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Abstract

Titanium dioxide (TiO
2
) has been widely used as a photocatalyst in many environmental 

and energy applications due to its efficient photoactivity, high stability, low cost, and 
safety to the environment and humans. However, its large band gap energy, ca. 3.2 eV 
limits its absorption of solar radiation to the UV light range which accounts for only 
about 5% of the solar spectrum. Furthermore, the photocatalytic activity of TiO

2
 is also 

limited by the rapid recombination of the photogenerated electron-hole pairs. When used 
in water treatment applications, TiO

2
 has a poor affinity toward organic pollutants, espe-

cially hydrophobic organic pollutants. Several strategies have been employed to reduce 
its band gap energy, its electron-hole recombination rates as well as enhance its absorp-
tion of organic pollutants. In this chapter, we review some of the most recent works that 
have employed the doping, decoration, and structural modification of TiO

2
 particles for 

applications in photocatalysis. Additionally, we discuss the effectiveness of these dop-
ants and/or modifiers in enhancing TiO

2
 photoactivity as well as some perspective on the 

future of TiO
2
 photocatalysis.

Keywords: titanium dioxide, photocatalysis, environmental pollution, modification

1. Introduction

The rapid growth of global population as well as industrialization has led to a concomitant 

increase in environmental pollution. This has very negative effects on natural elements that 
are vital for life on earth such as air and water. It becomes very crucial therefore to find sustain-

able ways to mitigate pollution in order to provide a clean and safe environment for humans. 

Photocatalysis has attracted worldwide interest due to its potential to use solar energy not 
only to solve environmental problems but also provide a renewable and sustainable energy 
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source. An efficient photocatalyst converts solar energy into chemical energy which can be 
used for environmental and energy applications such as water treatment, air purification, 
self-cleaning surfaces, hydrogen production by water cleavage and CO

2
 conversion to hydro-

carbon fuels.

Research in the development of efficient photocatalytic materials has seen significant 
progress in the last 2 decades with a large number of research papers published every 

year. Improvements in the performance of photocatalytic materials have been largely cor-

related with advances in nanotechnology. Of many materials that have been studied for 

photocatalysis, titanium dioxide (TiO
2
; titania) has been extensively researched because it 

possesses may merits such as high photocatalytic activity, excellent physical and chemical 
stability, low cost, non-corrosive, nontoxicity and high availability [1–4]. The photocata-

lytic activity of titania depends on its phase. It exists in three crystalline phases; the ana-

tase, rutile and brookite. The anatase phase is metastable and has a higher photocatalytic 
activity, while the rutile phase is more chemically stable but less active. Some titania with 
a mixture of both anatase and rutile phases exhibit higher activities compared to pure 

anatase and rutile phases [5–7]. When titania is irradiated with light of sufficient energy, 
electrons from the valence band are promoted to the conduction band, leaving an electron 
deficiency or hole, h+, in the valence band and an excess of negative charge in the conduc-

tion band. The free electrons in the conduction band are good reducing agents while the 

resultant holes in the valence band are strong oxidizing agents and can both participate in 

redox reactions.

Titania however suffers from a number of drawbacks that limit its practical applications in 
photocatalysis. Firstly, the photogenerated electrons and holes coexist in the titania particle 
and the probability of their recombination is high. This leads to low rates of the desired chem-

ical transformations with respect to the absorbed light energy [8, 9]. The relatively large band 

gap energy (~ 3.2 eV) requires ultraviolet light for photoactivation, resulting in a very low 
efficiency in utilizing solar light. UV light accounts for only about 5% of the solar spectrum 
compared to visible light (45%) [1, 10]. In addition to these, because titania is non-porous 
and has a polar surface, it exhibits low absorption ability for non-polar organic pollutants 
[10–13]. There is also the challenge to recover nano-sized titania particles from treated water 

in regards to both economic and safety concern [14]. The TiO
2
 nanoparticles also suffer from 

aggregation and agglomeration which affect the photoactivity as well as light absorption 
[15–18]. Several strategies have been employed in the open literature to overcome these draw-

backs. These strategies aim at extending the wavelength of photoactivation of TiO
2
 into the 

visible region of the spectrum thereby increasing the utilization of solar energy; preventing 

the electron/hole pair recombination and thus allowing more charge carriers to successfully 

diffuse to the surface; increasing the absorption affinity of TiO
2
 towards organic pollutants as 

well as preventing the aggregation and agglomeration of the nano-titania particles while eas-

ing their recovery from treated water. Several reviews have been published in recent years on 

the development of strategies to eliminate the limitations of titania photocatalysis [1, 19–25]. 

