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Abstract

Conventional, free or pressure less sintering is the simplest technique which involves heating 
of a powder compact, previously prepared at ambient temperatures, without applying any 
external pressure. It can be conducted with various box furnaces or tube furnaces under dif-
ferent atmospheres (oxidizing, reducing, inert, and vacuum). Through the use of this method, 
a highly applicable varistor can be mass produced. Varistors are of a particular interest for 
modern surge protection of over-voltage. Nowadays, ZnO ceramic varistors are most favor-
able in electronic industry due to their excellent electrical characteristics and high energy han-
dling capabilities. By optimizing the method during sintering process, the number of potential 
barriers formed can be controlled thus improving the capability of the low-voltage varistor.

Keywords: conventional sintering, microstructure, electrical properties, low-voltage 
varistors

1. Introduction

Sintering or firing of ceramic materials is the heat treatment to provide the energy to the 
ceramic powder particle to bond together to remove the porosity exist from compaction 
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stages. The sintering process involves strengthening of powder compact by heating to a high 

temperature. During sintering process, the ceramic powders of the separate particles disperse 

to the neighboring powder particles. The sintering process reduces the surface energy of the 

particles by decreasing their vapor-solid interfaces. The pores take places in the disc/pellet 

where it diminishes, resulting in densification of the compact ceramic powders, and increases 
its mechanical properties. The porosity will be decrease from the effect of sintering tempera-

ture and time. Sintering will be improved if a liquid phase takes part in the process and a long 

time and high temperature are needed for the dispersion happens in solid state.

Sintering can result in high-strength bonds, particularly in ceramic materials with a crystalline 

structure. Sintering is the final step in the ceramic fabrication process where it will provide 
ceramic powders with density. The sintering operation is carried out in many stages such as 

heating up, annealing at specified temperature and cooling. The atmosphere, temperature 
and duration need to be chosen carefully for ceramic materials in order to provide a ceramic 

material with particular characteristics. The required characteristics of ceramic material are 

needed to design processing methods that will provide this required properties. The aim of 

sintering process is to increase the mechanical strength of the material and to prevent defor-

mation and cracking of samples. Sintering of ceramic powder compacts will undergo several 

significant changes including chemical reactions in the solid state such as decomposition, 
oxidation and phase transformations. The sintering proceeds in different ways for different 
ceramic materials to provide densification of ceramic powder compact to improve the proper-

ties of the material [1].

Fabrication of varistor ceramics is normally achieved via conventional solid-state ceramic 

fabrication method by applying sintering temperature. Varistor is a solid state electronic 

ceramic component used to protect electronic devices against overvoltage surges. Varistor 

are of particular interest to modern surge protection, which commonly made from zinc oxide. 

The application of ZnO varistor as high or low-voltage varistors is related to the presence of 

potential barriers and improves their microstructure, which can be controlled during sinter-

ing [2]. The sintering temperature has a prominent effect on the electrical characteristics of 
varistor ceramics where the process will contribute to the formation of a multi-phase micro-

structure and promoting the formation of potential barriers and also gives rise to a distinctive 

microstructure of ZnO varistor ceramics [3, 4]. ZnO varistor ceramics with minor additions 

of other oxides exhibit nonlinear electrical characteristic and, therefore are widely used as 

varistors devices to protect electronic equipment against overvoltage [5]. Conventional prepa-

ration of varistors are preparing of powder by weighing, milling, mixing and spray drying the 

milled of different metal oxide materials. After that, for electrical characterization the powder 
is pressed into disc-shapes (pellets) form with predetermined thickness in order to obtain a 

desired application. Finally, the pressed powder, which is the green pellets, will be expose to 

heat treatment by using conventional sintering at different sintering temperature, time and 
atmosphere, in order to improve their microstructure and electrical properties for desired 

application and method.

The sintering temperature of ceramic compact powder will transforms into a dense body 

with varistor characteristics. The physical properties are mostly developed during sintering, 
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which involves the final densification of the ceramic material at high temperature. Sintering 
process of varistor ceramic was commonly achieved at three stages. At the first stages, a liquid 
phase is formed due to the dispersion and the homogeneous distribution of the dopants and 

contribute to the grain growth at the second stage. For the second stage at the end the of 

the process which is for in the beginning of the last stage, the grain growth, crystallization 

of the secondary and spinel phase, formation of the potential barriers, and retraction of the 

liquid phase from the two grain boundaries to the triple junctions are taking place [6]. The 

sintering process gives a microstructure with conductive ZnO grains and improves the grain 

boundaries with additive. The sintered varistor pellets was then silver paste for electrical 

characteristics. This processing method is still preferred in varistor industries due to their low 

cost of production, processing viability, only need basic instrumentation tools for preparation 

of varistors, reduce risks and hazards leads to the attraction of this processing method.

