
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 3

Determination of Magnetic Anisotropy by EPR

Andrej Zorko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78321

Abstract

Electron paramagnetic resonance (EPR) is a powerful spectroscopic technique, perfectly
suited for determining magnetic anisotropy terms in spin Hamiltonians. Although solid
foundations of the EPR theory were established by Kubo and Tomita (KT) more than half
a century ago, especially in the last couple of decades, we have witnessed a rapid progress
in the field due to the occurrence of enhanced computational capabilities. In this chapter,
we overview this progress by summarizing the basic concepts of EPR in exchange-
coupled systems. The review builds upon the standard KT theory and the exchange
narrowing picture, which is however only suitable at high enough temperatures and for
systems with dimensionality exceeding one. We also summarize the predictions of more
modern approaches, including exact calculations on finite spin clusters, the Oshikawa-
Affleck effective-field theory for 1D systems, and the recently developed EPR-moments
approach. Many illuminating examples of the applicability of different approaches are
also provided.

Keywords: EPR, ESR, EMR, Kubo-Tomita theory, exact diagonalization, Oshikawa-
Affleck effective-field theory, EPR moments, exchange-coupled spin systems, magnetic
anisotropy, Dzyaloshinskii-Moriya interaction, anisotropic exchange, single-ion
anisotropy

1. Introduction

Since the pioneering demonstration of the electron paramagnetic resonance phenomenon in

solids and liquids in 1944 by Zavoisky [1–3], EPR has become a well-established and broadly

spread spectroscopic technique. Although the main principle of detecting microwave absorp-

tion by electronic magnetic moments at a fixed frequency and a sweeping applied magnetic

fields has not changes from early days, the method has become one of the most sensitive local

probes of magnetism.
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The term electron paramagnetic resonance in a narrow sense applies to paramagnetic

compounds containing transition-metal or rare-earth elements with incomplete inner

shells, hence possessing paramagnetic electron moments. In a broader sense, the general

term electron magnetic resonance (EMR) stands for magnetic resonance absorption exper-

iments performed on an ensemble of magnetic moments corresponding to localized or

itinerant electrons. In addition to paramagnets, EMR thus also covers absorption phenom-

ena in ordinary metals and magnetically ordered systems, as well as absorption by imper-

fections in insulators and semiconductors, which may trap electrons or holes. In literature,

also the term electron spin resonance (ESR) is often encountered. This is usually reserved

for cases when the magnetic moment originates primarily from the spin momentum of the

electron, like in iron-group metals where the orbital moment of the electron is usually

quenched.

The EPR technique provides superior insight into magnetic properties of a particular sample

compared to more conventional bulk magnetic techniques, e.g., bulk-magnetization or

magnetic-torque measurements. A particular EPR experiment can provide information that

help in characterization of local magnetic and electrostatic environments of a magnetic

moment, as well as information about development of magnetic correlations and fluctua-

tions [4–6]. The experiment can also help to determine magnetic coupling with other elec-

tronic and nuclear moments, etc. Due to these diverse and detailed information, EPR has

earned reputation in various fields of science. Traditionally, it was in the domain of solid-

state physics and chemistry, but lately it has become indispensable also in bio-oriented

sciences and medical applications. Moreover, it has been recently highlighted for its strength

in detecting unconventional magnetic phenomena, such as edge states in topological insula-

tors [7], spinon excitations in spin liquids [8], and spin-nematic states [9].

For a general introduction to EPR the reader is advised to turn to one of many very good EPR

monographs and reviews, like the Abragam and Bleaney “Electron Paramagnetic Resonance

of Transition Ions” [4], the Pilbrow “Transition Ion Paramagnetic Resonance” [5], or the more

recent Weil and Bolton “Electron Paramagnetic Resonance: Elementary Theory and Practical

Applications” [6]. The purpose of this chapter is to review a specific problem of EPR in

exchange coupled systems. This problem is particularly difficult to treat due to complications

induced by the exchange interaction between neighboring moments. These interactions dra-

matically affect the way the moments respond to the external magnetic fields. In order to

model this response properly, the use of modern theoretical concepts and advanced experi-

mental approaches is required. These are review in this chapter.

The outline of the chapter is the following. We will start with a general overview of the

Kubo-Tomita EPR theory (Section 2), which will first require the introduction of the spin-

Hamiltonian concept. We will pay special attention to the exchange-narrowing limit, which

is generally applicable to strongly-exchange-coupled spin systems. Next, a few successful

applications of the KT theory will be demonstrated in Section 3. In Section 4, limitations of

the KT approach will be summarized. Different approaches that can overcome these limita-

tions and their specific applications will also be given. The concluding Section 5 will sum-

marize this chapter.