Most of these however focus on pollutant removal from wastewater, water splitting for hydro-

gen production, CO
2
 conversion and reaction mechanisms [1, 21, 25–31]. In this chapter, we 

review some of the latest publications mainly covering the last 5 years, on strategies that have 
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been researched to overcome the limitations of TiO
2
 for general photocatalytic applications 

and the level of success that these strategies have been able to achieve. Based on the current 

level of research in this field, we also present some perspectives on the future of modified TiO
2
 

photocatalysis.

2. Modification of TiO
2
 photocatalysts

A large number of research works have been published on TiO
2
 modification to enhance its 

photocatalytic properties. These modifications have been done in many different ways which 
include metal and non-metal doping, dye sensitization, surface modification, fabrication of 
composites with other materials and immobilization and stabilization on support structures. 

The properties of modified TiO
2
 are always intrinsically different from the pure TiO

2
 with 

regards to light absorption, charge separation, adsorption of organic pollutants, stabilization 
of the TiO

2
 particles and ease of separation of TiO

2
 particles.

2.1. Metal doping

Metal doping has been extensively used to advance efforts at developing modified TiO
2
 pho-

tocatalysts to operate efficiently under visible light. The photoactivity of metal-doped TiO
2
 

photocatalysts depends to a large extent on the nature of the dopant ion and its nature, its 
level, the method used in the doping, the type of TiO

2
 used as well as the reaction for which 

the catalyst is used and the reaction conditions [32]. The mechanism of the lowering of the 

band gap energy of TiO
2
 with metal doping is shown in Figure 1. It is believed that doping 

TiO
2
 with metals results in an overlap of the Ti 3d orbitals with the d levels of the metals caus-

ing a shift in the absorption spectrum to longer wavelengths which in turn favours the use of 

visible light to photoactivate the TiO
2
.

Doping of TiO
2
 nanoparticles with Li, Na, Mg, Fe and Co by high energy ball milling with 

the metal nitrates was found to widen the TiO
2
 visible light response range. In the Na-doped 

sample, Ti existed as both Ti4+ and Ti3+ and the conversion between Ti4+ and Ti3+ was found to 

prevent the recombination of electrons and (e−) and holes (h+). The metal ion doping promoted 

crystal phase transformations that generated electrons (e−) and holes (h+) [33]. Mesoporous 

TiO
2
 prepared by sol gel technique and doped with different levels of Pt (1–5 wt% nominal 

loading) resulted in a high surface area TiO
2
 with an enhanced catalytic performance in pho-

tocatalytic water splitting for the Pt-doped samples. The 2.5 wt%Pt-TiO
2
 had showed the opti-

mum catalytic performance and a reduction in the TiO
2
 band gap energy from 3.00 to 2.34 eV 

with an enhanced electron storage capacity, leading to a minimization of the electron-hole 
recombination rate [34]. Noble metal nanoparticles such as Ag [35], Pt [34], Pd [36], Rh [37] 

and Au [38] have also been used to modify TiO
2
 for photocatalysis and have been reported 

to efficiently hinder electron-hole recombination due to the resulting Schottky barrier at the 
metal-TiO

2
 interface. The noble metal nanoparticles act as a mediator in storing and trans-

porting photogenerated electrons from the surface of TiO
2
 to an acceptor. The photocatalytic 

activity increases as the charge carriers recombination rate is decreased.
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In a recent review by Low et al. [21] the deposition of Au onto TiO
2
 surface is reported to result 

in electron transfer from photo-excited Au particles (> 420 nm) to the conduction band of TiO
2
, 

which showed a decrease in their absorption band (∼550 nm) and the band was recovered by 

the addition of electron donors such as Fe2+ and alcohols. Zhang et al. [39] reported that the 

visible light activity of coupled Au/TiO
2
 can be ascribed to the electric field enhancement near 

the metal nanoparticles. Moreover, numerous researchers coupled Au and Ag nanoparticles 
onto TiO

