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Abstract

This chapter provides the information about the concept of effective mass and effective
velocity of the activated complex and its connection to the transition state theory. There-
fore, these parameters are of essential importance for the field of homogenous as well as
heterogeneous kinetics. They also prove to be useful for the calculation of many other
properties of activated state, such as momentum, energetic density, mass flux, etc., as will
be demonstrated on the example of thermal decomposition of calcite and aragonite. Since
the activation energy and the momentum of activated state enable to complete the charac-
terization of motion of this instanton (pseudoparticle) alongside the reaction coordinate,
these parameters can be then considered as two quantum numbers of activated complex.
The quantum numbers of activated state, that is, the activation energy and momentum,
also explain the relation of activated complex to Planck energy, length and time, as well as
to the Gravitational constant. This idea was also applied to derive the wave function of
activated complex pseudoparticle, which is affected by the isotopic composition of the
sample and polymorphism as well. Furthermore, the findings introduced in this chapter
enable to derive and propose the modified Kissinger equation and experimental solution
for the approximation parameter in the Doyle equation of temperature integral.

Keywords: activated complex, activated state, effective mass, effective velocity, mean
lifetime, half-life, group velocity, phase velocity, momentum, kinetics, transition state
theory, activation energy, quantum numbers, Schrödinger equation, instanton,
pseudoparticle, wave function, modified Kissinger equation, temperature integral,
approximation parameter, thermal decomposition of solids

1. Chapter introduction and basic assumptions

“Transition state theory has a long history and bright future”—Truhlar et al [1].

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



The definition of effective or reduced mass of activated complex (M#) is one of the basic

assumptions of new kinetic approach to the calculation of activation energy, which was

suggested and described in previous work in detail [2]. In its simplest form, the formula of

this approach can be written as follows:

Ea ¼ const:00T2
m,Θ1M

# ¼ const:‴Tm,Θ1

� �2
M# ¼ RT2

m,Θ1

∂ ln Q#

∂T
(1)

where Tm,Θ1 is the thermodynamic (absolute Kelvin scale) temperature of peak measured by

thermal analysis (TA [3–7], such as DTA1, DTG2, DSC3
…) with the heating rate (Θ) of

1 K∙min�1 or extrapolated to this heating rate (please refer to Eq. 12 and Figure 2(b)), Q# is

the partition function of activated molecule (please refer to discussion of Eq. 24 and Eqs. 8 and

14 in Chapter 2), and:

const:00 ¼
R

M#

∂ ln Q#

∂T
¼

kB

m#
1ð Þ

∂ ln Q#

∂T
¼ const:‴

2

≈ csch eð Þ þ 1 ¼ 1þ
1

sinh eð Þ
¼ 1þ

2

ee � e�e
¼ 1:1326…

(2)

is the square of temperature-rate kinetic coefficient4 (const.‴ = 1.0642…m∙K�1
∙s�1)5, which can

be e.g. also represented by the following series:

const:“ ≈ 1þ 2e�e
X

∞

k¼0

e�2ek (3)

where m#
1ð Þ ¼ M#=NA is the mass of activated molecule and the constant e = 2.71828… is the

base of natural logarithms, that is the Euler’s number6, which is also known as the Napier’s

1

Differential thermal analysis (DTA) is the TA method where the difference between heat flow rates into a sample and

inert reference material (usually alumina) is measured [3]. The calibration of DTA and DSC3 instruments uses melting and

phase transition of temperature standard reference materials such as pure metals (In, Sn, Zn, Ag, Au…) or salts KNO3,

KClO4, Ag2SO4, K2CrO4, quartz, K2SO4, BaCO3 and SrCO3. A comprehensive effort related to standardization and

nomenclature of TA methods was launched in 1965 by the International Confederation for Thermal Analysis (ICTA)

[4, 6]. In 1992, the name was changed to International Confederation for Thermal Analysis and Calorimetry (ICTAC) in

order to reflect close relationship between TA and calorimetry.
2

DTG, where adjective derivative “D” is pertaining 1st derivative (mathematical) of TG (thermogravimetric) or TGA