Topics From EPR Research24



2. KT theory of EPR in exchange-coupled systems

Dense magnetic insulators, i.e., systems that do not conduct electric current and where mag-

netic moments are localized at well-defined crystallographic sites (usually occupied by transi-

tion metals or rare earths), represent one of the major fields of research in condensed matter,

where EPR is particularly powerful [10]. In this chapter, we shall focus on systems that are

strongly exchange coupled, i.e., where magnetic moments communicate, and highlight partic-

ular information that EPR can provide in such cases.

EPR measures the absorption of microwaves by electrons, i.e., atomic magnetic moments,

therefore, it provides a direct insight to the atomic magnetism. This is unlike some other

local-probe techniques, such as nuclear magnetic resonance [11, 12] or muon spectroscopy

[13] that can only provide indirect information about electron degrees of freedom. However,

as we shall see below, this advantage of EPR at the same time turns out to be a drawback,

since knowledge of four-spin correlations functions is required to accurately describe the

EPR response of exchange-coupled magnetic moments at an arbitrary temperature. On the

other hand, for indirect techniques, like NMR, two-spin correction functions suffice. This

makes EPR an elaborate technique and prevents a routine analysis of the EPR spectra of

exchange-coupled systems.

The beginnings of the EPR theory in exchange-couples magnetic systems go back to the seminal

work by Kubo and Tomita (KT) entitled “General Theory of Magnetic Resonance Absorption”

[14]. Although it rests on a perturbation approach and is therefore not exact, the KT theory still

represents solid foundations in modern times. The EPR theory has seen some progress later on,

especially in recent years with the advent of enhanced computational facilities. Within this

chapter, we shall make a general overview of the KT theory and its successors that were devel-

oped for cases where the KT theory is not valid.

2.1. Spin Hamiltonian

We start the body of this review with introducing the concept of the spin Hamiltonian. In this

framework the totalHamiltonianof aparticular systemwith all degrees of freedomthat arepresent,

i.e., electron orbital, electron spin, nuclear, lattice, etc., is projected onto the spin space of the

electrons. In an externalmagnetic field, the spinHamiltonian comprises of the following terms [6]:

H ¼ HZ þHhf þHex þH
0

: (1)

Here, HZ ¼ μBB0

!

�g� S
!

is the Zeeman interaction of the electronic spin S
!

with the applied

magnetic field B0

!

(μ0 denotes the Bohr magneton, g is the g tensor), Hhf is the electron-nuclear

hyperfine coupling interaction,

Hex ¼

X

i, j>i

JijSi
!

�Sj
!

(2)
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is the exchange Hamiltonian summing terms between electron spins at sites i and j coupled by

an isotropic exchange interaction Jij, and H
0

represents magnetic anisotropy. The latter,

H
0

¼ Hdd þHzfs þHAE þHDM, (3)

includes the dipolar term between electronic spins Hdd, the zero-field splitting term Hzfs, which

reflects a combined effect of the electrostatic crystal field and spin-orbit coupling on the energy

levels in spin space, the symmetric anisotropic exchange (AE) term

HAE ¼
X

i, j>i

Si
!

�δ � Sj
!

, (4)

where δ is the symmetric part of the anisotropic exchange tensor, and the antisymmetric

anisotropic exchange term

HDM ¼
X

i, j>i

di, j
!

�Si
!

�Sj
!

, (5)

known as the Dzyaloshinskii-Moriya (DM) interaction (d
!

is the DM vector) [15, 16]. We note

that the dipolar term is important in diluted magnetic systems, but is usually negligible in

dense magnetic insulators. The zero-field splitting term may be important for spins S > 1=2

and has, in the lowest order in spin, the following form

Hzfs ¼ D S2z � S Sþ 1ð Þ=3
� �

þ E S2x � S2y

� �

: (6)

The exchange anisotropy is a relativistic effect due to the spin-orbit coupling. In transition

metals, the Dzyaloshinskii-Moriya interaction is usually the dominant exchange anisotropy

term. The reason is that it originates from the first-order perturbation in the spin-orbit cou-

pling, while the symmetric anisotropic exchange results only from the second-order perturba-

tion theory [15, 16]. Consequently, the DM term is proportional to Δg=gð ÞJ, while the

symmetric AE term is proportional to Δg=gð Þ2J, where the g-shift Δg from the free electron

value of 2.0023 measures the amount of the orbital momentum in the ground crystal-field state

due to mixing of higher crystal-field states. In copper-based magnets, for example, one typi-

cally finds Δg=g ≈ 0:15 [4, 5].