2. Tailoring the properties of grain and grain boundaries during the 

fabrication process

As one of the most widely used electronic tool in the world, designing and tailoring the micro-

structure of ceramic play a big role in determining their properties for a specific application. 
Nowadays, the usage of modern ceramic can be seen almost virtually in any modern devices. 

In fact, without the existence of ceramic, there would not be a $2 trillion global industry today 

[7]. The only reason it manages to come this far is none other because of its capability to fit 
in various emergence of new products. Thus, researching and discovering a better method 
to tailor the properties of ceramic on the atomic level are of a great importance to future 

generation of technology. The focused of this topic will be dealing on the subject of tailoring 

the properties of grain and grain boundaries of ZnO ceramic varistor by reviewing previous 

related studies.

Zinc oxide is an interesting and useful material, which produces various applications such as 

optical devices, sensors, FET devices, SAW devices, and varistor by a few processing proce-

dure. Between all of them, the effects of varistor with using zinc oxide have become interest-
ing nowadays [8]. Zinc oxide based varistor (ZnO) is one of material electronic semiconductor 

ceramic that have properties high energy absorption which capable to defend electronic 

device from excess voltage flow that sent to the electronic components that will cause break-

down [9]. Commonly, sintered zinc oxide ceramics produce their own microstructure with 

numerous grains and grain boundaries. The microstructure unit consists of grain−grain and 
boundary−grain, which is 3-dimensional series and parallel connection and it is distributed 
into entire bulk. Pure zinc oxide will show a linear voltage (V)–current (I) connection that 

obey the Ohm’s Law [10]. However, the main features of ZnO possess the attribute of non-

linear current-voltage (I-V) with a grain size suitable for enhancement to improve the break-

down voltage of a varistor. By decreasing the grain size below 10 μm the material become 

qualified to be applied in high voltage application while larger grain size (>30 μm) is fitting 
for low-voltage application [10].

Conventional Sintering Effects on the Microstructure and Electrical Characteristics…
http://dx.doi.org/10.5772/intechopen.78652

67



There are several factors, which contribute to controlling specific desired microstructure 
properties of ZnO ceramic varistor such as the temperature of sintering, hold time, addition 

of impurities (dopant), and so on [11]. By selecting a suitable combination of these factors 

during the fabrication process will an acceptable result is produced. For this topic, tailor-

ing the microstructure of ceramic through a conventional method will be discussed and 

explained. The fabrication of ceramic generally begins with ceramic powder is processed 

into a compact form and pass through a heat treatment (sintering) where the structure starts 

to significantly change [12]. Changes include phase transformation and chemical reaction 

such as oxidation and decomposition. In different term, sintering is a diffusional process 
that occurred when the temperature of the material is increase to half or three quarters of 

its melting temperature [13]. Frankly, sintering can be considered as one of the major step in 

developing a desired outcome of a ceramic since during this process the densification begins 
to take place. The step is crucial due to density affect desirable properties such as dielectric 
constant and mechanical strength [14]. Detailed explanation on densification will be further 
explained later in the subtopic.

2.1. Process of powder through solid-state route

Necessity to understand the importance of an appropriate techniques in the powder prepa-

ration is derived from a fact that the step will determine the outcome properties of the fin-

ished product. The process usually begins by setting a specific ratio of chemical composition 
without any presence of impurities with smallest grain size possible. By selecting a smaller 

and better developed material, the capability of the powder to produce a desired micro-

structure will significantly increase. Several studies have suggested the method of applying 
particle growth technique as well as disintegrating the grained materials as means to create 

smaller size powder [15]. However, such technique mostly required the researcher to spend 

large amount of money to obtained specific equipment with no real capability for mass 
production.

Previously, a technique consisting of ball mills are generally selected to fulfill the role of crush-

ing the powder into fine form. Not only the technique is easier to operate, but the mechanism 
is also relatively simple. Moreover, it has wider control on the powder distribution by choos-

ing a proper size and shape of the mill balls [16]. Nowadays, with the advance of technology 

the technique has been further develop and a better technique known as high energy ball 
milling has been introduced. The new technique is more adaptable and able to deal with 

lower particle size unlike the previous version where it can only function up till the micron 

size particle. By constantly colliding the particles of powder with the mill balls and bowl will 

result in mechanical energy, which promotes the phase reaction among the reactant reducing 

the size of particles to the size of nano. The use of the technique will also ensure the mixed 

oxide powder are evenly and homogenously mix up. Reportedly, the usage of high energy 

ball milling is a promising approach for the starting mixture of powder in the varistor ceramic 

preparation [17].

