
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 2

Informational Entropy Approach for Rating Curve
Assessment in Rough and Smooth Irrigation Ditch

Greco Michele

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78975

Abstract

The assessment of water discharge in open channel flow is one of the most crucial issues
for hydraulic engineers in the fields of water resources management, river dynamics, eco-
hydraulics, irrigation, hydraulic structure design, etc. Recent studies state that the entropy
velocity law allows expeditive methodology for discharge estimation and rating curve
development due to the simple mathematical formulation and implementation. A lot of
works have been developed based on the entropy velocity profile supporting measure-
ments in lab for rating curve assessment in regular ditch flows showing a good perfor-
mance. The present work deals with the use of entropy velocity profile approach in order
to give a general framework of threats and opportunities related to robust operational
application of such laws in the field of rating curve assessment. The analysis has been
carried on a laboratory flume with regular roughness under controlled boundary condi-
tions and different stages generating an exhaustive dashboard for the better appraisal of
the approaches. Finally, entropy model may represent a robust and useful tool for the
water discharge assessment in rough ditches.

Keywords: entropy velocity ratio, relative submergence, aspect ratio, water discharge

1. Introduction

Water discharge assessment in open channel still represents a fundamental aspect for hydrau-

lic engineer in several operative and technical fields like water resources management, ecolog-

ical flow assessment and control, drainage and irrigation system as well as runoff and flood

routing model calibration and implementation. Nevertheless, the water discharge evaluation

in generic open channel is heavily affected by local fluid dynamics and geometric conditions,

which well arise once flow velocity measurements and morphological boundaries are available

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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at the same site. On the other hand, the drainage and irrigation channel present a regular cross

section which might provide facilities in water discharge assessment and control, inducing also

reduction in time and operative costs. That is, the implementation of operative procedures

enabling operative charges simplifying the commitment of field activities, indeed, plays a

fundamental role in channel monitoring for natural flow and manmade hydraulic structures.

The main idea is related to the definition of expeditive procedures for flow field assessment

and water discharge evaluation capable to optimize the surveying resources in time and

efforts. Thus, the opportunity to manage with a simple and straightforward velocity law,

different from the classical logarithm formulation but capable to provide suitable results is all

the more technically fruitful. That is, an operative tool for expeditive velocity distribution

assessment basing on simple and immediate parameters.

Recent theoretical and experimental studies endorse the informational content hold into the

distributed velocity measurements following an entropy-probabilistic approach. That is, Chiu

[1, 2] drew the correlation between the mean flow velocity and maximum flow velocity

defining the entropy parameter, M introducing the velocity ratio Φ(M). Considering the

important implication that this finding could have for monitoring of high flows in rivers, many

authors investigated the reliability of this relationship using field data [3–7]. Overall, they

found M as a river site depending and not influenced by the flood intensity both in terms of

amount and duration. Thus, M should be considered a specific factor of the gauged cross

section as outlined by Moramarco and Singh [7] exploring the dependence of M on the

hydraulics and geometries of the river cross sections.

The study was able to explain the constancy of M value on the ground that M is not depending

on the dynamic of flood, such as expressed by the energy or water surface slope, Sf and to

identify a formula expressing M as a function of the hydraulic radius, Manning’s roughness

and the location, y0, where the horizontal velocity is hypothetically equal to zero. For the latter,

it was preliminarily found that if y0 was assessed by distinguishing low flows from high flows,

then a better estimation of M would have been obtained across a gauged river site. However,

considering that the y0 location is not of simple assessment and then might have high uncer-

tainty, the assessment of M should be addressed, mainly for ungauged river sites, using

hydraulic and geometric variables easy to acquire. Such a thought might be discussed intro-

ducing the relative submergence D/d (in which, D = average water depth and d = roughness

dimension). That is, the velocity distribution in natural rivers depends on several variables like

channel geometry, bed and bank roughness, and the vertical velocity distribution generally

increases monotonically from 0 at the channel bed, to the maximum at the water surface and

can be assumed 1-D flow dominant. Moreover, whenever the channel cannot be considered