(Thermogravimetric Analysis) curve (thermoanalytical or ICTAC discouraged collocation thermal curve) [3].
3

Differential scanning calorimetry (DSC) is the TA method where the heat flow rate difference between sample and

reference material is measured [3].
4

The numerical value of const.00 to 20 decimal places is 1.13255326439210664113… The decimal approximation for const.‴

(Eq.2) is then 1.06421485818988011399…
5

In order to avoid the confusion with the rate constant of reaction, this work uses the abbreviation “const.”, instead of

letter “k”.
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constant7. This infinite sum will converge very rapidly. The value of const.” is reached even for

the first two members of this series.

More general expression for Eq. 1 is given by the following formula:

EaΘ

2�dð Þ RTm,Θ1
Ea ¼ const:00 T2

m,ΘM
# (4)

where d ¼ ln Tm,Θ 6¼1=Tm,Θ1

� �

= lnΘ is the constant exponent (power) of power function (please

refer to Eq. 12) with the scaling factor Tm,Θ1:

Tm,Θ ¼ Tm,Θ1Θ
d ) Θ ¼

Tm,Θ

Tm,Θ1

� �1
d

: (5)

Since the value of power in Eq. 5 is d≪ 1, the relation 4 can also be written in the following

form [2]:

EaΘ

2 RTm,Θ1
Ea ≈ const:00 T2

m,ΘM
#: (6)

For example, the DTG peak (numerical derivation of thermogravimetric experiment) for the

thermal decomposition of calcite (Eq. 33 in Chapter 2) heated with the rate of 1 K∙min�1 under

inert atmosphere of nitrogen is shown in Figure 1.

Since the activation energy of this reaction (Eq. 33 in Chapter 2) is already known (please refer

to Figure 2(a) in Chapter 2), it is possible to calculate the mechanism of the process using the

formula8 of Augis and Bennett [8]:

7

The constant (irrational transcendental number) was actually discovered by the Swiss mathematician Jacob Bernoulli

(1655–1654), who solved (1683) the value of the formula:

lim
n!∞

1þ
1

n

� �n

¼ e: (a)

Bernoulli is the most known for the solution (1696) of the Bernoulli differential equation:

y, þ P xð Þy ¼ Q xð Þyn; (b)

where n can be any real number (R) but n 6¼ 0 and 1.
8

With the exception of possible change in the reaction mechanism of the process, which may take place with increasing

temperature (please refer to discussion of Figure 10), the value of kinetic coefficient should stay constant over the given

interval of temperature (please refer to Footnote 9). Within the same interval it should be also insensitive to the shift of peak

temperature with heating rate (Eqs.8 and 12). In the case that the average value of FWHM over the investigated interval of

heating rate is applied for the calculation of kinetic exponent, the obtained dependence can be accurately approximated by

the power law. Despite of the fact, that coefficient of variation is usually lower than 10%, the non-zero value of skewness and

kurtosis of data means that results are not normally distributed. Therefore, the calculation of kinetic exponent with the

average value of FWHM over the investigated interval of heating rate cannot be recommended.
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n ¼
2:5 RT2

m

w1=2 Ea
(7)

where R is the universal gas constant (8.314 J∙K�1
∙mol�1), n is a dimensionless exponent of

Avrami equation (kinetic coefficient)9 [9–12], which is related to the mechanism of the process

also known as the kinetic exponent) and w1/2 is the full width at half maximum of peak

(FWHM). According to Christian [13], this particular value of n = 1.64 corresponds to the zero

or decreasing nucleation rate where the growth of new phase is controlled by the diffusion.

Before we continue, it is also interesting to solve the nature of apparent change of kinetic

coefficient with heating rate. This behavior results from the effect of heating rate on the peak

temperature and full width at half maximum of peak (Eq. 7), while the value of activation

energy stays constant (please check this assumption with regard to the discussion of Eqs. 19–24

in Chapter 1 and Footnote 44). Both dependencies can be accurately approximated by the

power law:

Figure 1. Thermal decomposition of calcite (20 mg) heated with the rate of 1 K∙min�1 under inert (N2) atmosphere (a)

(Since the kinetics of the process was evaluated from DTG only, the thermogram (DTA curve) is not plotted in this graph.).