The mixed powder will later undergo calcination process where the materials are sub-

jected to high temperature for the purpose of removing humidity and gases [18]. Due to 
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its function of dispelling unwanted composition, sometimes the process is also called as 

a purification process. The process will begin by increasing the temperature inside the 
furnace slowly until it reached the designated values usually above 500°C and below 900°C 

in an average spent of 2 hours [19]. After the heating process is finished, the inside furnace 
is cooled down slowly and turned off at specific temperature. Point to be noted is the 
temperature used in this step does not exceed the value of sintering temperature of the 

later procedure.

The process will then proceed with remilling the mixed powder while adding binder for 

the purpose of increasing the mechanical strength of green ceramic body. Binder such as 

polyvinyl alcohol (PVA) are commonly added in a small quantity and mix together using 
mortar and pestle [20]. There is supposedly an ideal method suggested i.e. through the 

use of spry-dry system. However, the disadvantages are it requires longer time, difficult 
to clean the mobile parts and mostly applied for a large amount of mixed powder. Thus, 

using agate-mortar is not only simpler but also proves to be fully functional. Selecting a 

suitable binder is also a key in producing a good pellet with adequate electrical proper-

ties. A good binder must yield high density and high fired strength, which are essential 
to increase the electrical properties of the ceramic varistor [21]. PVA is extensively chose 
in various study mainly due to its high affinity for adsorption reaction when reacts with 
dispersed oxide particle in water.

The following procedure is pressing where the finalized mixed powder is pressed under a 
high pressure forming a pellet or disk. The thickness of pellet depends upon the applica-

tion to be tested. If for the purpose of producing an applicable low voltage ceramic varistor, 

the thickness is under 1.5 mm while above is for high voltage application. After the pellet is 
formed, then it will be sintered with the goal of converting a compact porous powder into 

a well-structured grain form possessing the desired mechanical and electrical properties. 

The optimum range of temperature used in the process is still debatable since many studies 

revealed different result when testing different substance under different temperature. But, 
the range of the best temperature generally falls between 800 and 1200°C [4, 22]. The sintering 

procedure sometimes continue to pre-sintering step where the products are once again sin-

tered under the same condition due to the previous step unable to produce the desired grain 

structure or have some defects. By repeating the process, the structure will be further enhance 

result in superior mechanical and macro properties.

Conventional sintering technique can be considered as one of the commercially accepted 

method presently. Although there are other better methods such as sol–gel, hydrothermal and 
co-precipitation but this method is much more simple, faster and easier to use while ensuring 

a decent quality output.

2.2. Microstructure and electrical properties

Microstructure is defined as structure of material that is extremely small in size. The structure 
of material can only be observed by using 25× magnification of microscope. The importance of 
understanding the microstructure lies in its capability to affect physical properties of material, 
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which is metals, ceramics and composite and also polymers. Such physical properties include 

strength, toughness, ductility, corrosion resistance, temperature behavior, and hardness or 

wear resistance [23]. Moreover, it is important to carefully decide the scale of magnification 
during conducting observation on microstructure since the characteristic of material micro-

structural may have a huge distinct when observed from various length scales. In ZnO-based 

varistor, the microstructure refers to the grain and grain boundaries.

Nowadays, all of the electrical and electronic devices have varistor’s help. ZnO-based varistor 

is usually used due to its ability to surge protection from overvoltage current. This is because, 

ZnO provide an electrostatic potential that act as a barrier between the grains in the sintered 

body of an electronic tools. Generally, the production of ZnO based varistor is prepared by 

the addition of additive, which is needed to improve the efficiency varistor for further appli-
cation [12]. Through the sintering process, ZnO based varistor will form a polycrystalline 

structure that consist of semiconductor ZnO grains after sintering process [9].

Typically, ZnO is a material that controlled by grain boundaries. It is expected that the prop-

erties of the samples will be modified due to the many defect present. Microstructurally, the 
doped-ZnO samples consist of a very high conductive n-type ZnO grains that is surrounded 

by an electrically insulating regions of grain boundary. Increasing the sintering tempera-

ture up to limited temperature will cause the average size of grain gradually increased. 

This will reduce the discontinuity between the grains that happen when the microstructure 

became more compact with less grain boundaries. Due to the increasing of sintering tem-

perature, larger driving forces for internal atomic diffusion enhance the grain growth and 
pore elimination [5].

In general, the structure of the grains, grain boundaries morphology, density and also dis-

tribution of second phase are some of the factors influenced the electrical properties of ZnO 
such nonlinear coefficient (α), breakdown field (E

b
), leakage current density (J

L
), and barrier 

height (ϕ
b
) [11, 24].The mechanical, magnetic piezoelectric and electrical properties of ceramic 

also will improve if the grain size is smaller which also can help to enhance the application 

of ceramics [5]. The parameter of the sintering process such as temperature and hold time 

is really important in getting grain structure. In order to form ceramic with good varistor 
characteristic, a homogeneous distribution of dopant and correct concentration of oxygen is 

necessary, as the conductivity of zinc oxide depends on oxygen defect in the structure [11]. 