“wide”, that is the aspect ratio (B/D with B channel width and D water depth) is less than 6,

besides the presence of the boundary, the velocity varies even transversely and a two-

dimension distribution occurs, leading G as the 2D entropy parameter. The maximum velocity

places below the water surface inducing dip-phenomenon and the position of maximum

velocity is also influenced by the aspect ratio [8], which is of simple assessment once channel

cross-section geometry is known. Thus, investigating the influence of bed roughness and cross

section geometry on medium and maximum velocity ratio at the global scale assumes a

relevant interest in the field of open channel flow.

Irrigation in Agroecosystems6



Therefore, M might represent an intrinsic parameter of the gauged site and this insight led

several authors to explore the dependence of M on hydraulic and geometric characteristics of

the flow site [3, 7]. In the case of river flows, Greco [9] enlightened a different behavior of Φ(M)

depending on the roughness dimension: the velocity ratio is heavily influenced by the magni-

tude of relative submergence if large or intermediate scale [10]. Finally, the results support and

validate a robust and fruitful operative chain to be implemented for expeditive water dis-

charge assessment in rough and smooth irrigation ditch.

2. Entropy velocity profiles in open channels

The concept of informational entropy as a measure of uncertainty associated to a probability

distribution was formulated for the first time in the field of hydraulics by Shannon [11]. The prin-

ciple of maximum entropy introduces the least-biased probability distribution of a random

variable constrained by defined information system as well as the theorem of the concentration

for hypothesis testing, introducing the informational entropy theory [12]. A direct evaluation of

uncertainty related to the probability distribution of a continuous random variable expressed in

terms of entropy, H, is defined as follows

H ¼ �

ðþ∞

�∞

p xð Þ log p xð Þdx (1)

where, p(x) is the continuous probability density function of random variable x.

Using POME, entropy can be maximized through the method of Lagrange multiplier as

follows:

L ¼ �
1

m� 1

ðþ∞

�∞

p xð Þ 1� p xð Þ
� �m�1

n o

dxþ
X

N

i¼1

λi gi xð Þ (2)

in which, m > 0, gi(x) is the ith constraint function and λi is the constrain Lagrange multiplier as

a weight in the maximization of entropy.

Chiu [1, 2] applied the concept of entropy to open-channel analysis to model velocity and shear

stress distribution as well as sediment concentration. In such a way, the velocity distribution in

the probability domain allows to obtain the cross-sectional mean velocity and the momentum

and energy coefficients disregarding the geometrical shape of cross sections, which is generally

complex in natural channels [2, 13].

Further, an assumption on the probability distribution in the space domain is needed to relate

the entropy-based probability distribution to the spatial distribution. Therefore, defining u by the

time-averaged velocity placed on an isovelocity curve with the assigned value ξ, the value of u is

almost 0 at ξ0, which corresponds to the channel boundary, while u reaches Umax at ξmax, which

generally occurs at or below the water surface, depending on the dip-phenomenon. Thus, the

velocity u monotonically increases from ξ0 to ξmax and for each value of the spatial coordinate

Informational Entropy Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditch
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greater than ξ, the velocity is greater than u, and the cumulative distribution function can be

written as

F uð Þ ¼
ξ� ξ0

ξmax � ξ0
(3)

Thus, the Shannon entropy of velocity distribution can be written as:

H ¼ �

ðUmax

0

p uð Þ log p uð Þdu (4)

Through a similar procedure, the probability density function of the velocity distribution is

obtained by maximizing the Shannon entropy equation

L ¼

ðUmax

0

f uð Þ

m� 1
1� f uð Þ½ �m�1

n o

duþ λ0

ðUmax

0

f uð Þdu� 1

� �

þ λ1

ðUmax

0

uf uð Þdu� u

� �

(5)

in which, λ0 and λ1 are the Lagrange multipliers and the following constraint equations