DTG peak was subtracted to baseline (BS). The plot of Tm vs. Θ is shown in detail. The photograph (photography from

author’s mineralogical collection) of analyzed calcite specimen in the variety of well-developed transparent rhomb of

Iceland spar (b).

9

Together with the activation energy and the frequency factor, the kinetic coefficient is the part of so-called kinetic triplet.

There is no clear physical interpretation for this constant (n, reaction “order”, nucleation rate, growth morphology, etc.),

as well as for so-called effective overall reaction rate constant or temperature-dependent factor (k, which depends on the

nucleation as well as on the growth rate) in the Avrami equation:

α ¼ 1� exp � kt½ �nð Þ;

where t is the time and α is the degree of conversion (fractional conversion, formed (crystalized) volume fraction). The

Arrhenius type of equation (Eq. 7 in Chapter 1) is usually assumed for the temperature dependence of k(T). It should also

be pointed out that the equation was independently developed several times. Therefore, it is also known as the Johnson

and Mehl [12] - Avrami [9, 10] - Kolmogorov [11] (KJMA) equation.
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T2
m,Θ ¼ T2

m,Θ1 Θ
a
¼

nw1=2,Θ1Ea

2:5R
Θ

a (8)

and:

w1=2,Θ ¼ w1=2,Θ1 Θ
b
¼

2:5R

nconst:00M#
Θ

b
¼

18:352

nM#
Θ

b: (9)

where T2
m,Θ1 andw1=2,Θ1 are the scale factors (coefficients) and a an b are the scaling exponents

for argument Θ, respectively.

With regard to introducing the approach to the compensation of the effect of heating rate on

calculated value of kinetic exponent, Eqs. 7–9 can be combined and further treated as follows:

n ¼

2:5 RT2
m,Θ1

w1=2,Θ1 Ea

¼

2:5 RT2
m,Θ

w1=2,Θ Ea

Θ
b�a (10)

where the kinetic coefficient, the fraction (2:5 RT2
m,Θ=w1=2,ΘEa) as well as the correction term

Θ
b�a are all dimensionless and T

2
m,Θ1=T

2
m,Θ ¼ w1=2,Θ1=w1=2,Θ

� �

Θ
b�a. It can also be derived, that

the activation energy is:

Ea ¼

2:5 RT2
m,Θ1

w1=2,Θ1 n
¼

2:5 RT2
m,Θ

w1=2,Θ n
Θ

a�b: (11)

Using the experimental data for the abovementioned example of the process of thermal

decomposition of calcite, the dependence of T2
m,Θ, w1=2,Θ and Θb�a on heating rate is shown

in Figure 2(a).

Figure 2. Change of T2
m, w1=2 and Θb�a with heating rate (a) and dependence of peak temperature on heating rate (b).

Excluding the last outlying value (c), the fit was extrapolated to the heating rate of 10�C�min�1 (d).
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It is obvious that the power dependence of the peak temperature (Tm) on heating rate (Θ,

please refer also to previous work [2]) is:

Tm,Θ ¼ c Θd ¼ Tm,Θ1 Θ
a
2 (12)

where c ¼ Tm,Θ1 (Eq. 5). In contrast to the scale factor, the nature of scale coefficient d is much

more puzzling. The first derivation of Eq. 12 according to the heating rate gives an equation:

∂Tm,Θ

∂ Θ
¼ cd Θd�1 ¼ Tm,Θ1 ln

Tm,Θ¼e

Tm,Θ1

� �

Θ
a
2�1: (13)

Figure 2(b) shows the function (Eq. 12) and its derivation (Eq. 13) with the intersection point

for Θ ¼ d.10. It can also be written that:

d ¼ ln
Tm,Θ¼e

c

� ��

ln eð Þ ¼ ln
Tm,Θ¼e

Tm,Θ1

� �

¼ a� ln
Tm,Θ¼e

Tm,Θ1

� �

¼
a

2
(14)

where Tm,Θ¼e is the peak temperature calculated (Eq. 12) for the heating rate equal to the Euler

number.