2.2. EPR spectrum

In the high-temperature limit, where thermal energy is larger than the Zeeman energy

splitting (in the conventional X-band at 9.5 GHz the Zeeman spitting corresponds to the

temperature of 0.45 K), the EPR absorption spectrum is determined in the linear-response

theory by thermal-averaged (denoted by …h i) fluctuations of the total transverse spin oper-

ator S
!
¼

P

iSi
!
, as [14].
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I ωð Þ∝ωχ00 ωð Þ∝
ω

T

ð

∞

�∞

Sþ tð ÞS� 0ð Þ
� �

e�iωtdt, (7)

where the spin ladder operators are given by S� ¼ Sx � iSy and χ00 ωð Þ represents the imagi-

nary part of the uniform dynamical susceptibility. In the case when the Zeeman interaction is

dominant, one can separate the Hamiltonian H0 ¼ Hex þHZ from the other, perturbing terms

H0. Rewriting χ00 ωð Þ in the interaction representation, which is given by the transformation
~S tð Þ ¼ e�iH0t=ℏS tð ÞeiH0t=ℏ, then yields

χ00 ωð Þ∝

ð

∞

�∞

~Sþ tð ÞS� 0ð Þ
� �

e�i ω�ω0ð Þt þ ~S� tð ÞSþ 0ð Þ
� �

e�i ωþω0ð Þt
� �

dt: (8)

Eq. (8) reveals an interesting result that the resonant absorption is peaked at the Larmor

frequency �ω0 ¼ gμBB0=ℏ, where ħ is the reduced Planck constant. Moreover, in the case of

no anisotropy, there is no time dependence of the spin correlation functions in the interaction

representation (Eq. (8)), therefore the EPR spectrum simply consists of two δ-functions. The

time dependence of the correlation functions in Eq. (8), which is due to magnetic anisotropyH0,

is thus solely responsible for finite line widths of the EPR spectra and their shifts from the

Larmor frequency. This is an essential results, as it demonstrates that magnetic anisotropy is

directly reflected in the shape of the EPR line spectrum, unlike in all other techniques capable

of detecting the anisotropy, e.g., inelastic neutron scattering, where the signal is a combined

effect of multiple factors. Usually the EPR line width is small compared to the Larmor fre-

quency and one can neglect the contribution peaked at the negative frequency –ω0.

According to the KT theory, the EPR spectrum can be expressed as the Fourier transform of the

relaxation function φ tð Þ ¼ ~Sþ tð ÞS� 0ð Þ
� �

= ~Sþ 0ð ÞS� 0ð Þ
� �

,

I ωð Þ∝

ð

∞

�∞

φ tð Þe�i ω�ω0ð Þtdt: (9)

Thus, spin correlations embedded into the relaxation function determine the EPR spectrum.

The calculation of the relaxation function is however nontrivial. Therefore, approximation

schemes are required. For Markovian random processes the relaxation function is approxi-

mated by [14]

φ 0ð Þ ¼ exp �

ð

t

0

t� τð Þψ τð Þdτ

0

@

1

A: (10)

Here, the spin correlation function is defined as

ψ τð Þ ¼
~H 0 0ð Þ; Sþ 0ð Þ

� 	

S� 0ð Þ; ~H 0 0ð Þ
� 	� �

ℏ
2 Sþ 0ð ÞS� 0ð Þ
� � , (11)
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where A;B½ � stands for the commutator between operators A and B. Within the KT theory a

Gaussian decay of the spin correlation function is postulated,

ψ 0ð Þ ¼ ψ 0ð Þe�τ2=2τ2c , (12)

where the characteristic spin correlation time is determined by the dominant isotropic

exchange J, τc ≈ h=J.

2.3. Exchange narrowing

Let us inspect two limiting cases of the correlation time with respect to the typical EPR time

scale given by the Larmor frequency. For slow decay of correlations (ω0τc ≫ 1), i.e., in the

quasi-static limit, ψ(t) in Eq. (10) can be replaced by its zero-time value, which is proportional

to the second moment of the absorption line

M2 ¼ ℏ
2ψ 0ð Þ ¼

H
0
0ð Þ; Sþ 0ð Þ

h i

S� 0ð Þ;H0
0ð Þ

h iD E

Sþ 0ð ÞS� 0ð Þ
� � : (13)

This procedure yields a Gaussian relaxation function φ(t) and, according to Eq. (9), also a

Gaussian shaped EPR spectrum, with the width ΔBG ∝

ffiffiffiffiffiffiffi

M2

p
.

The fast decay limit (ω0τc ≪ 1) gives a completely different result. Here, the integral in Eq. (10)

is approximated by

ð

t

0

t� τð Þψ τð Þdτ ¼ ψ 0ð Þ t

ð

t!∞

0

e�τ2=2τ2cdτ�
ð

t!∞

0

τe�τ2=2τ2cdτ

0

@

1

A

≈

ffiffiffiffi

π

2

r

M2

ℏ
2
τct, (14)

which leads to an exponential decay of the relaxation function φ(t). Consequently, the EPR

spectrum has a Lorentzian shape. Its line width is ΔBL ∝ τcM2. As τc ≈ h=J, this is known as the

exchange-narrowing limit [17, 18], where the EPR broadening, which is given by magnetic

anisotropy yielding finite M2, is opposed by the isotropic exchange interaction causing

narrowing of the EPR line. The spin correlation time τc ∝ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2=M4

p

is approximated by the

second moment (Eq. (13)) and the fourth moment of the absorption line

M4 ¼
H �HZ; H0; Sþ 0ð Þ

� 	� 	

H �HZ; H
0; S� 0ð Þ½ �½ �

� �

Sþ 0ð ÞS� 0ð Þ
� � , (15)

which yields the full width at half maximum (FWHM) of the Lorentzian EPR line

ΔB ¼ C

gμB

ffiffiffiffiffiffiffi

M3
2

M4

s

: (16)