C1 ¼

ðUmax

0

f uð Þdu ¼ 1 (6)

C2 ¼

ðUmax

0

uf uð Þdu ¼ u (7)

f uð Þ ¼ exp λ0 � 1þ λ1uð Þ (8)

Thus, Chiu’s 1D velocity distribution results as:

u ¼
Umax

M
ln 1þ eM � 1

� �

F uð Þ
� �

¼
Umax

M
ln 1þ eM � 1

� � ξ� ξ0

ξmax � ξ0

� �

(9)

where M is the dimensionless entropy parameter introduced in the entropy-based derivation

[14, 15]. Hence, M can be used as a measure of uniformity of probability and velocity distribu-

tions. The value of M can be determined by the mean, Um, and the maximum velocity values

are derived from the following equation:

Φ Mð Þ ¼
Um

Umax
¼

eM

eM � 1
�

1

M

� 	

(10)

Φ(M) is a relevant parameter which contains relevant information about the flow field asset:

the mean velocity value, the location of the mean velocity [14–16], and the energy coefficient

[14, 16] can be obtained from M. That is, once known the mean velocity, the flow discharge,

sediment transport, and pollutant transport can be derived. Furthermore, mean vs. maximum

velocity assumes linear relationship as discovered by Xia collecting velocity data in several

cross-sections of the Mississippi River [17].

Irrigation in Agroecosystems8



Eq. (10), in fact, represents the fundamental relationship, from an applied point of view, of the

entropy velocity distribution and the assessment of the entropy parameter passing through the

knowledge of the ratio between mean and maximum velocities, Φ(M).

In order to identify the dependence of M from the hydraulic and geometric characteristics of

channels, that is, the relative submergence and aspect ratio, respectively, the formulation prop-

osed by Greco [9] for Um is considered:

Um

u∗
¼

1

k
ln

D

d
þ
1

k
ln C0 (11)

where u* is the shear velocity, d is the bed roughness height (i.e., d50), k is the Von Karman

constant, and C0 is the dimensionless coefficient.

Even the maximum velocity plays an important role in the flow dynamics, and more than it

magnitude, a relevant aspect is related to the position of the maximum velocity inside the flow

domain. That is, the location of maximum velocity from the channel bottom, ymax, does not

always occur at water surface, but a “velocity-dip” may occur as an indicator of secondary

currents [18], which represents the circulation in a transverse channel cross section, while the

longitudinal flow component is called the primary flow.

In this context, Moramarco and Singh [7] identified the ratio between Umax and u* as:

Umax

u∗
¼

1

k
ln

D

y0 1þ αð Þ

� 	

þ
α

k
ln

α

1þ α

� 	

(12)

with α = (D/ymax-1).

y0 can be assumed proportional to the characteristic bottom roughness height, d, as suggested

by Rouse [19] through the experimental parameter Cξ = y0/d. Therefore, Eq. (12) turns into:

Umax

u∗
¼

1

k
ln

D

d

� 	

þ
1

k
ln

αα

Cξ 1þ αð Þ1þα

 !

(13)

Unlike Moramarco and Singh [7], here the ratio between Eq. (11) and Eq. (13), based on

logarithm properties, explicitly proposes Φ(M) as a function of the relative submergence D/d:

Φ Mð Þ ¼
Um

Umax
¼

ln C0D
d

� �

ln D
d

αα

Cξ 1þαð Þ1þα

h i ffi AΦln
D

d
þ BΦ (14)

where AΦ and BΦ are the numerical coefficients. Eq. (14) follows under the hypothesis of linear

interpolation between the pairs ln C0D
d

� �

=ln D
d

αα

Cξ 1þαð Þ1þα


 �

; ln D
d

� �

h i

[13].