2
 surface to use their properties of localized surface plasmonic resonance (LSPR) in 

photocatalysis [40]. Wang et al. [41] and Hu et al. [42] reported an improved photocatalytic 

performance due to the Pt nanoparticle which increased the electron transfer rate to the oxi-

dant. It was observed that photocatalytic sacrificial hydrogen generation was influenced by 
several parameters such as platinum loading (wt%) on TiO

2
, solution pH, and light (UV, vis-

ible and solar) intensities [43]. Moreover, complete discoloration and dye mineralization were 
achieved using Pt/TiO

2
 as catalyst; the results were attributed to the higher Pt content of the 

photocatalyst prepared with the highest deposition time. For Pt-TiO
2
 catalysts the best discol-

oration and dye mineralization were obtained over the catalyst prepared by photochemical 

deposition method and using 120 min of deposition time in the synthesis. These results may 

be due to the higher Pt content of the photocatalyst prepared with the highest deposition time.

Figure 1. Band-gap lowering mechanism of metal-doped TiO
2
.
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Haung et al. [44] prepared Pt/TiO
2
 nanoparticles from TiO

2
 prepared at various hydrolysis pH 

values and found that the phase of TiO
2
 obtained depended largely on the hydrolysis pH. The 

anatase/rutile intersection of a Pt/TiO
2
 sample had a lower recombination rate compared to the 

anatase phase of Pt/TiO
2
 due to the longer recombination pathway. Though, the Pt/TiO

2
 ana-

tase phase showed better degradation efficiency than the Pt/TiO
2
 anatase/rutile intersection. 

The decrease in the anatase composition of TiO
2
, and the decrease in the composition of TiO

2
 

resulted in the degradation rate decrease, suggesting that anatase composition in the Pt/TiO
2
 

system played a crucial role of increasing the photocatalytic degradation of Acid Red 1 dye.

Liu et al. [45] prepared the palladium doped TiO
2
 (Pd-TiO

2
) photocatalyst using chemical 

reduction method and tested it the photocatalytic degradation of organic pollutant. It was 

found that the TiO
2
 grain size was reduced while the specific surface area increased and the 

absorption of ultraviolet light also enhanced after using chemical reduction method, how-

ever, all these changes had no effect on degradation of organic pollutant. But the degradation 
was significantly improved due to the deposition of Pd nanoparticles; the Pd/TiO

2
 organic 

pollutant degradation was 7.3 times higher compared to TiO
2
 (P25).

Repouse et al. [46] prepared a series of noble metal promoted TiO
2
 (P25) by wet impregnation 

and found that the dispersion of the small metal crystallites on TiO
2
 did not affect the optical 

band gap of TiO
2
. The Pt-promoted catalyst exhibited the highest photocatalytic efficiency 

in the degradation of bisphenol A under solar irradiation. They also found the presence of 

humic acid to considerably improve the reaction rate of Rh/TiO
2
 but had a clearly adverse 

effect with P25 TiO
2
 photocatalyst. Fluorescence data revealed that humic acid is capable of 

photosensitizing the Rh/TiO
2
 catalyst.

Indium-doped TiO
2
 have recently been used for photocatalytic reduction of CO

2
 [47]. Indium 

doping resulted in an increase in surface area because of suppression of TiO
2
 particle growth 

during the TiO
2
 synthesis. The light absorption ability of the In-TiO

2
 was enhanced due to the 

introduction of the impurity level below the conduction band level of the TiO
2
. The photocata-

lytic CO
2
 reduction activity of the In-TiO

2
 was about 8 time that of pure TiO

2
 as a consequence 

of the high surface area and extended light absorption range.

The doping of TiO
2
 with transition metals such as Cr [48], Co [48], Fe [48–50], Ni [48, 51], Mn 

[48, 52], V [53], Cu [54], Ni [51] and Zn [55], has been studied by different research groups. 
Numerous studies reported that doping of TiO

2
 with transition metals improve the photo-

catalytic activity, attributable to a change in the electronic structure resulting in the absorption 
region being shifted from UV to visible light. The shift results from charge-transfer transi-
tion between the d electrons of the transition metals and the conduct or valence band of TiO

2
 

nanoparticles. Inturi et al. [48] compared the doping of TiO
2
 nanoparticles with Cr, Fe, V, Mn, 

