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Abstract

Sickle cell disease (SCD) is a structural and monogenetic genetic disorder due to a muta-
tion that occurs in the globin β-chain, resulting in the formation of hemoglobin S (Hb S), a
protein composed of two normal, and two β-type mutant chains. Estimates indicate that
the prevalence among live births is 4.4% in the world. The difficulty in circulating the
sickle cell, its interaction with endothelial cells, leukocytes, platelets, endothelial dysfunc-
tion, and the abnormal expression of adhesion molecules permeate the beginning of the
blood vessel occlusion process as well as pathophysiological aspects of SCD. Among the
secondary complications are the stroke, pulmonary hypertension, leg ulcer, renal disor-
ders, and all complications associated with vascular dysfunction. Clinical and biochemical
markers of disease severity can be used to predict risk, prevent complications, and
increase the expectation and quality of life of the SCD population. The entire scenario
generated by Hb S has implications for the health and social inclusion of patients, so the
treatment of the person with SCD needs an approach focused on the prevention of these
complications in an individualized way.

Keywords: sickle cell disease (SCD), hemoglobin, genetic disturber, nucleation, molecular
interaction

1. Introduction

According to global estimates, approximately 5% of the population has some type of hemo-

globin variant, and more than 300,000 babies are born each year with hemoglobinopathies,

with sickle cell disease (SCD) being the most prevalent type [1–2]. It is estimated that the

prevalence of live births with the disease is 4.4% in the world, where rates remain high on the

main continents of Africa, Southeast Asia, and the Americas [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In 2013, perform a first evidence analysis focusing on sickle hemoglobin using a 2010 dataset

combined with demographic data and modern geostatistical modeling techniques that explain

spatial heterogeneities and precision measurements of global statistics about sickle cell disease

neonates (Figure 1) [3]. In 2010, the births of infants with sickle cell anemia (SCA-Hb SS)

accounted for 2.4% of the world's most severe cases of the disease [3]. However, worrying

estimates indicate that the number of newborns with SCA will increase from approximately

305,000 in 2010 to 404,000 in 2050 [4, 5].

The African continent, which has 3.6 million new cases of sickle cell trait (HbAS) and 238,000

SCA, remains the largest cradle of SCD genetic inheritance [3]. Nigeria, and the Democratic

Republic of Congo would urgently need to plan policies for prevention and management of

SCA, so that implementations carried out in 2015 could save many lives by 2050 (Figure 2) [4, 5].

In Southeast Asia where a hemoglobin variant Hb E is more prevalent, a heterozygosity with

Hb S has increased mainly due to immigration and interracial relationships [6–8]. Neverthe-

less, according to data between the years 1990 and 2013, an annual mortality rate SCD HbSE

per 100,000 inhabitants decreased by 63.9%, keeping them in the media of 2.8% per year [9]. It

is estimated that the prevalence of live births with the SCD is 1.1% in the American continent

[2]. In the United States, it is estimated that 113,000 hospitalizations are in the occurrence of the

disease and the cost of hospitalization for SCD reaches 488 million dollars per year [10].

In Brazil, the estimated incidence of SCD is 1 case per 2700 live births: Bahia, Rio de Janeiro,

and Minas Gerais being the main states with the highest prevalence [11–13]. According to data

from the Ministry of Health of Brazil, child and perinatal care lethality rates can reach 80% and

between 20% and 50%, respectively, of uncared children who cannot reach 5 years of life [14].

Among the adults followed in the high prevalence states, such as Bahia and Rio de Janeiro, the

median age of death due to SCD is still low, 26.5 years and 31.5 years, respectively [15].

Nevertheless, in the last 13 years, the Brazilian government implemented several public health

policies focused on the detection of new cases by neonatal screening and on improving the

quality of treatment provided to these patients, implying an increase in life expectancy, with

individuals reaching the fourth, fifth, and up to the sixth decade of life [16–19].

Figure 1. Distributions HbS data points. Red points indicate surveys showing the presence of HbS and blue points

indicate surveys showing an absence of HbS. Source: Adaptation of Piels et al. [3].
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The pathological presentment of SCD begins with the process of formation of Hb S polymers

triggers dehydration and increased cell stiffness, giving rise to the vaso-occlusion event [20, 21].

This phenomenon leads to the appearance of several pathophysiological events such as tissue

ischemia, anemia, inflammation, and hemolysis [20–24].