Eq. (14) highlights, indeed, a possible effect of bed roughness on the entropy velocity distribu-

tion in open channel flows, which depends on the roughness scale according to [1]. The

dependence between the ratio Φ(M) and the relative submergence, D/d, has been widely
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studied by Greco [9] using a wide volume of data collected in the field on several cross sections

along different rivers and in the laboratory [20–22], showing values of Φ(M) ranging in the

[0.5–0.9] interval.

3. Laboratory measurements in rectangular smooth and rough ditch

The experimental tests were carried out in the Hydraulics Laboratory of Basilicata University, on

two free surface rectangular flumes of 9 m length and with a cross section of 0.5� 0.5 and 1� 1 m,

whose slope can vary from 0 up to 1%. Figure 1 shows pictures about the flume, one of the bed

configuration and the flow-meters.

The bed roughness (d) has been modulated between smooth surfaces, with 0.0005 m roughness

height, anda roughbottom,obtainedwithbotha sandbed,witha characteristicdiameterof 0.002m

and standarddeviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d84=d16
p

¼ 1:67, and a set ofwood spheres of 0.035m in diameter.

The measurement reaches were placed at the distance of 4 m from the beginning of the

flumes, in order to damp large-scale disturbances and allow a quasi-uniform water depth.

In the end section of the flume, a grid was installed to regulate the water depth for each

assigned discharge or rather to obtain a small longitudinal variation of the flow depth. The

experiments were performed in steady flow conditions for different values of discharge

(0.015–0.100 m3/s) and slope (0.05–1%). The measurement cross section was located in the

middle of the rough reach in order to observe a fully developed flow, avoiding edge effects.

The flow depth was measured by two hydrometers placed at both the beginning and the end

Figure 1. The experimental apparatus for laboratory measures.

Irrigation in Agroecosystems10



of the measurement reach, and the water depth, D, was assumed as the average value. The

velocity was acquired through a micro current-meter with a measuring head diameter of

0.01 m, while the water discharge was measured with a concentric orifice plate installed in

the feed pipe and on a laboratory weir placed at the end of the flumes, and compared to the

value calculated according to the velocity-area method [23], with a maximum error of

around 1–2%. In particular, the adopted velocity-area method must be applied dividing the

cross section into a fixed number of verticals and thus, on each vertical, a fixed measurement

points are selected. In each point along the vertical, the velocity is acquired in order to

compute the mean velocity of the flow along each vertical. Furthermore, the number of

measures on each vertical was chosen with respect to the criterion that the difference in

velocity between two consecutive points was less than 20%, of the higher measured velocity

value, and the points close to the channel bottom and the water surface was fixed according

to the size of the micro-current meter.

In such a way, two roughness configurations were enabled:

• RRF: rough rectangular flume, with relative submergence ranging in between 1.89 and

6.43; and

• SRF: smooth rectangular flume, with relative submergence greater than 50.

Table 1 synthetically reports the ranges of variation of the main parameters observed during

the experiments for the RRF and SRF configuration, while Q is the water discharge, D is the

water depth, D/d is the relative submergence, B/D is the aspect ratio, and Φ(M) is the ratio

between the mean and maximum velocities.

For each configuration and for all the stages explored, a relevant bulk of velocity measure-

ments was collected in order to provide a detailed reconstruction of the flow field allowing to

obtain mean, Um, and maximum, Umax, cross section velocities.

Figure 2 shows the linear relationship existing between the pairs (Umax; Um) for the two

configurations investigated, RRF and SRF.

From Figure 2, some useful issues arise. Even if the correlation among homogeneous data is

very strong in both cases with R2 greater than 0.95, it is immediately realized a slight different

behavior between rough and smooth channels. That is, for the smooth rectangular flow, Φ(M)

assumes the value 0.9, while for the rough condition, the value decreases to 0.67. That is, in

other terms, it seems to be evident and sufficiently confirmed, the dependence of the velocity

ratio on the roughness here represented by the relative submergence D/d as discussed in the

previous section for Eq. (14).