Since the formula obtained by the first derivation of Eq. 9 according to the heating rate is

analogical to Eq. 13:

∂w1=2,Θ

∂ Θ
¼ bw1=2,Θ1 Θ

b�1 (15)

it can be treated with similar manner. Analogically to Eq. 14, it can be written:

b ¼ ln
w1=2,Θ¼e

w1=2,Θ1

� �

: (16)

Eqs. 8, 12, 14 and 17 then provide the set of important parameters, which can have interesting

utilization in many branches of heterogeneous kinetics. For example, it enables to eliminate the

constant term from Kissinger Equation [14, 15]:

ln
Θ

T2
m

 !

¼ �
Ea

RTm

þ C: (17)

The formulation of C for Θ ¼ 1 and e ¼ Tm,Θ¼e=Tm,Θ1ð Þ1=d
�
C∙min�1 (Eqs. 5 and 12) enables to

write the following relations:

10

The ratio of derivation (Eq. 13) to its function (Eq. 12) is:

cd Θ
d�1

c Θ
d

¼
d

Θ
ðaÞ

so d/Θ = 1 if d = Θ.
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ln
1

T2
m,Θ1

 !

¼ � Ea

RTm,Θ1
þ C ) C ¼ Ea

RTm,Θ1
� ln T2

m,Θ1

� �

Θ ¼ 1½ �

1� ln T2
m,Θ¼e

� �

¼ � Ea

RTm,Θ¼e

þ C ) C ¼ Ea

RTm,Θ¼e

� ln T2
m,Θ¼e

� �

þ 1 Θ ¼ e½ �

: (18)

The substitution from Eqs. (8) and (18) to Eq. 17 then leads to the following relation for the

effective mass of activated complex11:

11

It is then possible to write the relation:

Ea

RTm,Θ1
� 2 lnTm,Θ1 ¼

Ea

RTm,Θ¼e

� 2 lnTm,Θ¼e þ 1 ðaÞ

which can be further treated as follows:

ln
T
2
m,Θ¼e

T
2
m,Θ1

¼ a ln e ¼ a ¼ Ea

R

1

Tm,Θ¼e

� 1

Tm,Θ1

� �

þ 1: ðbÞ

The combination of (b) with Eq. 1 and further treatment leads to the relation:

Ea ¼ const:“ T2
m,Θ1M

# ¼ R a� 1ð Þ
1

Tm,Θ¼e
� 1

Tm,Θ1

¼)M
# ¼ R a� 1ð Þ

const:“
T
2
m,Θ1

Tm,Θ¼e
� Tm,Θ1

� �
: ðcÞ

Using the general solution of Eq. 18:

C ¼ 1

a
ln

T
2
m,Θ

T
2
m,Θ1

 !

� lnT2
m,Θ þ Ea

RTm,Θ

: ðdÞ

A modified Kissinger equation can be derived:

2 a� 1ð Þ ln Tm,Θ1
Tm,Θ

a
¼ 1� að Þ lnΘ ¼ �Ea

R

1

Tm,Θ

� 1

Tm,Θ1

� �

; ðeÞ

where the plot of 1� að Þ lnΘ versus 1=Tm,Θ � 1=Tm,Θ1ð Þ is the straight line with the slope (gradient) of �Ea=R (please

refer also to Eqs. 8 and 14). The value of C can be then calculated from Eq.18 or Eq. (d).

It is also obvious that:

T
2
m:Θ¼e

T
2
m,Θ1

¼ e
a ) Tm,Θ¼e

Tm,Θ1
¼

ffiffiffiffi

ea
p

¼ e
d and ln

T
2
m,Θ¼e

T
2
m:Θ1

 !

