
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 7

Nonlinear Response on External Electric Field and
Nonlinear Generalization of Fluctuation-Dissipation
Theorem for Levy Flights

Valeriy E. Arkhincheev and Lubsan V. Budazapov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78549

Abstract

As well known, the fluctuation-dissipation theorem (FDT) establishes the relation between
two different physical phenomena: the fluctuations and the dissipation. The fluctuations or
the stochastic motion are determined by random stochastic forces. The dissipation or the
directed motion is determined by regular forces. Nevertheless in the linear case, they are
related by the FDT. One of the first and well-known examples of the FDT is Einstein’s
relation between diffusion coefficient and mobility of particle. It has been shown that a
particle’s velocity depends on electrical field in a nonlinear way in arbitrary weak fields
due to anomalous super-diffusion character of Levy flight. The relation between two differ-
ent critical indexes, describing Levy flight diffusion and dependence of current on electric
field, has been established. This relation is the generalization of fluctuation-dissipation
theorem for such a nonlinear Levy flight case. The physical interpretation of these results is
given.

Keywords: fluctuation-dissipation theorem, nonlinear response, generalization of Einstein
relation, random walks, Levy flights, diffusion on self-similar clusters

1. Introduction

As well known, the fluctuation-dissipation theorem (FDT) establishes the relation between two

different physical phenomena: the fluctuations and the dissipation. The fluctuations or the

stochastic motion are determined by random stochastic forces. The dissipation or the directed

motion is determined by regular forces. Nevertheless in the linear case, they are related by the
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fluctuation-dissipation theorem (FDT). One of the first and well-known examples of this FDT

is Einstein’s relation between diffusion coefficient D and mobility of particle η:

qD ¼ η kT (1)

HereT is the temperatureof the system, k is Boltzmann’s constant, and q is the chargeof theparticle.

We first recall the well-known Einstein’s arguments [1]. Let the diffusion current be Jd and the

field current be Jf in the system. In the equilibrium state, the diffusion current is compensated

by the field current:

Jd þ Jf ¼ 0 (2)

and the particles are in the equilibrium state and are described by Boltzmann’s distribution

function:

Neq ¼ N0 exp �
U

kT

� �

(3)

where U is the potential energy, T is the temperature, and k is Boltzmann’s constant, N0 is the

initial number of particles. Let us consider in more details the assumptions, which are used.

There are three assumptions:

i. Boltzmann’s statistics

ii. Fick’s law for the diffusion current:

Jd ¼ �D∇n (4)

It also means that the root-mean-square displacement depends on time in a linear way

and it is characterized by diffusion coefficient D:

< X2 tð Þ >� D t (5)

iii. Ohm’s law, which describes a linear dependence on electric field

Jf ¼ nηE (6)

Consequently, if one of these above assumptions does not hold, then we expect that Einstein’s

relation is broken and the new generalized relation will be appeared.

Subsequently, we consider the case, when diffusion has an anomalous power character:

< X2 tð Þ >� tk (7)

These anomalous stochastic processes were intensively studied [2]. The value k ¼ 1 corre-

sponds to the usual ordinary diffusion, the value of exponent k < 1 corresponds to the sub-

diffusion case, and the value of exponent k > 1 corresponds to the super-diffusion or Levy

flights case. Usually, anomalous sub-diffusion random walks were observed in disordered

materials as fractals and percolations clusters [3–5]. Another anomalous super-diffusion, that

is, Levy flights, was observed in the chaotic dynamics problem [6–10].
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In this chapter, the Levy flights diffusion in an external weak electric field is considered. The

problem consists of that the diffusion coefficient for Levy flight, which is determined in a usual

way, has an infinite value:

D ¼ lim
t!∞

< X
2
tð Þ >

t
! ∞

It occurs due to the possibility of diffusing particle to move for an arbitrary distances at every

step. So, if we apply the usual Einstein relation (1), then we obtain the infinite value for a

mobility of particle η at arbitrary weak fields:

η ! ∞

But it is not possible to have infinite value of mobility from the physical point of view. What

does it means? We believe that it means Einstein’s relation in its usual form does not apply.

Furthermore, we show that instead of linear response—Ohm’s law—another new nonlinear

response is appeared in the studied problem. Namely, the drift velocity depends on a weak

electric field in a nonlinear way:

V � E
ν (8)

Here, ν is the critical exponent of new nonlinearity. The relation between the exponent of

nonlinearity ν and the exponent of anomalous super-diffusion μ has been established:

ν ¼ μ� 1 (9)

It is necessary to emphasize that this nonlinearity occurs in arbitrary weak fields and it was a

consequence of the anomalous Levy super-diffusion. In other words, Ohm’s law (the linear

response to a field) holds in the case of usual diffusion and Ohm’s law does not apply at all for

case of Levy flight super-diffusion.