The exchange-narrowing limit is typically applicable to real exchange-coupled system, except

in cases of small couplings and high Larmor frequencies. We recall again that in the most
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widespread X-band EPR experiment (ω0 ¼ 2π� 9:5 GHz) a typical temperature scale is 0.45 K.

The exchange narrowing is straightforwardly confirmed in an EPR experiment by the

Lorentzian line shape of the spectrum. However, strictly speaking, the experimental line shape

is never truly Lorentzian, because the moments of the latter diverge, while the EPR moments,

given by the commutators, such as those in Eq. (13) and Eq. (15), are always finite. In systems

with strong isotropic exchange compared to magnetic anisotropy, deviations from the

Lorentzian shape occur only in far wings of the EPR spectrum and are often not even observ-

able. An approximate line shape that is a product of the Lorentzian and a broad Gaussian

∝ exp � B� B0ð Þ2=2B2
ex

� �

, with the exchange field Bex ¼ kB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2=M4

p

=gμB [19], is then justified.

This yields the constant C ¼
ffiffiffiffiffiffi

2π
p

in Eq. (16). The EPR line width is thus a fingerprint of

magnetic anisotropy (Eq. (3)) present in a given exchange-coupled spin system, as the latter

yields finite EPR moments (Eq. (13) and Eq. (15)).

3. Applications of the KT theory

Applications of the KT theory to experiments are numerous. Here, we will highlight a few

cases from recent literature, where determination of the magnetic anisotropy turned out to be

crucial for understanding the magnetic ground state. All examples concern magnetically

frustrated spin lattices in 2D, where short-range spin interactions are incompatible with the

underlying spin lattices, effectively suppressing long-range spin ordering and leading to

unconventional states of matter. In such cases magnetic anisotropy, even if only being a small

perturbation to the dominant isotropic exchange interaction, can tip the balance in favor of one

or another competing ground state.

3.1. Kagome lattice

The first example is the 2D spin lattice in herbertsmithite, ZnCu3(OH)6Cl2 [20], a compound

that has earned the reputation of being the best experimental realization of a quantum kagome

antiferromagnet (QKA) of corner-sharing triangles (Figure 1), where the geometrical frustra-

tion is the most severe [21]. Numerous theoretical studies that proposed various different

ground states over the last two decades, now seem to have converged on a gapped quantum

spin liquid (QSL) – a state that is disordered, yet highly entangled [21]. Experimental signa-

tures of such a state have also been lately advocated, although the bulk of experiments on this

and the majority of other known QKA representatives actually speaks in favor of a gapless

QSL. This discrepancy may well be related to perturbations beyond the isotropic Heisenberg

exchange model on the kagome lattice, such as magnetic anisotropy.

The magnetic anisotropy of herbertsmithite was successfully determined by EPR in Ref. [22].

Based on relatively small g-shifts (of the order of 15%, as typical for Cu2+ ions [4, 5]), it was

argued that the antisymmetric DM interaction (Eq. (5)) dominates the magnetic anisotropy in

this compound. The DM vector pattern (Figure 1), which is determined by the symmetry of the

kagome lattice, then according to Eq. (16) predicts the following angular dependence of the

EPR line width [22]

Determination of Magnetic Anisotropy by EPR
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ΔB θð Þ ¼
ffiffiffiffiffiffi

2π
p kB

2g θð ÞμBJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d2z þ 3d2p þ 2d2z � d2p

� �

cos 2θ
� �3

16d2z þ 78d2p þ 16d2z � 26d2p

� �

cos 2θ

v

u

u

u

u

t

, (17)

where θ represents the polar angle between the normal to kagome planes and the applied

magnetic field direction, while dp and dz are the in-plane and the out-of-plane components

of the DM interaction. This expression is valid only in the infinite-temperature limit, therefore

the authors applied it to fit the room-temperature EPR spectrum of herbertsmithite (Figure 1),

where the EPR linewidthwas shown to saturate to a constant value [22]. Thus theminute in-plane

DM component dp=J � 0:01 3ð Þ and the dominant out-of-plane DM component dz=J � 0:08 1ð Þ
could be determined. Themagnitude of the extractedDM interaction agreeswith another estimate

0:06 < dz=J < 0:10, later obtained from NMR measurements [23]. Importantly, this places the

system to a QSL part of a phase diagram, however, quite close to a quantum critical point

determined by the out-of-plane DM component, which according to theory should occur at

dz=J≃ 0:10 [24]. This point separates the spin-liquid phase from a Néel ordered phase at larger

DM values. A further in-depth EPR study has revealed that the establishment of the spin-liquid

state in herbertsmithite induces macroscopic symmetry reduction of the crystal lattice [25].