Mo, Ce, Co, Cu, Ni, Y and Zr and it was found that Cr, Fe and V showed improved conversions 
in the visible region while, the incorporation of the other transition metals (Mn, Mo, Ce, Co, 
Cu, Ni, Y and Zr) exhibited an inhibition effect on the photocatalytic activity. The Cr-doped 
TiO

2
 demonstrated a superior catalytic performance and the rate constant was found to be 

approximately 8–19 times higher than the rest of the metal doped catalysts. It was reported that 

the reduction peaks in Cr-doped TiO
2
 shifted to much lower temperatures, due to the increase 

in the reduction potential of titania and chromium. Therefore, the higher photocatalytic 
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efficiency of Cr/TiO
2
 in the visible light can be attributed to strong interaction (formation of 

Cr-O-Ti bonds). Fe-doped TiO
2
 nanoparticles were used in the visible light degradation of 

para-nitrophenol and it was found that the Fe-dopant concentration was crucially important 

in determining the activity of the catalyst. The maximum degradation rate of para-nitrophenol 

observed was 92% in 5 h when the Fe(3+) molar concentration was 0.05 mol%, without addition 
of any oxidizing reagents. The excellent photocatalytic activity was as a result of an increase in 

the threshold wavelength response as well as maximum separation of photogenerated charge 

carriers [49]. On the other hand, Fe-doped TiO
2
 evaluated for solar photocatalytic activity for 

the degradation of humic acid showed a retardation effect for the doped catalysts compared 
to the bare TiO

2
 specimens, which could be attributed to surface complexation reactions rather 

than the reactions taking place in aqueous medium. The faster removal rates attained by using 
bare TiO

2
 could be regarded as substrate specific rather than being related to the inefficient 

visible light activated catalytic performance [50]. Ola et al. [56] reported that the properties of 

V doped TiO
2
 were tuned towards visible light because of the substitution of the Ti4+ by V4+ 

or V5+ ions since the V4+ is centred at 770 nm while the absorption band of V5+ is lower than 

570 nm. Moradi et al. [57] obtained high photocatalytic activity of Fe doped TiO
2
 and studied 

the effects of Fe3+ doping content on the band gap and size of the nanoparticles. It was found 

that the increase in the doping content decreased the band gap energy and particle size from 

3.3 eV and 13 nm for bare TiO
2
 to 2.9 eV and 5 nm for Fe

10
-TiO

2
, respectively.

The rare earth metals doped TiO
2
 catalyst also have good electron trapping properties which 

can result in a stronger absorption edge shift towards longer wavelength, obtaining narrow 
band gap. Bethanabotla et al. [58] carried out a comprehensive study on the rare earth doping 

into a TiO
2
 and found that the rare earth dopants improved the aqueous-phase photodegrada-

tion of phenol at low loadings under simulated solar irradiation, with improvements varying 
by catalyst composition. Differences in defect chemistry on key kinetic steps were given as 
the explanation for the enhanced performance of the rare earth doped samples compared to 

pure titania. Reszczyńska et al. [59] prepared a series of Y3+, Pr3+, Er3+ and Eu3+ modified TiO
2
 

nanoparticles photocatalysts and results demonstrate that the incorporation of RE3+ ions into 

TiO
2
 nanoparticles resulted in blue shift of absorption edges of TiO

2
 nanoparticles and could be 

ascribed to movement of conduction band edge above the first excited state of RE3+. Moreover, 
incorporated RE3+ ions at the first excited state interact with the electrons of the conduction 
band of TiO

2
, resulting in a higher energy transfer from the TiO

2
 to RE3+ ions. But observed 

blue shift could be also attributed to decrease in crystallite size of RE3+–TiO
2
 in comparison to 

TiO
2
. The Y3+, Pr3+, Er3+ and Eu3+ modified TiO

2
 nanoparticles exhibited higher activity under 

visible light irradiation compared to pure P25 TiO
2
 and can be excited under visible light in the 

range from 420 to 450 nm. In a similar work on rare earths (Er, Yb, Ho, Tb, Gd and Pr) titania 
nanotubes (RE-NTs), [60] the RE3+ species were found to be located at the crystal boundaries 

rather than inside the TiO
2
 unit cell and an observed excitation into the TiO

2
 absorption band 

with resulting RE3+ emission confirmed energy migration between the TiO
2
 matrix and RE3+. 