Methods that involve during sintering process are important to investigate in order to achieve 

the solids microstructure and final properties [25].

2.3. Densification

Density is defined as the amount of substance that occupies a defined volume at stated pres-

sure and temperature. In the production of ceramic varistor, density is one of the essential 

component, which requires a special concern. Without a good control on the development of 
density, the material will not be able to achieved its desired performance [25]. If we take a look 

generally on the densification step occurred during sintering, the process can be considered to 
be divided in three stages i.e. initial, intermediate and final stage. During the first stage, when 
the particles of powder are exposed to sintering force it begins to rotate and slide into a stable 
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arrangement. The movement of the particle will cause the microstructure to shrink contribut-

ing to the overall increase in the density. Moreover, the stage also leads the particles to form 

necks between one another as shown in Figure 1 as the interparticle contact is increased. The 

first stage is assumed to finish when the extent of neck growth of particle reach to 0.4 and 0.5 
of its total radius.

The intermediate stage starts immediately right after the end of the first when the pores of the 
powder have achieved their equilibrium configuration. Although the particles have begun 
to develop at this point, the overall density is still low with the pores are mostly linked to 

one another. Thus, in the second stage the densification will cause the length of cross section 
between the pores to significantly reduce which eventually result in the pores develop into an 
unstable state and break away. The second stage can in fact be regards as the major stage out 

of the three. With the particles are fully individualize, the final stage will take place. At this 
section, the sintering process generally covers the elimination of isolated pores present in the 

powder increasing the total density to its theoretical value. Furthermore, the growth of grains 

is also reach its crucial step at this point where larger grains will exponentially increase by 

sacrificing smaller grains [27].

The importance of densifying the green bodies of ceramic varistor lies in the formation of 

continues 3D structure for further selected application. The mechanisms, which are gener-

ally responsible for densification, are migration of grain boundaries and diffusion of grain 
boundaries where the first oversee the last stage of the whole sintering process. Migration of 
grain boundary refers to the movement of boundary, which separates different grain body 
through diffusion of atoms from one body to another. Several factors act as the driving force 
impacting the movement such as strain and elastic energy. The second mechanism of grain 

boundary diffusion will further densify the ceramic varistor until it reaches highest density 
capable by the mixed materials [28].

Additionally, the whole densification process can also be seen in three different scales i.e. 
global, microstructure and atomic scale. Through global scale it shows the densification pro-

cess which occurred because of surface energy minimization which leads to grain boundaries 

replacing solid–gas interface. The second scale of microstructure focused on the differences 
in pressure and concentration gradient due to the presence of vacancies that act as a driving 

force for the transfer of mass. Finally, the atomic scale reveals the condition of all atoms either 

in a convex or concave surfaces where there is higher concentration of atoms on the surface of 

Figure 1. Diagrammatic depiction of (a) powder compact, (b) partial densification of neck growth and (c) fully densified 
neck growth [26].
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concave than convex. The movement on this scale can be seen as a flow of atom from higher 
place (higher concentration) to the lower region with the upper region having more energy 

and mobility [29].

Up to date, several researches have shown the relationship between sintering temperature 

and how it affects the densification of ceramic varistor. Such example includes decreasing in 
sintering temperature cause an increase in pores, which directly decrease the density and vice 

versa [8, 30, 31]. The truth is each material has its own properties that cause this kind of situ-

ation to happen. Thus, for every material present and included in the production of ceramic 

varistor it requires an elaborate investigation to determine their specific characteristics before 
any conclusion can be made.

2.4. Sintering technology

Sintering is the densification of powder compact with the help of thermal treatment. It is also 
the key for processing the ceramic and powder metallurgical [32]. Sintering can be divided 

by two categories, which is conventional sintering and advanced sintering. Advanced sinter-

ing included spark plasma sintering (SPS), hot pressing sintering and microwave sintering. 

Unfortunately, some of the technique produce different final product that might not help the 
economy due to it possessing a non-viable property. Thus, the conventional method is con-

sidered to be more appealing for the purpose of mass producing ceramic product since it has 

lower cost maintenance. For conventional method, minimum grain growth can be controlled 

by maximization the last density that determine by the heating curve. By controlling the pro-

cedure of the heating curve, high densification of grain size can be controlled [25].

2.4.1. Conventional sintering

Conventional sintering technology is the simplest form in sintering that also known as pres-

sureless sintering. It only involves heating of the powder compact after prepared at ambi-

ent temperatures without any external pressure applied during the process. Nanostructured 

ceramic materials that have dense properties normally acquire nanopowder that have 

undergo pressing process, which is done through a pressure assisting method. The pressure 

assisted method includes hot pressing, sinter forging, hot isostatic pressing, and others [33]. 