In contrast to herbertsmithite, in another QKA representative, vesignieite, BaCu3V2O8 (OH)2,

a long-range magnetic order was observed [26], which could be due to the fact that this

systems is positioned in the ordered part of the above-mentioned phase diagram. In order to

Figure 1. The EPR spectra of ZnCu3(OH)6Cl2 at two different temperatures (symbols) and corresponding fits with a

model based on the EPR line-width anisotropy given by Eq. (17). The lower inset shows the corresponding kagome lattice

of Cu2+ S = 1/2 spins (orange) and the DM vector pattern. The upper inset shows the quality of the fit (reduced χ2), where

the dashed rectangle highlights the best fitting parameters. (Adapted from ref. [22].)
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verify this conjecture, the same EPR analysis (Figure 2) as the one presented above for

herbertsmithite was performed in Ref. [27]. The derived DM components are somewhat differ-

ent from those in herbertsmithite, as the in-plane component dominates in vesignieite,

dp=J � 0:19 2ð Þ and dz=J � 0:07 3ð Þ. Alternatively, the EPR line shape could be modeled also

with the symmetric AE model (Figure 2). However, the extracted symmetric anisotropy

parameters that, contrary to the DM interaction, are responsible also for temperature-

dependent EPR shifts, significantly overestimated the measured shifts (Figure 2). Therefore,

the conclusion was reached, that the DM interaction also dominates in vesignieite. Further-

more, it was argued that the condition dp > dz could profoundly affect the quantum critical

point because the in-plane DM component disfavors spin structures from the ground-state

manifold of the isotropic J and should be much more efficient in suppressing quantum fluctu-

ations than the out-of-plane DM component [27]. This could explain why magnetic ordering in

vesignieite occurs at surprisingly high temperature for a frustrated system, TN=J � 0:17 [26],

despite dz=J being very similar to the ratio in herbertsmithite.

3.2. Triangular lattice

A regular triangular lattice of edge-sharing triangles is another example of a highly frustrated

spin lattice in 2D. Contrary to the kagome lattice, where each spin in surrounded by four

nearest neighbors, on the triangular lattice there are six such neighbors, which reduces the

Figure 2. The 300-K EPR spectrum of BaCu3V2O8(OH)2 (symbols) fit with (top left) the DMmodel of Eq. (17) and (bottom

left) the AE model [27] and the corresponding quality of the fits reflected in the reduced χ2 in the parameter space of each

model. (Right) the temperature dependence of the g factor (symbols) and the prediction of the AE model. (Adapted from

ref. [27].)
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amount of frustration. Consequently, the triangular lattice exhibits a magnetically ordered

ground state, which is, however, much more complex than on ordinary bi-partite spin lattices.

A slightly more complicated triangular lattice is realized in Fe-langasite, Ba3NbFe3Si2O14 [28].

Here the Fe3+ (S = 5/2) spins reside on vertices of equilateral triangles arranged into a 2D

triangular lattice (Figure 3). Quite interestingly, the magnetically ordered ground state below

TN = 26 K is doubly chiral, as the same 120� spin configuration on each triangle is helically

modulated from plane to plane [28].

To identify the anisotropy term that is responsible for such chirality of the magnetic ground

state, an EPR study was again conducted [29]. The room-temperature EPR signal was found to

exhibit a pronounced angular dependence of the EPR line width and line position. The former

could be related either to zero-field-splitting anisotropy (Eq. (6)) or DM exchange anisotropy

(Eq. (5)), with the anisotropy patterns as shown in Figure 3. The two models could not be

distinguished solely based on the EPR response of the system. However, a combined study of

the EPR spectra and antiferromagnetic resonance (AFMR) modes observed below TN

suggested the DM interaction as the dominant source of anisotropy and thus to be responsible

for the observed chiral behavior of Fe-langasite. The out-of-plane DM component dz=J � 0:004

and the in-plane component dp=dz ¼ 2:6 were estimated from the combined fits of the EPR and

AFMR data. For the EPR line width in accordance with Eq. (16), the DM anisotropy yielded the

EPR line width of the form [29]

Figure 3. (Left) The 2D triangular arrangement of the Fe3+ S = 5/2 spins in Ba3NbFe3Si2O14 and the corresponding

isotropic exchange interactions J1 – J5. The basic motif of anisotropic DM and AE interactions is also shown. (Right) The

angular dependence of the EPR line width at 500 K (symbols) and the fits (lines) with the model of Eq. (18). (Adapted from

ref. [29].)
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ΔB θð Þ ¼
ffiffiffiffiffiffi

2π
p kB

2g θð ÞμB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

105 5d2p þ 6d2z þ d2p � 2d2z

� �

cos 2θ
� �3

32 35J2DMd
2
p þ 6J

02
DMd2z þ 2J

02
DMd2z � 7J2DMd2p

� �

cos 2θ
� �

v

u

u

u

u

t

, (18)

which was fit to the experimentally determined line-width anisotropy at 500 K (Figure 3).