¼ a: ðfÞ

That means that the dependence of peak temperature on the heating rate (Eq. 8) can be ascertained from only two

measurements carried out with the heating rate Θ ¼ 1 and e (please refer to the Footnote 7). The same data can also be

used for direct calculation of effective mass of activated complex (Eq. 19) and then for the activation energy (Eq. 1). The

frequency factor can then be directly calculated as follows:

A ¼
2:5 exp Ea

RTm,Θ1

� �

60 w1=2,Θ1
; ðgÞ

where the denominator expresses the peak’s FWHM (60 w1=2,Θ1=Θ s�1

 �

) measured with the heating rate Θ ¼ 1 K∙min�1,

while the numerator is dimensionless (please refer also to Eq. 54). Since the kinetic exponent can be calculated from Eq. 7,

whole kinetic triplet (please refer to Footnote 9) can be determined by this method.
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M# ¼
R ln

T2
m,Θ¼e
T2
m,Θ1

� 1

� �

const:00
T2
m,Θ1

Tm,Θ¼e
� Tm,Θ1

� �
¼ R a� 1ð Þ

const:00
T2
m,Θ1

Tm,Θ¼e
� Tm,Θ1

� �
: (19)

This relation provides an easy experimental way for the determination of effective mass of

activated complex from only two TA1 experiments. Furthermore, the modified Kissinger equa-

tion can be derived by similar way (please refer to Eq. (e) in Footnote 11).

Another example is the application of Eq. 16 in the experimental solution of approximation

parameter B(x) in the empirical Doyle equation for temperature integral p(x) [16]:

p xð Þ ¼ 7:03 � 10�3 exp xB xð Þð Þ (20)

in the following form12:

p xð Þ ¼ 7:03 � 10�3 exp x
Tm,Θ¼e
Tm,Θ1

� �

¼ 7:03 � 10�3 exp x
ffiffiffiffi

ea
p� �

(21)

where the quantity of x ¼ Ea=RT . The published value for the term B(x) ranges from 1.195 to

1.034 with the average value of 1.052 [17, 18]. Suggested Eq. 21 then provides a reasonable

experimental solution for the parameter B xð Þ in particular reaction system, for example,

B xð Þ ¼ 1:043 for the process of thermal decomposition of calcite13.

12

In further work, we dealt with the most important formulation of modified equation, where the approach of compensa-

tion of the mutual influence between the transport of heat and the transport of mass was applied.
13

The processes of thermal decomposition of calcite (Figure 1) and aragonite (Figure 11) show B(x) = 1.043 and 1.040

(please refer also to the footnote 51). When using the experimental data from previous work focused on the kinetics of

thermal decomposition of strontium carbonate [39]:

SrCO3 !SrOþ CO2 gð Þ; ðaÞ

the value of B(x) is 1.036 for α-(orthorhombic) and 1.045 for β-SrCO3 (hexagonal) polymorph. Presently studied process of

thermal decomposition of barium carbonate:

BaCO3 !BaOþ CO2 gð Þ; ðbÞ

B(x) = 1.003. Therefore, the value of B(x) decreases in the following order:

CaCO3 � SrCO3 � BaCO3; ðcÞ

that is, with increasing relative atomic mass of Alkaline Earth Element (AEE) atom, and the value is also lower for high-

temperature (hexagonal) phase than for low-temperature polymorph of carbonate. It was also recognized that the value of

B(x) is not affected by the size of crystallites in the sample.

Another example could be the dehydroxylation step during the process of thermal decomposition (400–700�C) of kaolin-

ite [15]:

Al2O3∙2 SiO2∙2 H2O�!Al2O3∙2 SiO2 þ 2 H2O gð Þ; ðdÞ

In which the parameter B(x) = 1.031.
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Since the average value of B xð Þ is then very close to the temperature-rate kinetic coefficient

(const.´´´ = 1.064… mK�1s�1), there is also another experimental proof for previously

suggested approximation of the average value of parameter Bav xð Þ [2]:

Bav xð Þ ¼ const:‴ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

const:00
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

csch eð Þ þ 1
p

: (22)

A deeper information about the approximation of the temperature integral term p(x)14 can be

found in the following literature [17, 19–25].