Type Q (mc/sec) D (m) D/d B/D Φ(M)

RRF 0.007–0.076 0.07–0.23 1.89–6.43 2.22–7.58 0.52–0.73

SRF 0.025–0.100 0.06–0.40 50–298 2.50–10 0.7–0.93

Table 1. Range of variation for the main parameters of the laboratory experiments.

Informational Entropy Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditch
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Figure 2. Average vs. maximum velocities observed for rough and smooth channel.

Figure 3. Velocity ratio vs. relative submergence.

Irrigation in Agroecosystems12



Figure 3 clearly outlines such an outcome, showing how the velocity ratio is austerely depen-

dent on relative submergence in case of rough flows, while it is sufficiently uniform for values

of D/d > 20. Furthermore, the same picture proposes several literature data collected by other

authors during experimental laboratory campaigns carried on smooth and rough flumes [22,

24–27], plotted and compared to those arising from the here presented research activity. The

same Figure 4 immediately deals with the robust correspondence between data sets related to

the low rough/smooth flow conditions for which the hypothesis of the constant value of mean-

to-maximum velocities ratio might be assumed consistent, at least from an operative point of

view for D/d > 20. At the same time, Eq. (14) still remains compelling for D/d < 20, but it needs

to be recalibrated and the coefficients AΦ and BΦ can be assumed 0.136 and 0.468, respectively

(R2 = 0.95).

Such a result can be immediately implemented in the operative chain of water discharge assess-

ment, in order to derive the rating curve in a ditch or artificial channel. Furthermore, such

knowledge allows us to assess the level of integrity of the channel in terms of sensitive changes

in the bottom roughness, may be due to the local deposition of sediment or vegetation.

Furthermore, in case ofD/d > 20, typical of concrete channels, the setting of rating curve is quite

direct collecting few measures of velocity, in a little volume of the flow field mainly located in

the center of the upper part of the cross section where is generally located at the maximum

Figure 4. Comparison between the computed (Qcalc) and observed (Qobs) discharges.

Informational Entropy Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditch
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velocity. Thus, assuming the value of Φ(M) equal to 0.9, the mean velocity can be computed

and the water discharge as well. The benefit even deals with the reduction of measurement

time and costs. On the other side, once performed velocity measurements in a cross section

following the above mentioned procedure, the observed value ofΦ(M) can suggest whether or

not some changes in bed roughness occurred.

Finally, the use of the entropy velocity profile gives a robust feedback in terms of operative

assessment of water discharge, due to the easy and immediate evaluation of the M parameter.

4. Entropy velocity profile approach for rating curve assessment

The wide bulk of measurements obtained through the laboratory experiments allows us to

perform a robust analysis in order to obtain suitable information for the use in the operative

chain of water discharge assessment as well as in numerical flow dynamics modeling in

regular open channel flow.

In Eq. (10), the mean velocity can be evaluated using Manning’s formula:

Um ¼
1

n
R2=3

ffiffiffiffiffi

Sf

q

(15)

where n is the Manning’s roughness, R is the hydraulic radius, and Sf is the energy slope.

To determine the maximum velocity of the cross-section, Umax, along the y-axis assumed

perpendicular to the bottom, the dip-modified logarithmic law for the velocity distribution in

a smooth uniform open channel flow, proposed by Yang et al. [8], is considered:

u yð Þ ¼ u∗
1

k
ln

y

y0
þ
α

k
ln 1�

y

D


 �

� �

(16)

where u∗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

g R Sf
p

is the shear velocity (g = gravity acceleration); k is the von Karman

constant equal to 0.41; y0 is the distance at which the velocity is hypothetically equal to zero;

α is the dip-correction factor, depending only on the ratio between the relative distance of the

maximum velocity location from the river bed, ymax, and the water depth, D, along the y-axis,

where Umax is sampled.