Here the constants J2DM ¼ 3J21 þ 2J22 þ J23 þ J24 þ J25 and J
02
DM ¼ 18J21 þ 14J22 þ 7J23 þ 7J24 þ 7J25 are

defined by the five strongest exchange interaction depicted in Figure 3.

A later study combining EPR, AFMR and inelastic neutron scattering refined the anisotropy

model in Fe-langasite and showed that actually both the DM anisotropy (dz=J � 0:033, dp=dz ¼
2:6), and the zero-field-splitting anisotropy (D=J � 0:052) are of very similar size [30].

4. Pitfalls of the KT theory and alternative approaches

Although the above examples nicely demonstrate the value of the KT theory, this theory

should be applied to each particular case with caution, because it is limited in several aspects.

Firstly, the KT approach does not take into account a possible hidden symmetry of the DM

interaction (Section 4.1) and diffusional decay of spin correlations in low dimensional spin

systems (Section 4.2). Secondly, the EPR moments (Eq. (13) and Eq. (15)) implicitly employ

four-spin correlation functions, which can be explicitly evaluated only in the infinite-

temperature limit, where spin correlations between neighboring sites are negligible. On the

other hand, the analysis of the EPR line width at temperatures of the order of the dominant

exchange coupling J and below requires different approaches, like the Oshikawa-Afflect

effective-field-theory (Section 4.3). Lastly, one should keep in mind that the KT theory is

perturbative, therefore the cases of large (or even dominant) magnetic anisotropy should be

treated with different approaches (Section 4.4).

4.1. Reducibility of the DM interaction

It was found theoretically that the DM interaction may in some cases possess a hidden

symmetry [31], in the sense that it can be effectively transformed into a term with the

symmetry of the anisotropic exchange and with reduced magnitude of d2=J, by applying a

nonuniform spin rotation [32]. Consequently, the exchange narrowing KT theory becomes

inadequate for describing the effect of the DM interaction on the ESR line width. How-

ever, this is true only for certain spin lattices and certain components of the DM interac-

tion [33]. The components that can be eliminated in the first order in d are those that sum

up to zero within any closed loop on a spin lattice; for example, for the kagome lattice,

the in-plane DM component Dp is reducible, while the out-of-plane component Dz is

irreducible. The KT theory remains applicable for the irreducible components of the DM

interaction.
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4.2. Spin diffusion

In low-dimensional magnetic systems it may happen that the Gaussian approximation of the

decay of the spin correlation function in Eq. (12) is not justified due to a diffusional contribu-

tion to the decay. This dictates slower time dependence of the form [34].

ψ τð Þ∝ τ�D=2, (19)

where D represents the dimensionality of the spin system. For D ≤ 2 this leads to a divergent

integral in Eq. (14), which in reality leads to broadening of the EPR spectra and changes their

shape from the Lorentzian shape [34].

When the secular part of the anisotropy Hamiltonian (Eq. (3)), i.e., the part commuting with the

Hamiltonian H0, dominates the anisotropy in one-dimensional systems, the relaxation function

is given by φ tð Þ ¼ exp � Γtð Þ3=2
� �

, where Γ ¼ 4M2=3ℏ
2

� �2=3
τ
1=3
c [34]. The Fourier transform in

Eq. (9) then yields an absorption spectrum decaying somewhere in-between the Lorentzian and

the Gaussian line shape (Figure 4). The line width of the spectrum is of the order of Γ. On the

other hand, there exists no universal picture for two dimensions. Nevertheless, deviations of the

experimentally observed EPR spectra from the Lorentzian shape in 2Dwere observed in the past

and successfully ascribed to the presence of spin diffusion [35]. Quite generally, the spin-

diffusion effect in two dimensions is usually much less pronounced than in one dimension.

Finally, we note that the diffusional decay of the electronic spin correlation functions is often

not detectable by EPR at all, even in low dimensional systems. Although these systems may be

Figure 4. Analysis of the line shape in the one-dimensional spin system (CH3)4NMnCl3 (TMMC) for two different

directions of the magnetic field. (Adapted from ref. [34].)
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characterized as being low dimensional due to the dominant exchange interaction along a

chain or within a plane, also inter-chain/inter-layer exchange couplings can still be large

compared to the magnetic anisotropy terms regulating the linewidth of the EPR absorption

spectra. In such cases the decay of spin correlations is effectively taking place in three dimen-

sions and the spin-diffusion problem is absent.