Hemolysis consists of the early destruction of the erythrocytes by membrane rupture, being a

common event in the pathophysiological process of SCD [25–27]. During hemolysis, vasodila-

tion, transcriptional activation of endothelin and vascular adhesion molecule are reduced,

whereas nitric oxide is exposed directly to free Hb S, causing its degradation [28, 29]. Chronic

hemolysis in SCD causes vascular imbalance, reflecting directly on hemoglobin concentration,

reticulocyte count, bilirubin levels, lactic dehydrogenase (LDH), and nitric oxide bioavailabil-

ity [28, 30, 31]. The reduction of the supply of oxygen to the tissues and organs causes the

appearance of several complications secondary to disease [5].

Nevertheless, genetic, age, gender, hematological, and environmental factors afford to inter-

fere on the characteristics of SCD and also impact on the quality and life expectancy of

patients, mainly reducing their social insertion [32–35].

2. The hemoglobin: origins and function

Hemoglobin is one of the most abundant proteins in animals, performing important functions

such as oxygen transport, started when hemoglobin binds to oxygen that arrives from the

airways in the lungs and is taken to organs and tissues that need it to maintain life through red

blood cells [36–38]. The genomic structure of genes encoding hemoglobin subunits, character-

ized by three exons and two introns, are highly similar among vertebrate animal strains [39].

Figure 2. Numbers of Newborns with Sickle Cell Anemia (SCA) in 2015. Source: Adaptation of Piels et al., 2017.

Sickle Cell Disease: A Genetic Disorder of Beta-Globin
http://dx.doi.org/10.5772/intechopen.74778

91



Despite this, the function of some proteins belonging to the contemporary hemoglobin family

in vertebrates is to store oxygen in tissues such as myoglobin, a protein formed by a globin

chain, gives the red color to the muscular tissues and has structural and genomes similar to

globins that form hemoglobin [37, 40–43].

Composed of four polypeptide subunits, two alpha chains and two beta chains (α1β1; α2β2),

respectively, each of the four globin groups has a porphyrin ring (Heme group) containing the

iron element in its constitution (Figure 3) [38, 44].

Hemoglobin is considered an allosteric molecule because it regulates its functionality very

well, especially in situations of change in the environment where it is present, in the increase

or decrease of the concentration of a certain ligand [45, 46]. A classic example of this can be

highlighted in how oxygen binds cooperatively in the heme cluster [47, 48].

Previously, researchers admitted that the base of hemoglobin allosterism was based on the

Monod Wyman-Changeux (MWC) two-state allosteric model, which corresponded to oxyhe-

moglobin (bound) and deoxyhemoglobin (unlinked) forms [44, 46, 49]. It is currently believed

that hemoglobin can adopt several allosteric conformations in dynamic equilibrium, also

implying different functionalities (Figure 4) [44, 48].

Over time hemoglobin has been consistently an object of scientific research given its relevance

to biology [50–52]. One of the most important aspects is related to the study of its origin and its

relation with oxygen, a very reactive metal, but necessary for mammalian metabolism [53–55].

Figure 3. Structure quaternary of hemoglobin. Source: Antranik website: Available in http://antranik.org/blood-components-

hemoglobin-typerh-factor-agglutination.
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From the evolutionary point of view, about 4 billion years ago, the gaseous layer that

enveloped the Earth was composed only of nitrogen, methane, water effluvia, and ammonia

[37]. Probably many organisms that emerged in the early days used these gases for their own

subsistence [56]. It is believed that iron and magnesium were involved in many of these actions

in the metabolism of these extremely primitive organisms [57, 58].

In order to increase the efficiency of life-generating energy systems, somehow still not so

enlightened and despite being toxic, oxygen has been incorporated by organisms [37, 50]. It is

believed that initially this large protein complex that now bears oxygen-dependent organisms,

organs, and tissues was very primitive, probably composed only of a metal that was able to

bind and carry oxygen [37].

In the process of evolution, at one point, it was necessary that this structure is wrapped within

a porphyrin ring and then embedded in enovelled protein [52]. During evolution, this ring-

shaped structure has accompanied generations of organisms of animal origin (Heme group)

and plant (Clorofila group) [37, 59].

The Heme group not only binds to globin molecules to form hemoglobin but can bind other

molecules with a certain function to give rise to oxygenases proteins, cytochromes, and even

fungal ligninases [37]. Chlorophyll, the green-coloured substance in plants, is basically an

organic molecule characterized by a porphyrin ring that contains magnesium, and its function

is to absorb electromagnetic energy through sunlight, which will be used in photosynthesis

[58, 60, 61].