The location of the maximum velocity, supporting the dip-phenomenon hypothesis, can be

obtained by differentiating Eq. (16) and equating du/dy = 0, which gives:

ymax

D
¼

1

1þ α
(17)

Experimental studies [2–9] have shown that, for channels at different shapes of the cross-

section, the velocity maximum is below the free surface around the 20–25% of the maximum

depth. Thus, considering ymax equal to ¾ of the maximum depth, D, according to Eq. (17), α

becomes equal to 1/3. Replacing the value of α in Eq. (16), and after a few algebraic manipula-

tion, the maximum flow velocity can be expressed as:

Irrigation in Agroecosystems14



Umax ¼
u∗
k

ln
3

4

D

y0

� 	

� 0:4621

� �

(18)

Therefore, inserting Eqs. (15) and (18) in Eq. (10), Φ(M) can be expressed in terms of hydraulic

and geometric characteristics of a river:

Φ Mð Þ ¼
1
nR

2=3
ffiffiffiffiffi

Sf
p

ffiffiffiffiffiffiffiffi

gRSf
p

k ln 3
4
D
y0


 �

� 0:4621
h i

(19)

From this latter equation, a new formulation of Manning’s roughness, ne, based on Φ(M) is

derived:

ne ¼
R1=6=

ffiffiffi

g
p

Φ Mð Þ
k ln 3

4
D
y0


 �

� 0:4621
h i (20)

Therefore, ifΦ(M) is available, then Eq. (20) allows us to estimate the n value in the cross-section.

Replacing Eq. (20) in Eq. (15), the modified form of the Manning’s equation is obtained:

Um ¼ Φ Mð Þ
k

ln
3

4

D

y0

� 	

� 0:4621

� �

ffiffiffiffiffiffiffiffiffiffi

gRSf

q

(21)

which takes into account the variation of a flow hydraulic and geometric characteristics

following the change of the water discharge. Eq. (20) computes Manning’s roughness once

the values of Φ(M) are known and the values of y0 are calibrated. Once the Manning’s

coefficient, ne, was evaluated, the mean velocity was recalculated according to Eq. (21).

Figure 4 shows the correspondence between Qcalc, computed through the Eq. (21), and those

observed Qobs, for both cases RRF and SRF. The result shows the perfect correlation between

the observed and computed values and enforces the use of the proposed Manning’s Eq. (20),

derived by the entropy velocity theory and the assumption of a constant value of the dip

velocity. The approach leads to get water discharge assessment by integrating the information

about hydraulic and geometric characteristics of the flow.

Finally, the following Figures 5 and 6 report the theoretical rating curves obtained by the

modified Manning’s equation and the experimental data collected for both cases rough and

smooth channel.

Defining the standard error, Se, as suggested by the ISO 1100-2 [28], through the following

relationship:

se ¼
P

lnQobs � lnQcalcð Þ2
N� 2

" #0:5

(22)

where N is the number of available measures, the computed Se is permanently less

than 5% for the rectangular rough flow (RRF), while increases up to 15%, with a generalized

Informational Entropy Approach for Rating Curve Assessment in Rough and Smooth Irrigation Ditch
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overestimation, in case of smooth rectangular flow. In both cases, the results support the use

of this expeditive methodology in the chain of operative procedures leading a good assess-

ment of the rating curve.

5. Conclusion

The use of a rating curve formulation derived from the entropy velocity theory complained to

the assumption of a constant value of the dip velocity and taking into account the variables

Figure 5. Observed data and calculated rating curves for roughness rectangular flow.

Figure 6. Observed data and calculated rating curves for smooth rectangular flow.
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describing the geometric and hydraulic characteristics of a rectangular ditch, should allow us

the improvement of water discharge assessment.

This approach was tested, in a first phase, on a suitable data set of water discharge measures

collected in the laboratory on both rough and smooth rectangular cross section proposing

practical and common flow conditions.

The rating curve evaluation, derived for the rough rectangular flow, underlines a standard error

less than 5%, generally, favoring an expeditive assessment of the flow stage with a sufficient level

of reliability, while such an error increase up to 15% in case of smooth cross section.
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