The presence of the rare earth component was found to reduce recombination of the electrons 

and holes successfully by catching them and also by promoting their rapid development along 

the surface of TiO
2
 nanoparticles. Lanthanide ions doping did not impact the energy gap of 

TiO
2
 nanoparticles, however this enhanced the light absorption of catalyst. The surface range 
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of TiO
2
 nanoparticles generally increases by La3+ particle doping by diminishing the crystal-

lite size and accordingly, the doped TiO
2
 nanoparticle displayed higher adsorption capacity. 

Based on theoretical calculations, it was proposed that during the electrochemical process, 
new Ho-f states and surface vacancies were formed and may reduce the photon excitation 

energy from the valence to the conduction band under visible light irradiation. The photo-

catalytic activity under visible light irradiation was attributed not to ·OH but to other forms of 
reactive oxygen species (O

2
·−, HO

2
, H

2
O

2
).

2.2. Non-metal doping

TiO
2
 nanoparticles have been comprehensively doped at the O sites with non-metals such 

as C [61], B [62], I [63], F [64], S [65], and N [66]. Non-metal dopants are reported to be more 
appropriate for the extension of the photocatalytic activity of TiO

2
 into visible region com-

pared to metal dopant [67, 68]. This can be ascribed to the impurity states which are near the 

valence band edge, however, they do not act as charge carriers, and their role as recombina-

tion centres might be minimized [53]. As shown in Figure 2, the mixing of the p states of 

Figure 2. Band-gap energy narrowing mechanism for non-metal-doped TiO
2
.
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the doped non-metal with the O2p states shifts the valence band edge upward and narrows 

the band-gap energy of the doped TiO
2
 photocatalyst. The nitrogen and carbon doped TiO

2
 

nanoparticles has been reported to exhibit greater photocatalytic activity under visible light 

irradiation compared to other non-metal dopants.

N-doped TiO
2
 (N-TiO

2
) appears to be the most efficient and extensively investigated photocat-

alyst for non-metal doping. Zeng et al. [69] reported the preparation of a highly active modi-

fied N-TiO
2
 nanoparticle via a novel modular calcination method. The excellent photocatalytic 

performance of the photocatalyst was ascribed to excellent crystallinity, strong light harvesting 
and fast separation of photogenerated carriers. Moreover, the enhancement of charge separa-

tion was attributed to the formation of paramagnetic [O-Ti4+-N2−-Ti4+-V
O
] cluster. The surface 

oxygen vacancy induced by vacuum treatment trapped electron and promoted to generate 

super oxygen anion radical which was a necessary active species in photocatalytic process. 

Phongamwong et al. [70] investigated the photocatalytic activity of CO
2
 reduction under vis-

ible light over modified N-TiO
2
 photocatalyst and they have found that the band gap of N-TiO

2
 

photocatalyst slightly decreases with increasing N content. In addition, the sub-band energies 
related to the impurity energy level were observed in the N-TiO

2
 photocatalyst because of 

the interstitial N species and the sub-band gap energies were found to have decreased from 
2.18 eV with 10 wt% N-TiO

2
 photocatalyst. In contrast, the replacement of O by N is difficult 

because of the radius of N (17.1 nm) being higher compared to O (14 nm) and the electro-

neutrality can be maintained by oxygen vacancies, that are provided by replacement of three 
oxygen vacancies by two nitrogen atom [71]. N-TiO

2
 photocatalyst reduces the oxygen energy 

vacancies from 4.2 to 0.6 eV, suggesting that N favors the formation of oxygen vacancies [72].

In contrast, O atoms (14 nm) could be substituted easily by F atoms (13.3 nm) because of their 
similar ionic radius [73]. Yu et al. [64] reported that the F-doped TiO

2
 (F-TiO

2
) is able to absorb 

visible light due to the high-density states that were evaluated to be below the maxima valence 

band, although there was no shift in the band edge of TiO
2
. Samsudin et al. found a synergis-

tic effect between fluorine and hydrogen in hydrogenated F-doped TiO
2
 which enabled light 

absorption in UV, visible and infrared light illumination with enhanced electrons and holes 
separation. Surface vacancies and Ti3+ centres of the hydrogenated F-doped catalyst coupled 

with enhanced surface hydrophilicity facilitated the production of surface-bound and free 

hydroxyl radicals. Species present on the surface of the catalyst triggered the formation of new 