Studies to identify the origin of hemoglobin compare their respective coding genes with

several parent organisms in order to detect the changes that have been made throughout

evolutionary history and time [37]. But the change identified in hemoglobins was more in the

form of how they are genetically regulated than in their structural basis from which they were

strongly conserved [58]. In general, studies indicate that hemoglobin appeared about 500

million years ago (Figure 5), prior to the time that eukaryotic cells diverged from eubacterial

cells [37].

Figure 4. Presentation and comparison of nine quaternary structures of hemoglobin. In (a) diagram showing the orienta-

tion of α2β2 dimers relative to α1β1. In (b) the presentation of the β2 subunit with the same nine conformations

represented in nine colors and at different angles. Source: Adapted from Shibayama et al. [44].
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3. Pathophysiology of Hb S: a mutation, an amino acid, a disease

Multipotent hematopoietic stem cells have the potential to be targeted to a number of special

differentiation pathways that originate several blood cell lines in mammals [62–64]. One of the

pathways, erythropoiesis, is responsible for the production of red blood cells, discoid and

anucleated cells that carry oxygen (O2) and carbon dioxide (CO2) through an intracellular

metalloprotein called hemoglobin throughout the body [39, 65].

As seen previously, hemoglobin is a heterotetramer composed of two α-globin and β-globin

subunits linked by a non-covalent bond [2, 39]. Each globin subunit has a heme group contai-

ning the bivalent iron ion [64, 66].

Different globin genes are activated or deactivated both in embryonic, fetal and adult life in

order to meet different oxygen demands and facilitate the placental transfer of oxygen from

the mother to the embryo (Figures 6 and 7) [64, 66, 67].

In humans, throughout embryonic life to adulthood, various types of hemoglobin can be

expressed and this process is regulated in a complex manner, involving several molecular

mediators in order to stimulate hemoglobin production (Figure 6) [2, 66, 68 ]. The globin genes

α and β, arranged on chromosomes 16 and 11, respectively, control the production of globins

through the expression of the subunits from the α globin locus: ζ (embryonic) and α-globin

(adult) genes; and locus β globin: ε (embryonic), γG and γA (fetal), and δ and β-globin (adult)

(Figure 7) [64, 66].

However, due to spontaneous mutations, variant hemoglobins may arise and be structurally

different [68, 69]. These mutations can, for example, trigger a change in the amino acid sequence,

Figure 5. Phylogenetic tree model of globin genes in vertebrate animals. Source: Adapted from Hardison [58].
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Figure 6. Representation of the red cell maturation process, molecular regulation of hemoglobin (embryonic, fetal, and

adult) with focus on β globin and globin synthesis. Source: For more details, look up the Sankaran article reference of the

year 2011 [68].
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leading to the decrease or suppression of the production of a globin chain, as observed in β

Thalassemia [70, 71]. Such genetic changes often lead to the onset of diseases, which are called

hemoglobinopathies [2, 8, 72].

A mutation in the gene of the sixth codon of exon 1 in the DNA of chromosome 11, which

synthesizes the β globin, leads to the replaced adenine nitrogen base (from the GAG codon) by

thymine (GTG), resulting in the substitution of glutamic acid for valine in position 6 of the N-

terminal end in the Beta (β) chain of globin [73–76] .The pathophysiology of sickle cell disease

(SCD), a monogenetic disorder that gives rise to the formation of hemoglobin S (Hb S), a

protein composed of two normal α-chains and two mutant chains of the β-type (α2A β2S)

(Figure 8).

Three levels direct the scientific knowledge related to the pathophysiological changes present

in SCD: molecular and cellular, tissue and organism [77–80]. At the molecular level, the

exchange of amino acids with different isoelectric points, glutamic acid (IP = 5.97) per valine

(IP = 2.77), causes an imbalance because of the loss of negative charges of Hb S in relation to Hb

A (Figure 9) [81, 82]. These changes in the physical structure of hemoglobin will imply impair-

ments in its functionality, mainly related to oxygen loading [83–85].

In certain periods or situations where hypoxia occurs (absence or decrease of oxygen tension in

the body), oxygenated mutant hemoglobin (oxy-HbS) loses oxygen, adopting deoxygenated

conformation (deoxy-Hb S) [81, 86, 87].