This chapter was organized as follows. In Section 2, the preliminary generalization of Einstein’s

relation for a Levy flights was obtained. The qualitative estimations for drift velocity in two cases

of super diffusion and usual diffusion were obtained too in Section 2. In Section 3, the one-

dimensional discrete Levy flight diffusion was studied. The stable non-Gaussian distribution

was deduced. The problem of Levy random walks in an external electric field or anisotropic

Levy diffusion was studied in Section 4. The numerical simulations of Levy flights in an electric

field were presented in Section 5. In Section 6, obtained new results for particle mobility were

represented in the scaling form. The fluctuation-dissipation theorem for Levy flight case was

rewritten in the scaling form also in Section 7. Section 8 concludes the chapter and the discussion

of results was given in this section.

2. Qualitative estimation and generalization of Einstein relation for Levy

flight case

Let us briefly remind the Levy flights diffusion. A feature of Levy flight random walks consists

of the possibility for a diffusing particle to move on arbitrary large distances at every step, so
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that the root-mean-square displacement appears to be infinite. The numerical simulation of

Levy hops diffusion has shown that the points, visited during Levy flights diffusion, have

formed spatially well-defined clusters. “For more in-depth consideration it makes easy to see

that each of clusters consists of a collection of clusters, in turn, so a structure of self -similar

clusters was appeared due to Levy flights” [6]. The probability distribution function P in k; tð Þ-

representation is

P k; tð Þ ¼ exp �A kj jμtð Þ (10)

where A and μ are positive quantities, 1 < μ < 2. Such distributions are called as stable Levy

distributions. For more information about diffusion, see also [7, 8].

Let us check the above three assumptions for Einstein’s relation—formulae (2–4) in the case of

anomalous Levy flights super-diffusion. The first assumption about Gibbs-Boltzmann’s statis-

tics keeps the same, because the type of statistics—Gibbs- Boltzmann’s classical statistics—was

determined by the statistical properties of the system in the equilibrium and it does not depend

on the kinetic properties of the system. (The kinetic phenomena as relaxation and diffusion

describe the processes or ways, which lead to the equilibrium state, only.) So we use Gibbs-

Boltzmann’s distribution function too. But the second assumption about Fick’s law for diffu-

sion current is broken. The diffusion current has another form in the Levy flights case, and we

write it in a general operator form:

Jd ¼ �bKn (11)

Here, n is the concentration of diffusing particles, the operator bK in the k- representation is

equal to

bK
� �

k
¼ ik kj jμ�2 (12)

And in the r- presentation, it is equal to

bK ¼∇
!

Δ2
�� ��μ�2=4

(13)

where Δ is the Laplace operator and K is the fractional order operator—see, for example [10].

And finally, we use the general form for the field current instead of linear Ohm’s law approx-

imation as

Jf
!
¼ n V

!
(14)

where V
!

is the drift velocity. In the general case, this velocity depends on electric field in an

arbitrary way: a linear or may be a nonlinear way. Repeating the same reasons for equilibrium

stated as above, we obtain the general formula for the drift velocity:

V
!
¼

bKNeq

Neq
¼ exp

U

kT

� �
bK exp �

U

kT

� �
(15)
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In the case of the anomalous diffusion, we obtain

bK ¼∇
!

Δ2
�� ��μ�2=4

By taking a definition for the derivative of the fractional order in the form of the set [10]:

V
!
¼ exp

U

kT

� �
lim
ε!0

Δ
2 þ ε

� � μ�2ð Þ=4
p
!

exp
U

kT

� �
(16)

we recover that the drift velocity depends on the homogeneous electric field U ¼ �q E
!

r
!
in a

nonlinear way:

V
!

∝Eν
!

(17)

It should be emphasized that this nonlinearity occurs in arbitrarily weak fields, and it was a

result of the unusual anomalous character of Levy flights diffusion. The exponent of this

nonlinearity relates with the critical exponent of the Levy hop diffusion as above (9):

ν ¼ μ� 1. We consider this relation between two critical exponents, which describe the

nonlinear mobility on one hand and the anomalous super-diffusion on the other hand, as

generalization of FDT for Levy flight diffusion case.