Ti3+ occupied states under the conduction band of the hydrogenated F-doped TiO
2
, thus narrow-

ing the band gap energy [73]. Enhanced photocatalytic performance of N-doped TiO
2
 over pure 

TiO
2
 has also been ascribed to efficient separation of electron-hole pairs as well as an increased 

creation of surface radicals such as hydroxyl The band gap can also be narrowed by doping 

TiO
2
 with S, since replacement of S into TiO

2
 can be performed easily due to larger radius of 

S atoms (18 nm) compared to O atoms (14 nm). S incorporation in TiO
2
 has been reported to 

change the lattice spacing of the TiO
2
 with a reduction in the band gap width from 3.2 to 1.7 eV 

allowing for higher photocatalytic activity [74]. N, S and C co-doped TiO
2
 samples photocata-

lytic reduction of Cr(IV) showed that the co-doping and calcination played an important role in 
the microstructure and photocatalytic activity of the catalysts. The co-doped samples calcined 

at 500°C showed the highest activities ascribed to the synergistic effect in enhancing crystal-
lization of anatase and (N, S and C) co-doping. The carbon doped TiO

2
 (C-TiO

2
) is reported to 
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be more active than N-TiO
2
, therefore, C-TiO

2
 has received special attention [75]. Noorimotlagh 

et al. [76] investigated the photocatalytic removal of nonylphenol (NP) compound using visible 
light active C-TiO

2
 with anatase/rutile. It was found that the doping of C into TiO

2
 lattice may 

enhance the visible light utilization and affect the structural properties of the as-synthesized 
photocatalysts. Moreover, it was reported that after C doping and changing the calcination 
temperature, the band gap was narrowed from 3.17 to 2.72 eV and from 2.72 to 2.66 eV, respec-

tively. Ji et al. [61] reported the preparation of C-TiO
2
 with a diameter of around 200 nm and the 

tube wall was composed of anatase TiO
2
, amorphous carbon, crystalline carbon and carbon ele-

ment doping into the lattice of TiO
2
. The C-TiO

2
 nanotubes exhibited much better performance 

in photocatalytic activity than bare TiO
2
 under UV and visible light. The obtained results were 

ascribed to the C doping, which narrowed the band gap energy of TiO
2
, extended the visible 

light adsorption toward longer wavelength and hindered charge recombination.

2.3. Co-doping and tri-doping

Although single metal doped and non-metal doped TiO
2
 have exhibited excellent performance 

in decreasing the electrons and holes recombination, but they suffer from thermal stability and 
losing a number of dopants during catalyst preparation process [77]. Therefore, co-doping of 
two kinds of atoms into TiO

2
 has recently attracted much interest [78]. The electronic structure 

of TiO
2
 can be altered by co-doping on TiO

2
 by formation of new doping levels inside its band 

gap. Abdullah et al. [77] reported that the doping levels situated within the band gap of TiO
2
 

can either accept photogenerated electrons from TiO
2
 valence band or absorb photons with 

longer wavelengths. Therefore, suggesting that the TiO
2
 absorption range can be expanded.

Zang et al. [79] evaluated the photocatalytic degradation of atrazine under UV and visible 
light irradiation by N,F-codoped TiO

2
 nanowires and nanoparticles in aqueous phase. It was 

found that photocatalytic degradation of atrazine was higher in the presence of N,F-codoped 
TiO

2
 nanowires than that of N,F-codoped TiO

2
 nanoparticles. The higher photocatalytic per-

formance in the presence of N,F-codoped TiO
2
 nanowires was attributed to the higher charge 

carrier mobility and lower carrier recombination rate. Moreover, the speed of electron diffu-

sion across nanoparticle intersections is several orders of magnitude smaller compared to that 

of nanowire because of frequent electron trapping at the intersections of nanoparticles and 
increasing the recombination of separated charges before they reach the TiO

2
 nanoparticles 

surface. Park et al. [80] showed the best performance for novel Cu/N-doped TiO
2
 photoelec-

trodes for dye-sensitized solar cells. It was found that the Cu/N-doped TiO
2
 nanoparticles 

provided higher surface area, active charge transfer and decreased charge recombination. 
Moreover, the addition of suitable content of Cu- to N-doped TiO

2
 electrode effectively inhib-

ited the growth of TiO
2
 nanoparticles and improved the optical response of the photoelec-

trode under visible light irradiation. Chatzitakis et al. [81] studied the photoelectrochemical 

properties of C, N, F codoped TiO
2
 nanotubes. It was found that increasing surface area is not 

followed by increase in the photoconversion efficiency, but rather that an optimal balance 
between electroactive surface area and charge carrier concentration occurs.