Figure 7. Variation of hemoglobin types in the embryonic, fetal, and adult period. Source: Adapted from Weatherall and

Clegg [113].
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In its own structure, the formation of hydrogen bonds between the amino acids valine of

position n1 of the globin beta S (normal position) and the mutant valine of the same globin

begins [82, 83, 84]. Hydrogen bridges promote intermolecular approximations and contacts

between the amino acids of hemoglobins (GLU121! GLY16, ASP73! THR4, etc.) that favor

the formation of Hb S polymers [84, 85]. However, it is through the hydrophobic interactions

between valine (βVAL6) and the hydrophobic concavity formed mainly by leucine (βLEU88)

and phenylalanine (βFEN85) that the formation of Hb S polymers occurs [81, 83, 88].

Figure 9. Representation of the mutated amino acid structures present in HbS. Glutamic acid has an acted structure and

with more negative charges. Valine is an amino acid with hydrophobic characteristics that tend to have the most neutral

charge. Source: Wishart et al., 2013.

Figure 8. Crystalline structure of deoxy hemoglobin S (deoxy-Hb S). Source: For more information, see details in the

study by Harrington et al., 2017.
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Figure 10. Summary of the pathophysiology of SCD. (A) Representation of the structural differences in the conformation

of HbS when it is in oxygenated and deoxygenated form. (B) HbS polymerization process with details of the main amino

acids involved in the mechanism. (C) Formation of the deoxy-HbS fibers through the phenomenon of homogeneous and

heterogeneous nucleation. (D) Microscopic findings of sickle cell. Left cells of the blood with the formation of Heinz

bodies (fluorescence method). In the center, smear blade containing scythe-shaped cells. On the right is a lysed sickle cell

showing several deoxy-HbS fibers. Source: See details at Howard Hughes Medical Institute, 2018; Galkin et al. [88];

Rooter, 2005; Liu et al., 1996.
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Polymerization in SCD is a process triggered by a phenomenon known as nucleation in which

a number of molecules come together within an embryo of the new phase that resembles a first

transition phase similar to a gas-solid transformation [88, 89]. The nucleation progressively

progresses through the initial fiber growth and its branching, due to the secondary nucleation

of new fibers on top of the existing ones, as if it were a double nucleation [77, 88, 90, 91].

Polymerization of HbS is a primary event in the pathophysiology of SCD, generally favored by

several factors such as insufficient oxygen saturation, loss of potassium and water, reductions

in blood pH, increased the concentration of 2, 3-diphosphoglycerate [81, 82, 86]. In the forma-

tion of HbS fibers, they are capable of generating 14 members of T-shaped conformation fibers

when hemoglobin is in the deoxygenated state [87, 88]. Among these aligned fibers hydropho-

bic contacts occur, which are initiated between the valine of the HbS molecule and alanine,

phenylalanine and leucine of adjacent Hb S molecules [88]. In the case of a high degree of

polymerization, the deoxy-HbS presents a behavior characteristic of a polymer gel [88, 90].

After polymerization progresses through enveloped fibers, which will alter the structure of the

red cell, mainly through the formation of more elongated fibers and mechanisms of precipita-

tion in the cell wall with the formation of Heinz bodies, triggering the appearance of sickle-

shaped red blood cells, rather than discoid and malleable (Figure 10) [81, 82, 87].

The affinity of oxygen for hemoglobin, Hb S concentration, dehydration, the minimum con-

centration of gelation, acidosis and elevated temperature are determinant events, which

directly influence the falcization process [92].

Sickle cells have a rigid, adherent and fragile structure, which compromises their circulation in

the bloodstream [86, 87]. Cell damage and deformation of erythrocytes occur as a result of

polymerization of deoxy-HbS and high concentrations of unpolymerized oxy-HbS, as well as

influenced by cellular levels of HbF, water content, pH, temperature and mechanical stresses

that will result in membrane injury [84].

The difficulty of circulating the sickle cell, its interaction with endothelial cells, leukocytes,

platelets, endothelial dysfunction and the abnormal expression of adhesion molecules perme-

ate the beginning of the process of occlusion of the blood vessels, generating tissue hypoxia,

hemolysis, increased oxidative stress and other pro-inflammatory phenomena [80, 87, 91, 93].

4. Clinical consequences of the presence of Hb S

SCD is a chronic hemolytic anemia characterized by clinical events involving recurrent vaso-

occlusion, and its main clinical manifestations are anemia, pain, and multiple organ failures

[18, 80, 87]. To understand the clinical aspects of SCD, we must go a bit further into the

pathophysiological and molecular aspects of this genetic disorder.