4.3. Exact calculations on finite clusters

The postulate of the Gaussian decay of the spin correlation function in the KT theory (Eq. (12))

has no theoretical background and is not necessarily valid, as explained in Section 4.1. How-

ever, this assumption is not needed at all if the EPR line shape is calculated from the basics, i.e.,

from Eq. (7). This can be done only on finite clusters of spins. Such a limitation then requires an

extrapolation to the thermodynamic limit if these calculations are to be applied to macroscopic

samples.

Exact calculations of the EPR line shape on finite clusters were performed by El Shawish et al.

[36] for certain 1D and 2D spin lattices. For a spin chain, the results showed a noticeable

transformation of the decay of the spin correlations from the Gaussian shape at early times to a

much slower decay of diffusional characteristics at longer times. The resulting line broadening

and the deviation from the Lorentzian line shape were, however, later shown to be effectively

short-cut by inter-chain exchange [37].

The situation is very different in 2D, e.g., for the kagome spin lattice. Namely, the finite-cluster

calculations revealed that, at least for the irreducible DM component dz the line width indeed

scales with d2z=J [36], as predicted by the KT theory. Although no clear signature of the diffu-

sional decay of spin correlations was observed, an interpolation to the spin-diffusional assump-

tion still caused a moderate increase of the line width and a slight deviation from the Lorentzian

line shape. For herbertsmithite, such an assumption would then slightly decrease the amplitude

of the DM vector compared to the above-presented results based on the KTapproach, namely to

0:04 ≤ dz=J ≤ 0:08 [36].

We note that the finite-cluster approach is severely limited, as the extrapolation to the thermo-

dynamic limit, which is usually of interest in experiments, is highly nontrivial and depends on

a particular spin lattice [36]. However, since the results are exact, this approach may still be

very interesting for small systems, such as molecular magnets. An interesting prediction of a

double-peak EPR spectrum was also given (Figure 5). The spectrum should thus strongly

differ from the usual Lorentzian line shape, which still awaits experimental confirmation.

4.4. Oshikawa-Affleck theory

Exact calculations of the second and fourth moments of the EPR absorption spectra (Eq. (13)

and Eq. (15)) are possible within the KT framework for infinite lattices, but only in the limit of

infinite temperature. In this case, static spin correlations of the products of spin operators

acting on different lattice sites can be neglected. In general, in Eq. (13) and Eq. (15), one is

dealing with the computation of four-spin correlation functions since the magnetic anisotropy
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Hamiltonian is quadratic in spin operators. Therefore, special schemes of disentangling the

four-spin correlation functions into products of two-spin correlation functions need to be

applied [14, 19]. Further complications emerge at finite temperatures, i.e., at T � J, when spin

correlations between adjacent spin sites become important.

The problem of how finite temperatures (finite spin correlations) affect the EPR line width is

treated within the Oshikawa-Afflect effective-field-theory approach that is applicable to spin

chains [38, 39]. The spin diffusion picture, which predicts a non-Lorentzian line shape in 1D,

does not apply to the OA theory. In contrast to the KT theory, this approach works well at

intermediate and low temperatures, TN ≪T≪ J, where, in general, all classical theories break

down due to many-body correlation effects. The lower limit is given by the Néel temperature

of 3D spin ordering, where 3D critical spin correlations develop. The AO theory allows to

differentiate between the symmetric-exchange-anisotropy broadening and the antisymmetric

DM broadening, as different scalings with temperature and magnetic field are predicted. The

AE contribution scales like [38–40]

ΔBAE Tð Þ ¼ ε
2kB δ=Jð Þ2

gμBπ
3

T, (20)

where the constant ε ¼ 2 applies for the direction of the external magnetic field along the

anisotropy axis and ε ¼ 1 for the perpendicular directions. This contribution does not depend

on the magnitude of the applied field and scales linearly with temperature. The DM contribu-

tion to the EPR line width is characterized by the staggered field hs ¼ csB0, where the

Figure 5. The EPR line shape of a finite 16-spin chain for different values of the staggered DM interaction d. The curves

are rescaled with the half width Δω. (Adapted from ref. [36].)

Topics From EPR Research36



staggered field coefficient cs originates from the DM interaction and/or from a staggered g

factor. This broadening is of the form

ΔBDM T;B0ð Þ ¼ 0:69gμB

kBJ

kBTð Þ2
h2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
J

T

� �

s

: (21)

The temperature dependence of the DM broadening is inverse to the AE broadening, as the

former decreases with increasing temperature while the latter increases. Moreover, while the

AE broadening effect is independent of the applied field, the DM broadening increases with

the square of the applied field.