2. Effective mass and derived properties of activated complex

The relation between Augis and Bennett equation (Eq. 7), const.” andM# was already solved in

the previous work as follows [2]:

const:00 ¼ 2:5 R

nM#w1=2,Θ1

) M# ¼ 2:5 R

const:00 nw1=2,Θ1
¼ Ea

const:00T2
m,Θ1

: (23)

Since Eq. 23 contains three constants, it is also possible to write:

M# ¼ 2:5 R

const:00
1

nw1=2,Θ1
¼ 18:352

1

nw1=2,Θ1
¼ R

const:00
∂ ln Q#

∂T
)

∂ ln Q#

∂T
¼ const:00

R
M# ¼ 2:5

nw1=2,Θ1
¼ Ea

RT2
m,Θ1

¼ T0

T2
m,Θ1

¼ αQ# K�1

 �

(24)

where T�¼ Ea=R (please refer to Eq. 39) and αQ# is the coefficient that describes how the

partition function of the object changes with the change in temperature. Eq. 24 also means that

the term ∂ lnQ#=∂ T is coded directly in the shape of peak of thermoanalytical curve. Since the

unit of this term corresponds to the reciprocal temperature, for example, for applied example

of the process of thermal decomposition of calcite, it is possible to calculate:

14

Well known approximations of p(x) are provided by, e.g. Doyle [23]:

p xð Þ ffi 1

x
; ðaÞ

Coats and Redfern [20]:

p xð Þ ffi 1� 2

x

� �

=x; ðbÞ

and Gorbatchev [25]:

p xð Þ ffi 1

xþ 2
: ðcÞ
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∂ lnQ#

∂ T
¼ αQ# ¼ 2:391∙10�2K�1;

and to derive the temperature dependence of partition function on the temperature as follows:

Q# T2ð Þ ¼ Q# T1ð Þ exp αQ# T2 � T1½ �
� �

:

Furthermore, for n = 1, that is, for the first (Eqs. 28–30) and pseudo-first order reactions15, the

value of parameter M# is given by the equation:

M# ¼
18:352

w1=2,Θ1
)

∂ ln Q#

∂T
¼

2:5

w1=2,Θ1
n ¼ 1½ �: (25)

For the example of thermal decomposition of calcite (Eq. 33 in Chapter 2) mentioned above, it

is possible to calculate that M# = 0.1755 kJ�mol�1 (Table 1)16. Furthermore, Eq. 24 means that:

M#
∝

1

n
: (26)

Parameter of activated complex Ea [kJ∙mol�1] A [106 s�1] n T´ [K] M# [kg∙mol�1] V# [m3
∙mol�1]

185.73 6.36 1.64 22339.4 0.1755 1.833

r
# [kg∙m3] vx [m∙s�1] δ [m] tδ [s] j

#
[kg∙m�2

∙s�1] p# [kg∙m∙s�1
∙mol�1]

9.576�10�2 1028.6 1.86�10�4 1.57�10�7 98.504 255.35

The value needs to be divided by Avogadro constant (Footnote 11 in Chapter 2) to calculate the momentum of single

activated molecule, that is, p#1ð Þ ¼ 4:24∙10�22 for calcite.

Table 1. Kinetic triplet and parameters of activated complex for the process of thermal decomposition of calcite (Eq. 33 in

Chapter 2).