Zhao et al. [82] investigated the photocatalytic H
2
 evolution performance of Ir-C-N tridoped 

TiO
2
 under UV-visible light irradiation. The photocatalytic activity of TiO

2
 nanoparticles was 
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reported to be improved by Ir-C-N tridoped TiO
2
 under UV-visible light, due the synergistic 

effect between Ir, C and N on the electron structure of TiO
2
. It was found that Ir existed as 

Ir4+ by substituting Ti in the lattice of TiO
2
 nanoparticles, whereas the C and N were also 

incorporated into the surface of TiO
2
 nanoparticles in interstitial mode. The absorption of 

TiO
2
 nanoparticles was expanded into the visible light region and the band gap was nar-

rowed to ~3.0 eV, resulting in improved photocatalytic H
2
 evolution under UV-visible light 

irradiation. Tan et al. [83] investigated the photocatalytic degradation of methylene blue 

by W–Bi–S-tridoped TiO
2
 nanoparticles. It was found that the absorption edge of TiO

2
 was 

expanded into visible-light region after doping with W, Bi and S and the catalytst showed the 
best photocatalytic activity, than that of TiO

2
, S-TiO

2
, W–S–TiO

2
 and Bi–S–TiO

2
. This might be 

attributed to the synergistic effect of W, Bi and S.

2.4. Nano-structured TiO
2

Amongst the various strategies that have been used to enhance TiO
2
 photocatalytic activity, 

improvement of morphology, crystal structure and surface area have also been considered 
important and widely investigated approach to achieve better photocatalytic performance. The 
nanotitania crystallinity can simply be enhanced by optimizing the annealing temperature. 

However, the stability of the structure and geometries have to be considered when annealing 
[84]. For the nanotitania morphology and surface area, various ordered structures have been 
studied. TiO

2
 nanotubes [85, 86], nanowires [79], nanospheres [87], etc. Tang et al. fabricated 

monodisperse mesoporous anatase TiO
2
 nanospheres using a template material and found the 

resulting catalysts to show high photocatalytic degradation efficiency and selectivity towards 
different target dye molecules and could be readily separated from a slurry system after photo-

catalytic reaction [87]. Anodic TiO
2
 nanotubes have been reported to allow a high control over 

the separation of photogenerated charge carriers in photocatalytic reactions. The nanotube 

array has as key advantage the fact that nanotube modifications can be embedded site specifi-

cally into the tube wall or at defined locations along the tube wall. This allows for engineering 
of reaction sites giving rise to enhanced photocatalytic efficiencies and selectivities [88].

2.5. Nanocarbon modified TiO
2

The design and preparation of graphene-based composites containing metal oxides and 

metal nanoparticles have attracted attention for photocatalytic performances. For example, 
Tan et al. [89] prepared a novel graphene oxide-doped-oxygen-rich TiO

2
 (GO–OTiO

2
) hybrid 

heterostructure and evaluated its activity for photoreduction of CO
2
 under the irradiation of 

low-power energy-saving daylight bulbs. It was found that the photostability of O
2
–TiO

2
 was 

significantly improved by the addition of GO, at which the resulting hybrid composite retained 
a high reactivity. The photoactivity attained was about 1.6 and 14.0 folds higher than that of 
bare O

2
–TiO

2
 and the commercial Degussa P25, respectively. This high photocatalytic perfor-

mance of GO–OTiO
2
 was attributed to the synergistic effect of the visible-light-responsiveness 

of O
2
–TiO

2
 and an enhanced separation and transfer of photogenerated charge carriers at the 

intimate interface of GO–OTiO
2
 heterojunctions. This study is reported to have opened up 

new possibilities in the development of novel, next generation heterojunction photocatalysts 
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for energy and environmental related applications. Lin et al. [90] also investigated photore-

duction of CO
2
 with H

2
O vapor in the gas-phase under the irradiation of a Xe lamp using 

TiO
2
/nitrogen (N) doped reduced graphene oxide (TiO

2
/NrGO) nanocomposites. They found 

that the quantity and configuration of N dopant in the TiO
2
/NrGO nanocomposites strongly 

influenced the photocatalytic efficiency, and the highest catalytic activity was observed for 
TiO

