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Abstract

Heteroatom (metal and nonmetal) doping is essential to achieve excellent oxygen reduc-
tion reaction (ORR) activity of carbon materials. Among the heteroatoms that have been 
studied to date, sulfur (S) doping, including metal sulfides and sulfur atoms, has attracted 
tremendous attention. Since S-doping can modify spin density distributions around the 
metal centers as well as the synergistic effect between S and other doped heteroatoms, 
the S-C bond and metal sulfides can function as important ORR active sites. Furthermore, 
the S-doped hybrid sample shows a small charge-transfer resistance. Therefore, S-doping 
contributes to the superior ORR performance. This chapter describes the recent advance-
ments of S-doped carbon materials, and their development in the area of ORR with 
regard to components, structures, and their ORR activities of S-related species.

Keywords: S-doping, metal sulfides, sulfur atoms, oxygen reduction reactions, 
active sites

1. Introduction

Fuel cells are considered as promising energy conversion and storage devices. In such a 
device, fuels (such as hydrogen, methanol, ethanol, or formic acid) react with oxygen at the 

anode, while oxygen molecules are reduced to water molecules at the cathode [1–4]. However, 

the oxygen reduction reaction (ORR) rate is ~5 orders of magnitude slower than the reaction 

on the anode due to its high overpotential [5]. The search for catalysts that can conquer these 

huge activation energy barriers has attracted much attention. Although Pt-based electro-

catalysts have been commercialized, the high cost of Pt and their poor tolerance to methanol 
significantly hamper their large-scale commercialization. Thus, great effort has been devoted 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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to developing low cost, non-precious-metal, and metal-free catalysts with improved electro-

catalytic efficiency [6–9].

Excellent electrocatalysts for ORR should possess a high specific surface area, finely tuned 
pore structure, and good electron conductivity. The former two facilitate easy accessibility to 

the active sites and ion diffusion, and the latter is beneficial for electron transfer. Much atten-

tion has been focused on the carbonaceous materials due to their remarkable advantages, 

such as low cost, facile preparation strategy, and high conductivity. For constructing ORR 
catalysts with promising electrocatalytic activity, single atom doping or co-doping of two 

or multiple heteroatoms are essential. Metal/nitrogen/carbon (M/N/C) catalysts have been 
regarded as the most promising alternative for precious metal catalysts. For example, Fe 
species not only facilitate the formation of catalytically active N-C sites, but Fe atoms also 
contribute to the graphitization of carbon. More importantly, Fe atoms and related nanopar-

ticles are generally suggested as the active site of ORR catalysts. Recently, the introduction 

of nonmetal heteroatoms such as N, P, S, or B into carbon materials is generally effective in 
enhancing ORR activities of catalysts. In N-doped carbon, the N atom with higher electro-

negativity (3.04) than that of carbon (2.55) leads to more charged adjacent C atoms. With 

respect to S, the electronegativity of S (2.58) is similar to that of carbon; however, S can 

easily change the band gap of carbon due to its two lone pair electrons [2]. P with an elec-

tronegativity of 2.19 and B with an electronegativity of 2.04 can also induce imbalanced 
charge distribution in carbon materials, thus forming positively polarized C-P and C-B more 
active sites to ORR [10, 11]. Furthermore, N/B, N/P, N/S, and N/S/P co-doped carbons also 
show excellent catalytic activity due to their synergistic effects on spin or charge density of 
carbon matrix. Notably, designing a carbon matrix with different morphologies combined 
with hierarchical porous structures, such as micro-, meso-, and macroporosity, can further 

optimize ORR activity.

Recently, the S atom has attracted particular interest and especially its high synergetic effect 
with N dopants and metal dopants [12–19]. In this chapter, we briefly summarize the S-related 
species as active sites in the ORR, such as S-M/N/C, metal chalcogenides, N/S, and N/S/P. We 
then discuss the S-containing electrocatalysts including their carbon sources, heteroatom 

dopants, and preparation methods as well as the nanostructure of the supports.