As we saw earlier, the presence of a genetic alteration in the nitrogen base in the gene that

encodes the β globin production triggers the formation of HbS, modifies the structure of the

erythrocytes (Figure 11), and implies a series of pathophysiological complications for individuals
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with SCD. Many of the following events do not occur in isolation and are directly involved in the

pathogenesis of SCD.

The sickle cell has many difficulties in permeating the blood vessels. Due to the speed of the

bloodstream, many end up clinging to each other thus harming the passage. Sickle cell occlu-

sion mechanism is started. Spleen cells are pounded, violently pushed, lysed, and intravascu-

lar hemolysis causes the red blood cells to release a series of biocomponents, mainly

hemoglobin and arginase that will interact with nitric oxide (NO) produced in the endothe-

lium, reducing its bioavailability and arginine and its main precursor [84, 94, 95].

The vessel occlusion plus constant hemolysis initiates tissue hypoxia. At the same time, early

oxidation of NO increases oxidative stress implying endothelial dysfunction, with imbalances

in the mechanisms of vessel dilatation and constriction [84, 85].

At a time when local occlusion ends, and blood perfusion returns, more free radicals are

produced, and they further increase lesions to the endothelium, which becomes more adher-

ent, especially to red blood cells and leukocytes, making the vascular wall again exposed to a

new occlusion [84, 95, 96].

Among the main adhesion pathways that progress the sickle cell and endothelial cell interac-

tions are the soluble adhesion proteins (thrombospondin, fibrinogen, fibronectin, and von

Willebrand factor), integrins (α4β1, αVβ3) and their membrane-bound receptors and sulfated

glycolipids), immunoglobulins VCAM-1 and ICAM-4, endothelial selectin, as well as leuko-

cyte activation by epinephrine through β-AR stimulation [85, 96].

Recurrent hemolysis eventually becomes chronic, and the inflammatory state is established.

Thus, the organism needs to increase the production of red blood cells by the bone marrow,

Figure 11. Microscopic finding showing structural differences observed in normal form (oxy-HbS) and sickle cell (Deoxy-

HbS), responsible for the pathological aspects in individuals with SCD. Source: Site of Howard Hughes Medical Institute,

2018.
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resulting in high cardiovascular work, with increased cardiac output in order to facilitate the

rapid delivery of blood with a higher content of oxygen to the organs, avoiding hypoxia and

tissue death [97]. More precisely, a compensatory mechanism is established that increases heart

rate, leading to increased myocardial energy demand with the effect between myocardial

energy requirements and total body [98, 99, 100].

The hypermetabolism present in these patients has an impact on body composition and has

been related to increased energy expenditure, increased protein turnover, increased oxidative

stress, higher reticulocyte levels, and reduced body mass [97, 99, 101, 102].

Progressive degeneration of the organs results from infarctions in the affected areas, leading to

several secondary complications that directly compromise patients' lives and survival [18, 80, 103].

Patients with SCD are more likely to have episodes of vascular accident, pulmonary hyperten-

sion, proteinuria and chronic kidney disease, all complications associated with vascular dys-

function caused by the disease [78, 94, 104, 105].

Vasodilation is reduced in patients with SCD and may have other consequences, such as the

appearance of leg ulcers [94, 106, 107]. These lower limb ulcer lesions represent 8 to 10% of the

cases and have a higher incidence in people with SCA males and in the age group between 10

and 50 years [99, 107, 108, 109].

Ulcerations may appear after trauma, insect bites, excessive dryness of the skin or spontane-

ously generally in the ankle or malleolar region (middle or lateral portion), where there are less

subcutaneous tissue and blood flow as a consequence of tissue hypoxia, endothelial dysfunc-

tion, and vaso-occlusion [107, 108, 110].

Figure 12. Major complications secondary to SCD. Source: The illustration has been adapted from the Toda Matéria

website. For more details, refer to the articles Ballas et al. [78]; Saraf et al. [104]; Saraf et al., [105]; Gordbach et al., 2012;

Piels et al., 2017; Di nuzzo & Fonseca [76]; Machado, 2007; Gumiero et al., 2007; Brunetta et al., 2010; Paladino, 2007;

Hyacinth et al. [99]; Marques et al., 2012; Cançado, 2007; Lobo et al., 2010; Borsato et al., 2000; Saad eTraina, 2007,

Marques et al., 2012; Caridade et al., 2007.
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Infections in these patients are also a major cause of concern both in childhood and in adult-

hood [76, 78, 111, 112]. In general, this and other complications (Figure 12) bring many mis-

fortunes to individuals with SCD and basically compromise the quality of life of these patients.