If both the AE and the DM term are of similar magnitude in a particular system, one can expect

to observe both EPR broadening mechanisms simultaneously. Such is, for instance, the case in

the CuSe2O5 spin-chain compound [40]. There, simultaneous modeling of the angular, temper-

ature, and frequency-dependent EPR line width with the OA theory (the sum of contributions

in Eq. (20) and Eq. (21)) allowed Herak et al. to extract both the AE and the DM anisotropy

constants [40]. The simultaneous fits of the AO theory to multiple experimental datasets are

presented in Figure 6.

At the end, it should be stressed that the OA approach still relies on the perturbation theory (in

magnetic anisotropy). So, cases, where the anisotropy is of the order of the isotropic exchange

interactions or larger are untreatable within this theory.

Figure 6. (top left) A 1D chains of Cu2+ S = 1/2 spins (orange) in CuSe2O5. Other panels show the temperature dependence

of the EPR line width in three crystallographic directions at different frequencies. The solid lines are fits to the OA theory

of the data (symbols) corrected for high-temperature phonon-induced broadening. (Adopted from ref. [40].)
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4.5. EPR moments

The EPR-moments approach [41] described in this section is more direct, i.e., non-

perturbative. Within this approach the line width (and line shift) in the “frequency

domain,” where the frequency is varied in a fixed Zeeman field, can be calculated for an

arbitrary strength of magnetic anisotropy. Moreover, exact calculations at any temperature

are possible for spin chains. In general, the EPR line width is given by the four lowest

shifted moments

mω
n ¼ J�n

ð

∞

�∞

ω� hð Þnχ00 ω� hð Þdω, (22)

where h ¼ gμBB0=ℏ, as [41]

Δω ¼ J2
Jmω

3 þ hmω
2

Jmω
2 þ hmω

1

� J
Jmω

2 þ hmω
1

Jmω
1 þ hmω

0

� �2

: (23)

The moments in the frequency domain (Eq. (22)) represent static correlations that can be

calculated in the case of 1D spin chains to arbitrary precision for any temperature and applied

field [41]. The agreement of this approach with fully numerical calculation for finite chain

Hamiltonians is shown in Figure 7.

Figure 7. The temperature dependence of the EPR line width in the frequency domain of a spin chain predicted by the

EPR moments approach (Eq. (23)) for the AE anisotropy δ = 0.1 J at various fields h ¼ gμBB0=kB (lines). The symbols

represent numerical calculations on finite chains with the length of N = 16 spins (full symbols) and N = 24 spins (open

symbols). (Adopted from ref. [41].)
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In a typical EPR experiment, however, the frequency is kept constant and the magnetic field is

swept. It turns out that the calculation of the shifted moments in the field domain,

mh
n ¼ J�n

ð∞

�∞

ω� hð Þnχ00
ω� hð Þdh, (24)

requires the knowledge of infinitely many moments in the frequency domain. Therefore,

the experimental line width cannot be calculated exactly at arbitrary temperature and

field [40].

We should stress that the fact the EPR spectrum is measured in a field-sweet experiment is

actually neglected in almost all theoretical treatments. Furthermore, a complication that arises

when applying the EPR-moments approach to an experiment is that “long tails” of the EPR

line may considerably contribute to the moments, while these are usually not properly

accounted for by the experimentally determined FWHM due to noise [42]. Therefore a cutoff

of high-frequency tails is necessary, as it was recently demonstrated for the case of the quasi-

one-dimensional magnet Cu(py)2Br2 [42].

5. Conclusions

This chapter reviews the development of the treatment of the EPR absorption line in strongly

exchange-coupled spin systems. The starting point is the Kubo Tomita general theory of

magnetic resonance absorption, which demonstrates how the line width can be approximated

by two lowest even moments of the EPR line, M2 andM4. We note that the knowledge of all the

moments, Mn ¼
Ð
∞

�∞ ω
nI ωð Þdω, is equivalent to the knowledge of all the derivatives of a

particular absorption line and, therefore, exactly determines the line shape. A particularly

enlightening result of the KT theory is the phenomenon of exchange narrowing, according to

which the EPR line width scales with the square of the magnetic anisotropy and is inversely

proportional to the isotropic exchange interaction.

The KT approach was successfully applied to various spin lattices in the past, including the

geometrically frustrated kagome and triangular lattices, which are exemplified here. However,

when the theory is applied to a particular system special attentions needs to be made a) to a

possible reducibility of the asymmetric Dzyaloshinskii-Moriya exchange anisotropy, b) to the

diffusional decay of spin correlations, which may occur in low-dimensional spin systems, c) to

finite correlations among spins at different sites, which typically develop below the tempera-

ture of the order of the dominant isotropic exchange, and d) to the size of the magnetic

anisotropy, which is only treated as a perturbation in the KT theory. All these drawbacks of

the KT theory can be overcome, at least in special cases. In this review, special approaches that

were developed in this vein have been summarized. These include a) exact calculations of the

EPR line on finite clusters, the Oshikawa-Affleck effective-field theory for 1D spin systems, and

the recently developed EPR-moments approach. For each approach a representative example

has been provided in this review.
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