2. S-related active sites in the ORR

The development of novel strategies for the design and synthesis of carbon-based high per-

formance electrocatalysts is a hot topic. Therefore, efforts have been made toward the design 
and synthesis of extraordinary ORR catalytic carbon materials with different morphologies 
and single or multiple active sites from diverse sources. S-related active sites have been 

extensively investigated due to their excellent performance in ORR. S atom mono-doping can 

induce structural defects in the carbon matrix. The resulting charge dislocation can improve 

the oxygen adsorption. Furthermore, protonation of S is not as severe as that of N [20]. More 
importantly, dual doping of N and S or multiple doping of N, S, and M [21] can dramatically 

enhance ORR activity due to the synergistic effects.
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2.1. M-N-S-based active sites

Wu et al. prepared Fe, N, and S decorated hierarchical carbon layers (S, N-Fe/N/C-CNT) from 
pyrolysis of 2,2-bipyridine and Fe(SCN)

3
-coated CNTs [22]. Adding S salts not only contrib-

uted to the formation of atomically dispersed Fe-N
x
 species, but also improved the surface 

area of the carbon matrix. The half-wave potential (E1/2) of the S,N-Fe/N/C-CNT catalyst is 
about 0.85 V, which is higher than that of commercial Pt/C (0.82 V). The catalyst also exhibited 
superior durability in alkaline medium. Theoretical calculations predicted that atomically 

dispersed Fe-N
x
 species function as highly active sites, while co-doping of N and S improved 

the electrical conductivity. Furthermore, Wan et al. fabricated a sandwich-like graphene/car-

bon hybrid from graphene oxide (GO) and nontoxic starch (Figure 1) [23]. Graphene/carbon 
nanosheets decorated by N, S, and Fe (Fe, S/NGC) were obtained via treatment with FeCl

3
 and 

KSCN. Fe,S/NGC showed outstanding ORR performance in alkaline medium (E1/2 of 0.83 V 

vs. RHE, surpassing E1/2 of NGC (0.76 V) and the Pt/C catalyst (0.81 V)), due to the simultane-

ous introduction of Fe and S. The Fe
3
N and S were considered major active centers in this 

hybrid. Furthermore, Fe,S/NGC also displayed a high ORR activity in the acidic solution. 
In addition, an S and N dual-doped Fe-N-S electrocatalyst (Fe-M-LA/C) was obtained via 
pyrolysis of the mixture of melamine, lipoic acid, FeCl

3
, and carbon black [24]. FeS and Fe

3
C 

formed in the Fe-M-LA/C. It has been suggested that Fe2+ has high catalytic activity in ORR 

and that Fe
3
C is the active site for the ORR. Combined with the N and S-doping, Fe-M-LA/C 

showed promising ORR activity. Interestingly, sewage sludge itself can be used as “all-in-
one” precursor for ORR catalysts [25]. The innate N, Fe, and S compounds in the sewage 
sludge function as N, Fe, and S dopants. The N, Fe, and S self-doped nanoporous carbon 
material exhibited favorable electrocatalytic activity in both alkaline and acidic environments. 

The nanostructure of the carbon matrix also played an important role in ORR. Wan et al. 

synthesized Fe/N/S-doped carbon from glucose, thiourea, and iron nitrate based on a dual-
template method. Multiple active sites such as graphitic-N, pyridinic-N, thiophene-S, FeN

x
, 

Figure 1. (a) The raw materials of synthesis of NGC nanosheets used as the precursor of Fe,S/NGC-900. (b) Mixed 
aqueous solution of FeCl

3
 and KSCN (above) and NGC nanosheets prepared by hydrothermal reaction (below). (c) The 

as-obtained catalyst (above) and illustration of nitrogen and sulfur atoms in carbon skeleton (below) of Fe,S/NGC-900.
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and encapsulated iron nanoparticles combined with hierarchical porous structures contrib-

uted to the excellent ORR performance [2].

Bimetal-based N and S doped catalysts have also been reported. Li et al. synthesized PdW 
alloy nanoparticles decorated S-doped graphene via a microwave irradiation method [26]. 

S-doping contributed to the formation of small particles and the uniform distribution of alloy 

particles. The as-prepared catalyst was highly active for ORR due to the specific electronic 
structure of the alloy. CoFe

2
O

4
 nanoparticles decorated rGO designed by Yang et al. demon-

strated high ORR activity due to the existence of defects resulting from the doping of N and 
S and the covalent coupling between the CoFe

2
O

4
 and rGO matrix [27]. Moreover, Ren et al. 

synthesized PdNi decorated N and S co-doped three-dimensional ordered carbon derived 
from acrylonitrile telomere (C, N, and S sources) using silica as template [28]. Due to the co-

doping of N and S, the strong electronic interaction between Pd and Ni, and three-dimensional 
honeycomb-ordered structure, the electrocatalyst exhibited superior performance compared 

to commercial Pd/C in alkaline solution.