Hot pressing technique can also use to produce the mixture of two or more types of met-

als powder base product that can be improved the mechanical properties. When using the 
hot pressing method, some of the ceramic materials are found to be densified even at lower 
temperature when compared to conventional method. The benefits in using hot pressing 
sintering technique are firstly improving the densification kinetic and limited of grain devel-
opment, where disadvantages are the end product have limited geometry and equipment 

needed highly in cost [34].

2.4.2. Microwave sintering

Generally, it has been 3 decades since the microwave sintering of ceramics have been intro-

duced. Respectively, it has some superiority, which is fast processing and heating selective. 
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Furthermore, the processed materials are mostly enhanced via inhibition of the grain for it 

to develop while reducing the processing time and energy required to complete the process. 

The application of microwave technology is not really something new in the field of process-

ing and material science. Its applications are actually widely applied in various field such as 
calcination, drying of ceramic and decomposition of gaseous species. Processing materials it 

is only limited to only 2000 ceramics with the use of microwave, polymeric materials, semi-

conductors and inorganic. The advantages of this sintering technique are great microstructure 

control, improved the material mechanical properties, the product have no limit geometry 

and reduce the manufacturing cost due to low temperature, energy used and processing time. 

Microwave sintered sample also reported that hardly reveal any development and cobalt does 

not exhibit any dissolution of tungsten while there are nearly 20% dissolved in cobalt binder 

phase in the conventional sintering. The researcher also found that sample that sintered in 

microwave always showed improvement in mechanical properties compared to the conven-

tional sintered one [34].

2.4.3. Spark plasma sintering

Spark Plasma Sintering or in a more complex Pulsed Electric Current Sintering (PECS) is 

a new technology in the field of metals, ceramics and composite fabrication starting from 
powders. With the nanostructured features, it has the potential of densifying powders while 
avoid it become rough which follow the densification routes [34]. This spark plasma sinter-

ing mechanism has been investigated in the 1960s and began to be used in metal powder 

compressed. But there is no wider use of it since the price of the equipment are very expensive 

coupled with inferior efficiency in sintering. To heat the specimens, the use of pulsed direct 
current is commonly used in these systems. SPS consist of several parts of uniaxial pressure 

machine where the water-cooled punches also work as electrodes, a pulsed DC generator 

a water cooled reaction chamber, position, pressure and temperature regulation system. 

The relatively low homogenous temperature and short duration required for this technique 

because it is really suitable for the preservation and nanocrystalline densification feature in 
the ceramics material. Nowadays SPS is widely used due to the possibility in performing a 

fast consolidation of ceramic that tough to sinter and composite ceramics during decreased 

temperature [33].

3. Low-voltage ZnO-based varistor

Zinc oxide (ZnO) ceramic materials are commonly used for overvoltage protection in electronic 

industry. ZnO varistor ceramic is nonlinear electrical component and high energy handling 

capabilities. Low-voltage varistor are now highly demand for surge protection in electronic 

devices with fast response, highly nonlinear current–voltage properties and energy absorp-

tion capabilities. The performance of low-voltage ZnO varistors can be improve by increasing 

the grain size, which allows the decreased grain boundary per unit volume and improves the 

nonlinear electrical characteristics. Low-voltage varistors are improved when their thickness 

is decrease to increase the size of ZnO grains. However the strength and energy absorption 
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capabilities of the thin ZnO varistor are very poor due to its small volume [35]. In addition to 

grains size and the additives, sintering temperature is an important parameter in the manu-

facture process of varistor-based ceramics. Low-voltage ZnO varistors are now being used 

for surge protection in integrated circuits and in automobiles. The electrical properties of 

low-voltage ZnO varistors are based on their composition and microstructure. Optimizing 

the process, the composition and microstructure of conventional varistors are used to achieve 

low-voltage varistor. Therefore, it is important to find a new method to fabricate high perfor-

mance varistors without reducing their thickness.

In low-voltage ZnO varistors, the most influence additives are titanium oxide (TiO
2
) which 

can greatly improve the grain growth of ZnO, thus is commonly used as a grain growth 

enhancing additive to produce low-voltage ZnO varistors. But, the doping of TiO
2
 reduces 

the degree of nonlinearity [36]. The degree of nonlinearity (α) is used to explain the charac-

teristics of varistor ceramics with excellent surge withstanding capabilities. The coefficient 
α is the measure of efficiency of the device, the higher its values the more is the effectiveness 
of device in protecting a circuit from overvoltage [37]. The nonlinearity strongly depends on 

the microstructure and directly affects their electrical properties that can be adjusted by the 
means of sintering process. The performance of microstructure and electrical characteristics 

of varistor ceramic can be improve by adding additives by thermal treatment. A unique 
properties of grain boundaries is formed in the ceramics during sintering and they are 

responsible for determining the nonlinear electrical characteristics of varistor component. 