Despite all the consequences of HbS formation, the degree of severity of the disease depends

on numerous factors, and the first one is the genotype.

SCD can be subdivided into distinct genotypes, six of which are more frequent in the world,

SCA (Hb SS), heterozygotes (Hb SC, Hb SE, Hb SD), sickle thalassemia (Hb Sβ+ and Hb Sβ0),

Figure 13. Genograms showing the most prevalent SCD genotypes in the world and the likelihood of homozygous or

heterozygosis independent of sex when the parents have some type of hemoglobin variant that can generate SCD. The

GENOPRO® software version 2016 was used to make the genograms.
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and sickle cell trait (Hb AS) [8, 84, 104, 113, 114]. Individuals with Hb SS genotypes, heterozy-

goses and associations with thalassemia are generally symptomatic, and at each gestation,

there is a 25% chance that the child will be born with SCD from parents carrying some S gene

or other variant hemoglobin (Figure 13) [84, 104, 115]. In general, the HbAS genotype is

considered to be asymptomatic in that it hardly develops any clinical picture, but it represents

a type of hemoglobinopathy, since the recessive gene is likely to be inherited for the next

generation [115–118].

Other indicators of disease severity are bilirubin, PCV, erythropoiesis rate, leukocytes, LDH,

fetal hemoglobin, creatinine, proteinuria, reticulocytes, HSV, phenotypes, days of hospitaliza-

tion per year, severe vaso-occlusive crisis per year, number of transfusions per year, hip

disease, leg ulcer, hepatobiliary complications, neurological events, renal disorders and body

mass index [84, 119–123].

5. Treatment of SCD: general aspects

Treatment, in general, is differentiated by pathophysiological changes during life and will also

depend on the type of genotype, which is accompanied by a hematologist. The use of folic acid

supplements is included in order to contain hemolysis and to accelerate the production of red

blood cells.

Also used are: (A) antibiotics, especially in children under 5 years, since generalized infections

can lead to death within a few hours due to splenic sequestration; (B) analgesics, codeine,

morphine, and anti-inflammatories in the presence of acute or chronic pain crises; venous

hydration in the vessel occlusion; (C) transfusion or blood exchange; (D) periodic and special

immunizations; and (E) treatment of the sequelae or chronic consequences caused by the

disease [18, 124, 125].

The use of hydroxyurea medication over the years as a treatment that greatly increased the

quality of life of patients. However, not all individuals are eligible or adapted to their use

[77, 126]. Alternative treatments, transplantation, and gene therapy are welcome measures for

clinical treatment; however, some of these are still under discussion and require technical and

scientific clarification for their implementation.

Clinical and biochemical markers of disease severity should be used to predict risk, prevent com-

plications, and increase the expectation and quality of life of the population with SCD [77, 87, 127].

Often patients with SCD report the development of vaso-occlusive symptoms after emotional/

psychological stress, temperature changes, and physical exertion [95]. Therefore, patients undergo-

ing treatment and their caregivers are encouraged to practice self-care, with measures that can

prevent acute events, improve prognosis, and allowa better quality of life [128].

In general, people with SCD due to chronic hemolysis and inflammatory state have higher

energy expenditure to develop daily activities and tendency to anorexia [109, 129, 130]. Pain

crises generate a decrease in food consumption, which has a direct impact on caloric and nutrient

intake. Probably, the pain crises associated with the constant hospitalizations contribute to the
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lower food consumption that consequently compromises the nutritional status [127, 129, 130].

Thus, this population calls for nutritional monitoring for the intervention of the problems related

to food and nutrition. In general, it is important the presence of a multi-professional team,

centered in the assistance and matrix support to the hematologist doctor and the patients

assisted with SCD.

6. Conclusion

Scientific research and technical work around the world have been done to better understand

the pathophysiological and clinical aspects of SCD. It is a severe hemolytic disease that causes

great morbidity and mortality, especially in underdeveloped countries. The entire scenario

generated by HbS has implications for the health and social inclusion of patients, so the

treatment of the person with SCD needs an approach focused on the prevention of these

complications in an individualized way.
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