2
/NrGO nanocomposites with the highest N doping content. Moreover, modified TiO

2
/

rGO demonstrated a synergistic effect, enhancing CO
2
 adsorption on the catalyst surface and 

promoting photogenerated electron transfer that resulted in a higher CO
2
 photoreduction rate 

of TiO
2
/NrGO. Qu et al. [91] prepared the graphene quantum dots (GQDs) with high quantum 

yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO
2
 nanotubes (GQDs/

TiO
2
 nanoparticles) nanocomposites and the photocatalytic activity was tested towards the 

degradation of methyl orange. It was found that the GQDs deposited on TiO
2
 nanoparticles 

can expand the visible light absorption of TiO
2
 nanoparticles and enhance the activity on 

photocatalytic degradation of methyl orange under UV-vis light irradiation (ʎ = 380–780 nm). 
Furthermore, the photocatalytic activity of GQDs/TiO

2
 nanoparticles was approximately 2.7 

times as higher than that of bare TiO
2
 nanoparticles. Tian et al. [92] reported the preparation 

of N, S co-doped graphene quantum dots (N, S-GQDs)-reduced graphene oxide- (rGO)-TiO
2
 

nanotubes (TiO
2
NT) nanocomposites for photodegradation of methyl orange under visible 

light irradiation. It was found that the S-GQDs+rGO + TiO
2
 nanocomposites simultaneously 

showed an extended photoresponse range, improved charge separation and transportation 
properties. Moreover, the apparent rate constant of N, S-GQDs+rGO + TiO

2
NT is 1.8 and 16.3 

times higher compared to rGO + TiO
2
NT and pure TiO

2
NT, respectively. Suggesting that GQDs 

can improve the utilization of solar light for energy conversion and environmental therapy.

2.6. Immobilized TiO
2

Another drawback of TiO
2
 nanoparticles mentioned above is the formation of uniform sus-

pension in water which makes its recovery difficult, therefore hindering the application of 
photocatalytic in an industrial scale. As a result, many studies have attempted the modifica-

tion of TiO
2
 nanoparticles on support materials such as clays [93, 94] quartz [95], stainless 

steel [96], etc. Clays have been reported to be a significant support material for TiO
2
 nanopar-

ticles because of their layered morphology, chemical as well as mechanical stability, cation 
exchange capacity, non-toxic nature, low cost and availability. Therefore, TiO

2
/clay nanocom-

posites have attracted much attention for application in both water and air purification and 
have been prepared by numerous researchers. Belver et al. [97] investigated the removal of 

atrazine under solar light using a novel W-TiO
2
/clay photocatalysts. It was found that the 

photocatalytic activity of W-TiO
2
/clay catalyst exhibited higher photocatalytic performance 

than that of an un-doped TiO
2
/clay, which was explained by the presence of W ions in the TiO

2
 

nanostructure. The substitution of Ti ions with W resulted in the increase of its crystal size and 

the distortion of its lattice and moderately narrower band gap of photocatalysts. Mishra et al. 
[98] reported the preparation of TiO

2
/clay nanocomposites for photocatalytic degradation of 

VOC and dye. They found that the photocatalytic performance of TiO
2
/clay nanocomposites 

is highly dependent on the clay texture (as 2:1 clays show highest activity than 1:1) apart from 

their surface area and porosity. Moreover, the reactions involving TiO
2
/Clay photocatalyst 
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were fast with rate constant of 0.02886 and 0.04600 min−1 for dye and VOC respectively than 
the other nanocomposites.

3. Conclusions

In this chapter, we have given an overview of the development of modified TiO
2
 catalysts and 

its future prospects from a scientific point of view. We note that the field has experienced major 
advances in the last 5 years especially in the area of modifying TiO

2
 with carbon nanomaterials. 

Based on the literature we have covered here, we believe that there is still quite a lot that can 
be achieved in improving the performance of TiO

2
 catalysts for photocatalytic applications.
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