The chemical composition, sintering temperature, sintering time, heating and cooling rates 

are variables that can be adjust fundamentally to control the electrical performance of ZnO 

varistors [38].

The sintering temperature reaction between ZnO and additives lead to the formation of dif-

ferent phases in the ZnO grain boundary and the nonlinear properties are ascribe to the 

formation of potential barriers at the ZnO grain boundaries. The performance of ZnO-based 

components is sensitive to the presence of additive even though their amount is very small 

and the processing environment has significant effect on the microstructure of varistor 
ceramics. Development of specific microstructure at varying sintering condition in ZnO 
based varistor ceramics will determine its electrical characteristics especially at varistor volt-

age of the ceramic device, since it is directly related to the grain size and grain boundary 

of ZnO varistor ceramics. Therefore, the temperature at which these reactions take place 

will lead to different grain sizes, and different electrical properties will be obtained when 
fabricating the varistor device [39]. Industrially, varistor manufacturing is commonly by 

the conventional solid-state preparation method and ZnO varistors were manufactured 

through a high-temperature reaction called sintering. A dense varistor product was normally 
obtained through the sintering process, since the varistor performance depends on the final 
sintered microstructures, the sintering process must be carefully carried out. For sintering, 

the varistor powder needs to be hard-pressed to ceramic discs/pellets and should be heated 

at a temperature in the range of 1100–1250°C [40, 41]. The improvement of ZnO varistor with 

excellent electrical properties and high energy handling capability can be obtain through 

grain size control by using nanosize-doped ZnO powder and manage the excess of grain 

growth by step sintering process.
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3.1. Barium titanate and calcium manganite as additive

A new processing technique in the production of low-voltage ZnO varistor are now being 
investigated for overvoltage protection in low-voltage electronic due to highly demand. The 

breakdown voltage (varistor voltage) is directly proportional to the number of ZnO grains in 

series between the electrodes, therefore, it can be achieve by decreasing the thickness of the 

disc/pellet or increase the size of ZnO grains. However, the thin ZnO varistor are weak, thus 

by using additives or improve their processing technique are important to optimize the per-

formance of low-voltage varistor ceramics. In low-voltage varistor, a grain growth-enhancer 

titanium oxide (TiO
2
) is mostly used and can influence the degree of non-linearity of conduc-

tion. As barium titanate (BaTiO
3
) consist of TiO

2
, its addition can attribute to the formation of 

grain growth [42]. BaTiO
3
 is one of the members of perovskite (ABO

3
) family that has wide 

applications in electronic industry. Doping with BaTiO
3
 on ZnO based varistor ceramics 

has significant effect due to the rich variety of physical properties such as high-temperature 
superconductivity and colossal magnetoresistance observed in these compounds makes them 

very attractive from both fundamental and applied perspectives.

Perovskite oxides have attracted much attention due to their structure properties formed by 
substitution make it outstanding functional materials which is exhibit various properties and 

one of the important usages of perovskite oxides is in the capacitor application because of 

their excellent dielectric properties [43]. The combination of varistor-capacitor characteristics 

makes it a promising material in the field of overvoltage protection of electronic devices. The 
presence of large BaTiO

3
 grains on the ZnO microstructures will greatly improve the electrical 

properties of the varistor since BaTiO
3
 as the doping of ZnO based varistor possess the ability 

to control the microstructural development of the ceramic. According to previous research 
reveals that the heavily ZnO doping on the BaTiO

3
 ceramic are very interesting for the pur-

pose of capacitor-varistor integration [44]. BaTiO3 is a prototypical ferroelectric material with 

a tetragonal distortion characteristic of the cubic perovskite structure. The ferroelectric distor-

tion is facilitated by the large size of the Ba cation. Barium titanate is a good candidate for a 

variety of applications due to its excellent dielectric, ferroelectric, and piezoelectric properties 

[45]. It is extensively used in the electronic industry as capacitor and positive temperature 

coefficient of resistivity (PTCR) sensors.

The used of calcium manganite (CaMnO
3
) as additive material to produce low-voltage varis-

tor is extensively studied due to their unique properties that make them attractive in enhanc-

ing the performance of the existing materials. Perovskite manganite AMnO
3
, where A is an 

alkaline earth metal such as Ca, Sr., Ba and Pb, has been the subject of intense research during 

the last decade and it has a significant effect on the microstructure of ZnO varistor ceramics 
[4]. In addition, the varistors prepared from ZnO with CaMnO

3
 perovskite as the only form-

ing additive, exhibit voltage-limiting electrical properties while the combination of perovskite 

structure CaMnO
3
 with the microstructure of ZnO varistor ceramics is simple consisting of 

only ZnO grain and CaMnO
3
 as intergranular layer [46].