2.1. Qualitative estimations for particle velocity

Subsequently, we want to confirm the result (17), which was obtained from the phenomeno-

logical approach, in another way. For this aim, we consider the problem of diffusion in an

electric field in more details. When we introduce the electric field into the diffusion problem,

then the new “field” length, governed by external electric field, was appeared:

LE ¼
kT

qE
(18)

To understand physical sense of this new “field” length and to make necessary estimations for

drift velocity, let us imagine that the medium was partitioned into the boxes of size LE [11].

Further, we proceed the particle motion inside of this box. After leaving this box, the particle

goes along the electric field direction with the probabilityWþ, which is approximately equal to

the unity, (Wþ ∝ 1) and the particle leaves this box with the approximately zero probabilityW�

in the opposite direction (W� ∝ 0). It means that at these scales of LE, the directed motion

prevails over the random diffusion motion. So we can estimate the particle velocity as follows:

V ¼
LE
TE

(19)

where TE is a diffusion time for a length LE.

In the case of usual diffusion, this diffusion time equals to: TE ¼
L2E
D and we obtain Ohm’s law

with well-known Einstein relation between diffusion and mobility:
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V
!
¼

q2D E
!

kT
(20)

In the case of Levy flight, the diffusion time is proportional to powers of “field” length: TE ∝L
μ
E

according to Eq. (10). Repeating the same estimation, we obtain the same nonlinear relation as

formula (17):

V
!
¼

q2D
�

kT

qE

kT

�

�

�

�

�

�

�

�

μ�2

E
!

(21)

Here, D
�

is the constant diffusion coefficient for Levy hop diffusion. Correspondingly for a case

of two different diffusion regimes, we obtain two different laws for drift velocity: nonlinear

behavior (21) and Ohm’s law (20).

We want to stress that these preliminary generalizations of Einstein’s relation in Section 2, see

formulae (17, 21), only reveal the possibility of new nonlinear behavior for drift velocity in the

anomalous super-diffusion case. To prove this result in an exact way, we need to study the

microscopic model.

3. The Levy flight diffusion

To prove the fluctuation-dissipation for Levy flights diffusion case, let us consider the one-

dimensional Levy flights diffusion in more details. Briefly, we remind how the Levy stable law

(10) for distribution function has been obtained. Let us denote the probability of particle to

occupy l- site after n steps as Pn lð Þ and the probability of hops on length l at every step as f lð Þ.

So we obtain the following master equation for a discrete case:

Pnþ1 lð Þ ¼
X

∞

m¼�∞

f jl�mjð ÞPn mð Þ (22)

Here, l and m are integer numbers, which describe positions of sites. In the case of usual

diffusion, when the particle hops on the nearest (left or right) sites only, this function f lð Þ is

equal to

2f lð Þ ¼ δl,b þ δl,�b (23)

where δl,b is the Kronecker’s delta symbol. And the known main equation describing diffusion

on the nearest sites is received:

Pnþ1 lð Þ ¼
1

2
Pn lþ 1ð Þ þ Pn l� 1ð Þð Þ (24)

To simulate a Levy flight, the following Weierstrass function has been used as f lð Þ
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f lð Þ ¼
X

∞

n¼0

a�n δl,�bn þ δl,bn
� �

(25)

Here, parameter b is a length of hop, parameter 1
a is a possibility to make hop of length b (e.g., a

possibility to hop for a distance b2 is equal to 1
a2 and so on). The value of parameter a is confined

by the bound values:b < a < b2, consequently

1 < μ ¼
ln a

ln b
< 2 (26)

Let us shortly discuss the physical picture of Levy flight diffusion. Due to power distribution

of hops over the lengths according to (25), the diffusing particle prefers to hop at nearest sites

due to the biggest probability for nearest sites, to create the cluster from the nearest visited

sites. But there is a small possibility to make a long hop from time to time. After this long hop,

the new cluster of another nearest visited sites has formed at new place. So finally, the structure

of self-similar clusters appears [6]. So we can say that Levy diffusion is the random walks

along self-similar clusters.

Then the structural function for such random walks is equal to

λ kð Þ ¼

ð

f lð Þ exp iklð Þdl ¼
X

∞

n¼0

a�n cos kbnð Þ (27)

Note too that the structural function of Levy flight satisfies the functional equation:

λ kð Þ ¼ aλ kbð Þ þ cos kð Þ (28)

Therefore, for k ! 0, it has a power behavior:

λ kð Þ ≈ kμ,where μ ¼ ln a= ln b (29)

Exactly, the nonanalytic power behavior for k has been established by means of Mellin’s

transformation or by formulas of Poisson’s set summation. In more detail, see [7].

