1 and then @2) 3, 3, 2, 2 10 

@1 nagara @2 (@1 and at the same time @2) 3, 2, 3, 3 11 

@1 mae-ni @2 (@2 before @12) 3, 3, 2, 3 11 

@1 ato @2 (@2 after @1) 3, 3, 2, 3 11 

@1 naide @2 (@2 without @1) 3, 3, 3, 3 12 

@1 @2 (@1 @2) 3, 3, 3, 3 12 

@1 -to douji-ni @2 (@1 while @2) 3, 2, 2, 3 10 

@1 -kara yukkuri @2 (@1 and after that slowly @2) 1, 2, 2, 3 8 

@1 sugu @2 (@1 just before @2) 2, 2, 1, 2 7 

@1 -to misekakete @2 (pretend to @1 and after that @2) 1, 1, 1, 1 4 

Table 2. Evaluation 

 
5. Discussion 
 

5.1 Compositionality of Rules 

In Fig. 9, the system responded to unknown connective commands with an accuracy of 
about 0.7 after 90 commands. These commands are new combinations of EoAs. The number 
of possible commands that can be made by such combinations is 2,500, because the number 
of EoAs is ten and the number of connectives that were input by users is 25. Still the system 
could respond with high accuracy by learning only a small number of commands. Thus, we 
can conclude that the acquired connectives that are abstract rules have compositionality and 
the rules can handle many new meanings by combination of simple sentences. Such 
compositionality is one important aspect of natural language. The system is able to produce 
different (and not previously input) results by varying EoAs. This is one advantage of our 
learning algorithm. 

 
5.2 Learning Algorithm 

In  the  learning  algorithm  which we  suggested, the system  can  only  connect  two  simple 
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sentences, though humans can create complex orders with many clauses following each 
other, for example ”@A and after that @B and then @C and after that ...”. This is because the 
process of comparing and parameterization is not recursive. We have to extend the learning 
algorithm to compare not only examples, but also rules recursively. 
Furthermore, we utilized an innate learning ability and an innate cognitive ability as a basis 
for the learning algorithm. The cognitive ability is the ability to recognize movements based 
on the final posture of the robot. However, this is too simplistic to be able to recognize many 
types of movements. With this limited basic ability, the system cannot correctly recognize 
for example waving movements or movements in which the final posture depends to the 
context. Therefore, we have to extend the cognition ability. 

 
5.3 The Number of EoAs 
In this paper, we do not abstract the EoAs themselves. Therefore, the number of EoAs grows 
large. If one user inputs a command expressed a little bit differently than the other users’ 
commands, then the system recognizes it as a completely different input and does not 
perform any action. The users may have to teach EoAs endlessly. For example, we have to 
teach ”raise your right hand” and ”raise your left hand” separately, because the commands 
mean different actions. However, if the system acquired the meaning of the verb ”raise” 
after being taught ”raise” a few times, then the system could autonomously create the 
unknown action represented as ”raise your left hand” by combining it with meaning of ”left 
hand”. To solve this problem, we need acquisition of verbs, adverbs and nouns. To acquire 
the meanings of verbs, we need a representation system for them. Such system has to be 
able to handle both abstraction and symbol manipulation. 

 
5.4 Two Types of Ambiguity of Connectives 

We believe that there are two types of ambiguity in connectives. One is ambiguity 
depending on a user’s peculiarities and the other is ambiguity depending on other context 
factors where the connective usage patterns may change for the same user. The former 
ambiguity can be resolved by distinguishing users, though we do not currently implement 
that. However, the latter ambiguity remains a problem to be solved. For example, ”raise 
your right hand before raising your left hand” is ambiguous because the robot cannot 
decide if the right hand should be lowered before raising left hand or the right hand should 
remain raised. 

 
6. Conclusions and Future Work 
 

We proposed a language acquisition model based on an Inductive Learning Language 
Acquisition Model. Then we focused on connectives acquisition under the assumption that 
our system already acquired phonology and morphology. The proposed connectives 
acquisition algorithm is that the system inductively abstracts meanings of connectives from 
pairs of connectives and motor patterns. As a result of two experiments, we confirmed that 
the system learns connectives with an accuracy of 0.7 and the acquired connectives have 
compositionality.  
In our future work, we will concentrate on improving the recursive learning algorithm. 
After that, we will work on a verb acquisition algorithm for humanoid robots. 
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