2.2. Metal chalcogenide-based active sites

Wang et al. prepared a raisin bread-like N and S co-doped mesoporous graphitic carbon 
spheres with Fe1−xS nanocrystals embedded in (Fe1−xS/N, S-MGCS) (Figure 2) [29]. The Fe1−xS/N,  
S-MGCS catalyst was obtained via pyrolysis of Fe2+-Polydopamine (PDA), followed by a vul-
canization process, in which Fe

x
C

y
 was transformed into Fe1−xS. This catalyst showed excellent 

ORR performance in both alkaline medium and acidic medium. Notably, the corresponding 
E

onset
 and E1/2 of Fe1−xS/N and S-MGCS were 0.97 and 0.91 V, respectively. The RHE was superior 

to that of the commercial Pt/C catalyst with an E
onset

 of 0.93 V and an E1/2 of 0.87 V. Similarly, 
Wang et al. prepared a S-Fe/N/C electrocatalyst by pyrolyzing thiourea and iron acetate [30]. 

Five types of nanoparticles were detected: Fe, FeS, FeN, FeC, and Fe
3
O

4
. The catalyst showed 

higher ORR performance compared to Fe/N/C both in alkaline and acidic media. Apparently, 
more S doping contributed to the higher catalytic performance.

Cobalt chalcogenides as active sites have also attracted significant attention. For example, Li 
et al. successfully anchored Co

9
S

8
 nanoparticles on N and S dual doped carbon nanosheets 

(Co
9
S

8
/N,S-CNS) via facile pyrolysis of CoCl

2
, citric acid, and thiourea as carbon source 

and cubic NaCl crystals were used as template (Figure 3) [31]. Due to the highly dispersed 

nanoparticle and the synergistic catalytic effect between Co
9
S

8
 nanoparticles and the doped N 

Figure 2. Schematic graph of the formation process from DA to Fe1−xS/N, S-MGCS. Reproduced with permission from 
Ref. [29]. Copyright 2017, Royal Society of Chemistry.
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and S in the carbon nanosheets, Co
9
S

8
/N,S-CNS showed high catalytic activity and stability. 

Moreover, Liao et al. prepared S co-doped graphene nanoholes with cobalt sulfide hollow 
nanospheres decorated in (Co1−xS/N-S-G) using GO (graphene oxide), phen, and S [32]. The 

catalyst presented high ORR catalytic activity with an E1/2 of 30 mV, which was more positive 

than that of a commercial Pt/C catalyst. Similarly, Zhang et al. prepared CoS decorated N, S 
co-doped reduced GO aerogel showing highly efficient activity for ORR [33].

There are other metal sulfides as active sites in ORR. Suh et al. prepared nano-CuS@Cu-BTC 
composites using Cu-MOF as a sacrificial template and thioacetamide as sulfide source [34]. 

With the increasing amount of nano-CuS in the composite, electrical conductivity increased, 

thus contributing to the positive shifts of E
onset

. MoS
2
-embedded nitrogen-doped porous carbon 

nanosheets were prepared using MoS
2
 nanosheets as templates and conjugated microporous 

polymers as N and C sources [35]. The novel electrocatalysts showed enhanced performance 

for ORR, due to their strong interaction between MoS
2
 and carbon layer, high conductivity, 

and high specific surface area. Recently, it has been reported that Ni
3
S

2
 [36] and WS3−x [37] 

are also potential catalyst for ORR. Furthermore, metallic double sulfides as an ORR catalyst 
were investigated in recent years. Li et al. prepared NiCo

2
S

4
 and N, S-doped graphene aerogel 

hybrid for application in ORR [38].

2.3. N-, S-, B-, and P-based active sites

Recently, metal-free catalysts have received much attention, and intensive research efforts 
have been made. For example, Sun et al. synthesized N,S-co-doped nanocarbon polyhedral 
morphology using a metal organic framework (MOF) as precursor followed by thermal 
treatment with ammonia gas (NH

3
) and further co-doping of S (Figure 4) [39]. The obtained 

catalyst showed improved electrocatalytic efficiency, comparable to that of the Pt/C catalyst.