4. Introduction of field in the Levy flight problem and nonlinear response

on electric field

Let us introduce an anisotropy into the random walk on self-similar clusters, formed during

Levy flights diffusion. By virtue of specific nature of Levy hops, a particle can move for an

arbitrary distance bn at every step. For this reason, a small anisotropy 1þ αð Þ for small displace-

ments s (with α ¼ qEs
kT ) has an exponential large value at large distances bn as 1þ αð Þb

n

. Since at

each step, a diffusing particle certainly leaves a site, so the sum of probability of motion along the

electric field directionW + and probability of motion in opposite directionW _must be equal to 1:

Nonlinear Response on External Electric Field and Nonlinear Generalization of Fluctuation-Dissipation Theorem…
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W� þWþ ¼ 1 (30)

Hence, we obtain the following expressions for these probabilities:

W� ¼
1� αð Þb

n

1þ αð Þb
n

þ 1� αð Þb
n (31)

Therefore, the structural function λ (k; E) for Levy flights diffusion in an electrical field is equal to

2λ k;Eð Þ ¼
X

a�n cos kbnð Þ þ i sin kbnð Þ Wþ �W�ð Þ½ � (32)

As well as for the usual ordinary diffusion, the second member with anisotropy for small

k ! 0 contains the expression for the drift velocity:

V ¼ i
∂λ k;Eð Þ

∂k

�

�

�

�

k!0

¼
X b

a

� �n 1þ αð Þb
n

� 1� αð Þb
n

1þ αð Þb
n

þ 1� αð Þb
n ≈

X b

a

� �n

th αbnð Þ (33)

here th xð Þ is the hyperbolic tangent.

It is easy to see that the drift velocity satisfies the following functional equation:

V αð Þ ¼
b

a
V αbð Þ þ cth αð Þ (34)

It means that at weak fields α ! 0, the velocity depends on the electric field in a power-like way:

V αð Þ∝αν (35)

with exponent ν ¼ μ� 1
� �

.

To calculate the velocity by exact way, we used Poisson’s formula:

X

∞

n¼0

f nð Þ ¼
1

2
f 0ð Þ þ

ð

f tð Þdtþ 2
X

∞

m¼1

f tð Þ cos 2πmtð Þdt (36)

After calculations, we obtain the formula for the velocity:

V αð Þ ¼
α

2
þ α μ�1ð Þ

X

∞

m¼�∞

ð

th zð Þz�γmdz

" #

þ

ð

α

0

th zð Þz�γmdz� (37)

where a power exponent is equal to γm = μ + 2πmi /ln b. It is easy to see that for arbitrary weak

fields α, the first term has been neglected in comparison with the second term in the brackets.

Thus, in arbitrary weak electric fields, the nonlinear dependence on electrical field of velocity

(35) has appeared.
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5. Numerical simulations

Subsequently, the results of numerical simulations of Levy random walks were reported. Let

us briefly explain the algorithm of simulations. Probabilities of left and right walks are deter-

mined as probabilities to have a random value from [0, 0.5] and [0.5, 1] correspondingly. The

anisotropy of random walks is simulated by the decreasing length of [0, 0.5] for quantity W
�

anti-parallel field and increasing [0.5, 1] for quantity W+ in parallel field case. The simulations

are made at different values of parameters a and b. As the probability a�n decreases rather

rapidly, so we can confine finite members in the sum (10). For example, at a = 50, b = 10, n = 6

and a = 6, b = 3, n = 12. But we proceed that at every hop, the sum of all probabilities with finite

numbers of hops is equal to 1, that is, particle does not stay in the site.

The results of random walks, Figure 1, are in accordance with the known results [2].

The step-like dependence of rms as a function of time is easy to understand as follows. The

particle diffuses at nearest sites mainly, making the cluster from visited sites, and with a small

probability hops at big distance (at next step) and again diffuses at nearest sites and so on.

The electric field leads to the particle drift. The dependence of the average displacement < X >

as function of the time is represented in Figure 2 at different values of anisotropy. From linear

dependence, it is easy to find the particle velocity by standard way: V = <X>/N. The value of the

nonlinear dependence index is determined from numerical simulation data as.

Figure 1. Typical dependence of RMS for Levy flight.