Additive of CaMnO
3
 on the microstructure of ZnO varistor ceramics shows a good properties 

in order to produce low-voltage varistors. The combination of ZnO with perovskite man-

ganite gives multifunctional properties for low-voltage electrical characteristics with large 
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nonlinear coefficients, which is suitable for semiconductor electronic and magnetoelectric 
devices due to magnetotransport properties of polycrystalline multi-phase ceramic [47]. The 

influence of perovskite CaMnO
3
 as the only additives in the microstructure of ZnO varistor 

ceramics shows a significant effect on the electrical characteristics of low-voltage ZnO based 
varistor and with the new formulation for low-voltage ceramic varistor containing CaMnO

3
 

as varistor former in spinel phase and doping elements of rare-earth also shows a potential to 

be used as doping low-voltage varistor [48]. The new generation of varistor that introduced 

perovskite as additive and as varistor former, make this device less use of additives as com-

pared to first generation, which is use bismuth oxide as a varistor former [49–52].

3.2. Effects of ZnO + perovskite on the development of microstructure

The further improvement of the electrical characteristics is associated to the ability to con-

trol the microstructural development in the ceramic materials. The used of barium titanate 

(BaTiO
3
) as an additive on the microstructure and grain growth in the ZnO varistor ceramics 

shows a significant effect, where it contains titanium oxide (TiO
2
) which has mostly used as 

grain growth enhancer and can influence the nonlinear coefficient of varistor. BaTiO
3
 is a 

ceramic material with a characteristic of the cubic perovskite structure and facilitated by the 

large size of the Ba cation. The displacement of atoms in BaTiO
3
 as a function of an external 

electric field will induce to a nonlinear behavior. ZnO-BaTiO
3
-based varistor ceramic sintered 

at 1300°C enhances their grain size and improves microstructural uniformity. The microstruc-

ture consists of two phase which is ZnO grain (primary phase) and inter-granular phase with 

concentration of BaTiO
3
 solid solution in the ZnO grain boundaries. The BaTiO

3
 as additive 

increase the grain size of ZnO compared to the sample without BaTiO
3
 at the same sintering 

temperature. From the microstructure, the ZnO grains reveal high concentration of additives 

with BaTiO
3
 element. The distribution of the chemical elements is homogeneous except near 

the grain boundaries where the solid solutions are located. The inhomogeneity is character-

ized by a strong concentration in the grain boundaries, which contain of excess BaTiO
3
 in ZnO 

microstructure. The secondary phase is located near triple-grain junctions and nodal points in 

the grain boundaries with the high concentration of the additives. The competition between 

dissolution and segregation of the BaTiO
3
 into the grain boundaries of ZnO are present and 

this chemical and physical reaction depends on the sintering temperature and amount of 

concentration between them. From Figure 2, the microstructure of ZnO doped with BaTiO
3
 is 

shown to be larger as the sintering temperature is increase from 900 to 1300°C.

Additive of calcium manganite (CaMnO
3
) on the ZnO based varistor reveals the presence of 

ZnO as dominant in the microstructure and the secondary phase formed at the grain bound-

aries and also at the triple point junction which consist of CaMnO
3
 as varistor former for grain 

growth. The ionic radii of Mn2+ is larger than ZnO2+ ions, therefore, it segregated at the grain 

boundaries as secondary phases. However this phase reduces when the sintering tempera-

ture was increased to 1300°C due to the reactive melting of CaMnO
3
. The non-uniformity of 

the grain structure of ZnO-CaMnO
3
 based varistor ceramics are reduce when the sintering 

temperature are increase which a uniform grains are present and free from abnormal grain 

growth by doping of CaMnO
3
 as an additive. ZnO ceramics doped with perovskite phase of 
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CaMnO
3
 as the additive improves the microstructure with the support of sintering process. 

The sintering temperature influences the microstructure of ZnO-CaMnO
3
 by segregate of 

CaMnO
3
 dopants at grain boundaries with the increase in sintering temperature.

3.3. Effects of ZnO + perovskite on the electrical properties

The incorporation of large barium titanate (BaTiO
3
) grains on the ZnO microstructures will 

greatly improve the electrical properties of the varistor since BaTiO
3
 as the doping of ZnO 

based varistor possess the ability to control the microstructural development of the ceramic. 