Mu et al. synthesized N and S dual-doped 3D porous graphene from waste biomass and 
GO (Figure 5) [40]. The resultant catalyst showed high ORR performance and stability com-

parable to commercial Pt/C in both alkaline and acidic media due to their unique porous 
structure and synergistic effects of N and S doping. Furthermore, Wang et al. prepared N 
and S co-doped 3D hollow structured carbon spheres based on a soft template method [41]. 

Aniline and pyrrole function as carbon source and N dopant and Na
2
S serve as S dopant. The 

obtained hollow carbon spheres with uniform size, mesoporous structure, and high number 

of active sites exhibited high ORR activity comparable to that of Pt/C. In contrast, Liao et al. 

Figure 3. Schematic of the formation of Co
9
S

8
/N,S-CNS. Reproduced with permission from Ref. [31]. Copyright 2017, 

Royal Society of Chemistry.
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Figure 4. Schematic illustration of the fabrication of the N,S-co-doped nanocarbon as the electrocatalyst toward ORR. The 
ZIF-8 precursor and thiourea are used as C/N and S precursors, respectively. Reproduced with permission from Ref. 
[39]. Copyright 2017, Royal Society of Chemistry.

Figure 5. Schematic illustration of the formation of NSG: (stage 1) homogeneous mixture of graphene oxide and horn, 
(stage 2) disintegration/release of cysteine moieties and coverage of GO surface leading to reaction of functional groups, 
eviction of gaseous species, and the formation of S and N containing moieties (e.g., H

2
S, NH

3
, etc.), and (stage 3) doping 

of N and S into the graphene carbon network. Reproduced with permission from Ref. 40. Copyright 2016, American 

Chemical Society.
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prepared N and S co-doped hollow carbon nanospheres from polyacrylonitrile and S via a 
hard template method [42]. They reported that S-doping facilitated the formation of pyridinic 

N, which is more active than other N species in ORR. The catalyst exhibits excellent ORR 
performance with high stability and selectivity.

Dai et al. reported the development of N, S co-doped graphitic sheets from melamine (as 
carbon precursor and nitrogen dopant), Ni

2
SO

4
 (as S dopant and template), and KCl (as 

template) [43]. The unique hierarchical porous structure renders active sites easily accessible 

and facilitates electron and mass transfer. Therefore, this catalyst was not only effective in 
ORR, but also demonstrated excellent activities in OER/HER. In addition, Zhi et al. reported 
that atomic S doping in mesoporous carbon-supported C

3
N

4
 can remarkably enhance ORR 

activity [44]. In this work, thiourea was selected as S dopant and C
3
N

4
 serve as N source. XPS 

analysis showed the formation of C
3
N4−xSx

, indicating the atomic modification over the C
3
N

4
.

Song et al. prepared S-N dual doped ordered mesoporous carbon based on a hard template 
method [45]. In their work, polythiophene (PTh) and polypyrrole (PPy) were used as precur-

sors and ordered mesoporous silica (SBA-15) was selected as template. Based on this method, 
N and S contents can be easily adjusted. Furthermore, the mesoscopic morphology provided 
more accessible active sites. Therefore, this catalyst showed excellent ORR performance.

Recently, P/S binary-doped carbon materials have also been reported. P, with higher electron-
donating ability, heavily affects neighboring carbon atoms, thus tending to induce more 
active sites than N. For instance, Cao et al. prepared P/S co-doped porous carbon derived 
from resorcinol, furaldehyde, and phosphorus pentasulfide. Due to the synergetic merits of P 
and S, the onset potential positively shifted for ORR in alkaline media [46].

2.4. Mechanism

In fact, the mechanism of S-related active sites in ORR is still debated. Suib et al. prepared 
S-doped carbon nanotube-graphene nanolobes via sequential bidoping strategy, in which 

the nature of S functionalization can be finely tuned [47]. First, thiourea functioned as the S 
source. To further stabilize and enhance the content of S, the second doping of benzyl disul-

fide was introduced. Different doping types of S were detected, such as C-S, C-S-C, and -SO
x
-. 

The S-doped CNT showed high catalytic activity and good stability for ORR. Furthermore, 
Guo et al. studied the effect of Fe/N/C and C-S-C active sites in alkaline and acidic media [48]. 