Nonlinear Response on External Electric Field and Nonlinear Generalization of Fluctuation-Dissipation Theorem…
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μ exp ¼ 1þ ln V=V0ð Þ= ln α=α0ð Þ

These results are represented in Figure 3. The main distortion in the simulations is due to the

random character of walks, and it was checked in the calculations from values of average

displacement at zero fields.

Figure 2. Dependence of the average displacement <X(t) > on number of hops N.

Figure 3. Dependence of relation μ exp =μtheor
at different values of anisotropy.
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6. Transition from nonlinear response to Ohm’s law

6.1. Transition from Levy super-diffusion to ordinary diffusion

In this section, we additionally introduce the usual diffusion on the nearest neighboring sites in

the process of random Levy walks. It gives us the possibility to proceed the transition from

Levy super-diffusion to the usual diffusion. For this aim, the finite hop length ξ at every step

has been introduced. So we construct the complex random walks, in which the Levy super-

diffusion alternates with the usual diffusion. Accordingly, the distribution function for lengths

of hops has the following form:

f l; ξð Þ ¼
X

∞

n¼0

a�n δl,� bnþξð Þ þ δl,bnþξ

� �

(38)

Hence, the structural function for complex random walks with Levy diffusion and ordinary

diffusion is equal to

λ k; ξð Þ ¼
X

a�n cos kbn þ kξð Þ (39)

In the case of complex alternative diffusion, the main contribution to the root-mean-square

displacement was provided by Levy flights on long times, corresponding to big scales. Corre-

spondingly, on small times and at small scales, the main contribution was provided by the

usual diffusion. In the limit of the small lengths of hops b << ξ, we obtain the formula for

structural function, which corresponds to the usual diffusion:

lim
b!0

λ k; ξð Þ ¼
a

a� 1
cos kξð Þ (40)

We consider this transition b << ξ as transition from the discrete medium to the continuous

mediumwith heterogeneity length as ξ. It is easy to check that the usual diffusion equation has

followed from this structural function as a result.

6.2. The drift in the case of both ordinary and Levy diffusion

Let us introduce the anisotropy into these complex randomwalks as described earlier, but now

we replace the hop length bn to the new quantity: bn þ ξ. After this replacement, we obtain the

formula for the new structural function in an electric field with finite hop length:

2λ k; ξ;Eð Þ ¼
X

∞

n¼0

a�n cos kbn þ kξð Þ þ i sin kbn þ kξð Þ Wþ �W�ð Þ½ � (41)

Accordingly, the velocity has been described by the following formula:

V ¼ i
∂λ k; ξ;Eð Þ

∂k

�

�

�

�

k!0

¼
X bn þ ξ

an

� �

tanh αbn þ αξð Þ: (42)
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To calculate this sum in formula (42), Poisson’s method of summation has been used again.

The following results have obtained. For weak electric fields (qEξkT << 1), the velocity is a

nonlinear function of the electric field:

V � Eμ�1 (43)

and in the strong fields (qEξkT >> 1), the velocity became a linear function in the field:

V � Eξ2�μ (44)

Note that the particle velocity has two asymptotic regimes in accordance with the diffusion

limits: Levy hops and usual ordinary diffusion. The Levy flight diffusion leads to the nonlinear

response, and the usual diffusion leads to the linear Ohm’s law. So the two different power

dependencies of particle mobility (43, 44) were obtained for a specific distribution of hops as

(38). But before this result was obtained without any assumptions about the nature of hops,

only specific form of Levy diffusion current was used as (11). And now, we consider the

specific distribution of hops (38) only as microscopic model. We believe that the same

nonlinear result will be correct for another hops distribution over lengths.

7. Scaling for particle mobility

We want to remark that above results look similar to the phase transition theory results

[12, 13]. First of all, we have the analog of correlation radius for phase transition Lc—in our

case, this is the finite length of hop ξ. At scales, which bigger than ξ, we have anomalous

super-diffusion and at scales, which are smaller than ξ, we have the usual diffusion. So this

length ξ has a role of heterogeneous scale as correlation radius. Second as it is well known that

if the correlation radius Lc trends to the infinity at the phase transition point (at threshold),

then any characteristic scales in the phase transition theory at threshold are absent, so any

response for external fields has the power behavior, which is described by the critical expo-

nents of phase transition theory. Near threshold point, results of the phase transitions theory

were easy to understand if they have the scaling form. So we want to present the above-

obtained results in the general scaling automodel form too, using the finite hop length ξ

instead of correlation length Lc.