The effect of BaTiO
3
 on the electrical properties can be seen clearly with the increase of BaTiO

3
 

content as the additive and the varistor voltage increase significantly with BaTiO
3
. The varis-

tor voltage is enhanced with the increase of the number of active grain boundaries because 

of the decrease of ZnO grain size with increasing of BaTiO
3
 percentage. It is well known that 

titanium oxide (TiO
2
) are commonly used to produce low-voltage varistor, since BaTiO

3
 con-

sist of TiO
2
 it will increase the grain size but restrict the nonlinear properties. When the grain 

size are increase it lowering the varistor voltage with the increase in of BaTiO
3
 concentration 

at the grain boundaries. The present of TiO
2
 in the perovskite structure BaTiO

3
 act in inverse 

since nonlinear coefficient (α) increases with the addition of BaTiO
3
. The varistor sintered 

at 1300°C decreases the varistor voltage due to the homogeneous microstructure of grain 

boundaries and increasing the grain size compared to varistor sintered at temperature 1250°C 

that possess high varistor voltage. The breakdown voltage of current–voltage characteristics 

for ZnO varistor is much better with BaTiO
3
. For low-voltage ZnO varistors it can be improve 

by increasing the grain size, which allows the decreased grain boundary per unit volume and 

improves the nonlinear electrical characteristics. The addition of perovskite structure BaTiO
3
 

is attribute to the formation of potential barriers at the grain boundaries where the large grain 
size of BaTiO

3
 will greatly increase the grain size and the present of Barium will contribute 

to the increase in nonlinearity of ZnO varistor, since it more dominant in comparison with 

the effect of titanium oxide. The used of BaTiO
3
 as an additive for grain growth will produce 

a suitable range of varistor voltage with the conventional sintering technology in order to 

produce low-voltage varistor.

In addition, the perovskite manganite CaMnO
3
 as an additive changes the breakdown voltage 

of the ZnO varistor system. It presents a good electrical properties for low-voltage varistor 

Figure 2. SEM micrographs of ZnO-BaTiO
3
 at sintering temperature in (a) 900°C, (b) 1100°C and (c) 1300°C.
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with large nonlinearity coefficients [47] and surpasses the results as reported by using ZnO-

Bi
2
O

3
 based and ZnO-Pr

6
O

11
 based varistor [53, 54]. The low-voltage nonlinearity originates 

as a result of higher concentration of manganese present at the grain boundary layer regions, 

being charge compensated by zinc vacancies [47]. The effect of sintering temperature on 
microstructure and electrical properties of low voltage varistor ceramics fabricated from a 

mixture of ZnO with CaMnO
3
 perovskite gives a broad idea to researcher for their further 

research on production of low-voltage varistor [55]. The effect sintering temperature at certain 
composition of this additives can exhibit a voltage-limiting in the electrical properties of ZnO 

varistor. The varistor sintered at 1200°C provided low varistor voltage per thickness of the 

ZnO ceramics for low voltage varistor [4].

4. Overview

The preceding chapter in this book has presented the best available knowledge the conven-

tional sintering effects as a driving force on the microstructure and electrical characteristics 
of low-voltage ceramic varistor. The aim of this chapter is to provide sufficient knowledge 
related to sintering technology that has been used for ceramic varistors fabrication industry. 

Almost the past century there has been a discovery of ceramic varistors and a few decade 
later, a varistor with simple formulation of ZnO-Bi

2
O

3
 based varistor was successfully fabri-

cated in industries and start from that, varistor have been growing, whereas, ZnO-perovskite 

introduced. At the heart of this magnificent semiconductor device is the sintering technology-
a way of heat treatment to make the ceramic varistor become compacted and less porosity.

The methodology in this chapter present low-voltage ZnO based varistor and its additives. 

The discussion part elaborates the recent studies related to microstructure and electrical 

properties of ZnO-perovskite based varistor as compared in citation to first generation and 
second generation, which are ZnO-Bi

2
O

3
 based and ZnO-Pr

6
O

11
 based varistor; respectively. 

The discussion concludes with driving force through sintering process in solid-state route, the 

desired low voltage ZnO-Bi
2
O

3
 and ZnO-perovskite based varistor with favorable nonlinear-

ity coefficient, α, is successfully fabricated.

5. Conclusion

The effects of conventional sintering on the microstructure and electrical properties of low-
voltage ceramic varistor in this chapter are describe based on their useful properties which are 

determined by their properties of grain and grain boundaries during the fabrication process. 

The processing technique through solid-state route shows a significant effect with sintering 
process in the microstructural development of ZnO varistor ceramics. The densification of 
sintered ceramic varistor can be controlled by using different sintering technology in order to 
improve their microstructure and electrical properties especially for production of low-volt-

age varistor. It was also determined that a steady increase in sintering temperature and time 

until certain limitations results in larger size of grains which in turn will decrease the grain 
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boundary per unit volume improving the nonlinear parameters. Moreover, the low-voltage 

ZnO varistor ceramics can be improves by using suitable additives such as Barium Titanate 

and Calcium Manganite since it exhibits perovskite structure where these materials possess 

the ability to control the microstructure development during sintering process.
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