It is worth noting that no Fe-S bond formed in the catalyst. They found that no synergistic 
effects between Fe/N/C and C-S-C were observed in alkaline solution as the two active cen-

ters are separated. In contrast, synergistic effects between Fe/N/C and C-S-C sites remarkably 
enhanced ORR activity in acidic media because the C-S-C active sites facilitated the 4e- ORR 

pathway.

Furthermore, S can function as platinum nanowire catalyst anchoring sites. Chen et al. stud-

ied the influence of S content on the ORR activity of S-doped graphene supported platinum 
nanowires (PtNW/SGs) [49]. S doping increased the band gap, while the electrical conduc-

tivity decreased. PtNW/SGs with 1.40 at% S showed the best ORR performance. Zhi et al. 
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investigated the componential influences of heteroatoms doping (B, P, and S) in graphitic 
C

3
N

4
 (g-C

3
N

4
)-based electrocatalysts (Figure 6) [50]. They found that S-doped C

3
N

4
 with the 

smallest charge-transfer resistance dramatically boosted the reaction kinetics and activities 

of ORR.

Recently, Xu et al. designed Fe-N-, Fe-S-, and Fe-N-S-based model catalysts to investigate 
heteroatom induced performance differences in ORR [51]. Pyrrole-derived and thiophene-
derived hypercrosslinked polymers were selected as carbon precursors. FeCl

3
, a Friedel-

Crafts reaction catalyst, acts as both a metal dopant and a porogen. Interestingly, Fe1−xS and 

Fe
3
O

4
 nanoparticles formed in the S-doped and N-doped carbon, respectively. In fact, N/Fe

3
O

4
 

acts as a higher catalytic active site than S/Fe1−xS. The possible reason is that the strong electro-

negativity of N generates more charged active sites, while the electronegativity of S is similar 
to that of carbon. However, the synergistic effect between Fe1−xS/Fe

3
O

4
 and the N, S-doped 

carbon showed superior ORR performance.

3. Conclusions

Although state-of-the-art Pt-based ORR catalysts are applicable in fuel cell vehicles, source 
scarcity limits their mass application. M-N-C materials are still far from satisfaction for com-

mercialization. Presently, design and synthesis of novel ORR catalysts with various struc-

tures were at the center of research. Furthermore, to experimentally and theoretically explore 
the relationship between component structure-properties has attracted extensive interest. 

Figure 6. Optimized structure of pristine g-C
3
N

4
 as (a) top view and (b) side view, in which the N atoms are numbered 

from 1 to 8, while C atoms are numbered from 9 to 14. Top views of the optimized structures of the energetically most 

favorable (c) B-CN, (d) P-CN, and (e) SCN, in which the B and P atoms substitute the bay carbon C13, while S atom 
replaces the pyridinic nitrogen N7. In each structure, the largest value of charge and spin densities on carbon atoms are 
indicated by black and red colors, respectively; additionally, the related carbon atoms are illustrated by green arrows. 

Reproduced with permission from Ref. [50]. Copyright 2017, American Chemical Society.
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Particularly, tuning the mode of heteroatom-doping and the underlying the role of active 
sites in ORR catalysis still remains challenging.

Currently, S-related species represent promising active sites for ORR catalysis. S doping can 

lead to a higher degree of graphitization because S can react with imperfect carbon to form 

CS
2
 gas [52]. Furthermore, S-doping can modify the spin density distributions around the 

carbon framework. More importantly, the synergistic effect between the metal center and 
the N, S-codoped carbon contributes to the superior ORR performance. With regard to metal 
free catalysts, first-principle calculations indicate that N and S atoms close to each other were 
more active than isolated N and S sites, indicating a synergistic effect of N and S. Therefore, 
S-related active sites containing ORR catalyst will be promising alternatives for commercial 

Pt/C catalysts, especially those with hierarchical porous structures.
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Acronyms and abbreviations

ORR oxygen reduction reaction

PEM proton exchange membrane

Pt/C platinum/carbon black catalyst

CB carbon black

CNT carbon nanotube

XPS X-ray photoelectron spectroscopy

FeCl
3
 iron(III) chloride

KSCN potassium sulfocyanide

NH
3
 ammonia gas

OER oxygen evolution reaction

HER hydrogen evolution reaction

rGO reduced graphene oxide

P phosphorus

(M/N/C) metal/nitrogen/carbon
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