So to clarify the obtained results, the expression for the particle mobility η ¼ V
E has been

rewritten in the scaling form too:

η∝ ξ�λf
qEξ

kT

� �

(45)

where λ is the critical exponent of scaling, and the scaling function f xð Þ has the asymptotic

power behavior:
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f xð Þ ¼
1, x << 1

xλ, x >> 1

	 


(46)

For our model of Levy flights diffusion, this scaling exponent λ is connected with the exponent

of the super-diffusion as

λ ¼ μ� 2 (47)

At the small scales ξ << kT
qE, where the usual diffusion dominates, the particle mobility

depends on the homogeneity length ξ only (correlation radius in the phase transitions theory).

At the large scales, where the Levy super-diffusion dominates, the mobility depends on the

electric field E only or, in other words, the mobility became a function of the new “field” length

LE ¼ kT
qE with the same exponent λ (see formula (42) too).

7.1. The scaling form for fluctuation-dissipation theorem for nonlinear case

Usually, the Einstein relation between diffusion and conductivity was considered as a simple

example of fluctuation-dissipation theorem (FDT), which was connected by the different charac-

teristics of the considered system: the dissipation, described by the relaxation time τ (the particle

mobility η ¼ qτ
m), and the fluctuation characteristic, described by the diffusion coefficient D:

qD ¼
qτ

m
kT ¼ ηkT (48)

We want to stress that this obtained nonlinearity (43) essentially differs from the usual

nonlinearity, and our result means that the relation between the nonlinear mobility and the

coefficient of diffusion existed in the new nonlinear form, when the mobility became as

nonlinear function of the electric field

η Eð Þ � Eλ (49)

Here, λ is exponent of the nonlinear dependence of mobility. And new nonlinear generalized

fluctuation-dissipation theorem relates the exponent of the nonlinear response λ with the

exponent of the anomalous diffusion μ:

λ ¼
d ln η Eð Þ

d lnE
¼ μ� 2 (50)

It seems that this investigated case was a first case when the fluctuation-dissipation theorem in

the usual form of linear relation between two coefficients was broken. And instead of simple

relation between linear coefficients, the new and more general relation between exponents of

mobility and exponent of the super-diffusion appeared.

From this point of view, we believe that the case of usual diffusion or Einstein’s relation

between two coefficients of diffusion and mobility is the limiting case of new generalized
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FDT between exponents of mobility of particle in an electric field and exponent of diffusion:

λ ¼ 0 μ ¼ 2
� �

.

8. Discussion

Let us discuss the results. All the above obtained both the nonanalytic behavior of structural

function for small k ! 0 and the nonlinear electric field dependence of the velocity in arbi-

trarily weak fields which were the asymptotical results. We show that the current (velocity)

depends on electric field in a nonlinear way due to the anomalous character of Levy flights and

possibility to fly at arbitrary distances:

J Eð Þ � E
ν (51)

Nonlinear properties of media intensively have been studied. Usually, the nonlinearity has

been connected with the expansion of electric current for set in powers of the electric field and

with consideration of the cubic nonlinearity [14]:

J
!
¼ σ E

!
þχ Ej j2 E

!
þ… (52)

But our result essentially differs from the results, obtained by this method. We show that in the

investigated case of Levy super-diffusion, the nonlinear behavior appeared due to anomalous

super-diffusion character and the electric current depends on electric field in a power

nonlinear way. It means that Ohm’s law or a linear term was absent in the field series expan-

sion of the current (58) in the investigated case.

The generalization of fluctuation-dissipation theorem for a case of Levy flights diffusion was

obtained. Instead of well-known Einstein’s relation between diffusion coefficient D and mobil-

ity η, which is correct in linear Ohm’s law case, the new relation between exponents, which

describes the nonlinear response of system ν on the hand and anomalous Levy flight diffusion

μ on the other hand, was obtained:

ν ¼ μ� 1

It is interesting to note that from the above-obtained results, we understand what two results

were contained in Einstein’s relation (1). Firstly, we can say that Einstein recovers or proves the

existence of Ohm’s law (linear response) for any systems with usual diffusion, and secondly, he

established the relation between diffusion coefficient and mobility of particle in a linear case.

As for “real” systems, the different theories with different predictions have been existed and

numerical simulations have not given a clear answer yet: the non-monotonically dependence

with time were founded [15, 16]. We hope that these results may be applied for real disordered

systems and in particular also for the problem of hopping in the disordered systems, but we

need to make further investigations for it [17].
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