15

The concertation of one reactant in the second-order reaction of the type:

Aþ B�!Products; ðaÞ

could be considered to be constant, that is, if B is in a great excess with respect to A, so its concentration remains almost

unchanged during the reaction. Therefore, it can be written:

�
d A½ �

dt
¼ k A½ � B½ � ¼ k�A½ �; ðbÞ

where k´ is the pseudo-first rate constant of the reaction.
16

The substitution of data from Figure 1(a) and Table 1 to Eq. 1 enables to calculate the activation energy:

Ea ¼ 1:1326∙966:552∙0:1755 ¼ 185:73∙103J∙mol�1;

where Tm,Θ1 = 693.4 + 273,15 = 966.55 K (please refer to Figure 2(a)).
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The effective mass of activated state is then indirectly proportional to the reaction mechanism,

the value of which is also affected by the values of Tm and w1/2
17 (please refer to Eq. 7). For the

case of two different samples of the same species, such as two samples of calcite but of different

crystallinity (1 and 2), the denominator of Eq. 25 should be very much the same value:

n 1ð Þ

n 2ð Þ
ffi

w1=2, 2ð Þ

w1=2, 1ð Þ
: (27)

This relation then introduces the law, which enables to keep the change in mass when the

reactants pass into an activated state. Small observed differences are most probably caused by

the combination of different isotopic compositions (please refer to Section 6 in Chapter 2),

different content of admixtures in the sample and an experimental error.

The value ofM# depends on the reaction mechanism, which is technically speaking often more

complicated than simply written form of chemical equation for the process. For example,

Eq. 33 in Chapter 2 is formally classified as the first-order reaction of the type [26]:

A ! Products ) -
d A½ �

dt
¼ k A½ � (28)

which means that the rate of the process is a linear function of the concentration of reactant [A],

that is, there is a linear dependence of the plot ln [A] vs. time (t). The separation of variables in

Eq. 28 and their integration leads to the formula:

ðA½ �t

A½ �0

d A½ �

A½ �
¼ �

ðt

0

kdt ) ln
A½ �t
A½ �0

¼ �kt (29)

so:

A½ �t ¼ A½ �0 exp �ktð Þ: (30)

However, the experimental value of n shows that real course of the process of thermal decom-

position of calcite could be much more complicated, which is demonstrated below. It can be

then concluded that the value of effective mass of activated state is affected by the mechanism

of reaction. Therefore, there may not always be the direct relation to the stoichiometry of usual

transcript of the reaction. It should be pointed out that scientific literate contains tremendous

number of works dealing with the topic of thermal decomposition of CaCO3, for example

[27–32], etc.

Eq. 1 can also be combined with Eq. 34 in Chapter 2 to provide the relation:

17

For example, using calcite with higher sizes of crystallites leads to the increase of Tm and w1/2 as well. Therefore, the

nature of applied sample, its treatment (purification, intensive milling process, etc.) and applied conditions of analysis

may also affect the mechanism of the investigated process, that is, the value of parameter M# as well.
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M# ¼

�R ∂ ln k
∂
1
T

� �

p

const:00T2
m,Θ1

: (31)

From that it can be derived that:

M# ¼ �
R

const:00T2
m,Θ1

ln k2
k1

� �

1
T2
� 1

T1

� � (32)

and:

ln
k2
k1

� �

¼ �
const:00T2

m,Θ1M
#

R

1

T2
�

1

T1

� �

: (33)

For the small difference between T1 and T2, the approximation can also be written18:

ln
k2
k1

� �

≈

const:00T2
m,Θ1M

#

R

T2 � T1

T2
1

 !

)

ln
k2

k Tm,Θ1ð Þ

 !

¼
const:00M#

R
T2 � Tm,Θ1ð Þ T1 ¼ Tm,Θ1½ �:

(34)

This equation can next be transformed to the formula:

M#
≈

23

πΔT
ln

k2
k1

� �

: (35)

This equation has an important implication that:

23 const:00 ≈Rπ ¼
pV#

T0 π: (36)

The combination of Eqs. (23) and (36) leads to the formula:

18

The solution of the limit (refer to the right side of Eq.33):

lim
T2!T1

1

T2
�

1

T1

� �

¼ 0 ¼ �
T2 � T1

T2
1

þ
T2 � T1ð Þ2

T3
1

�
T2 � T1ð Þ3

T4
1

þ
T2 � T1ð Þ4

T5
1

⋯;

can be approximated by the first term of Taylor expansion series (refer to the right side of Eq.34). The accuracy of this

approximation increases as ∆T ! 0, i.e. with decreasing difference between T1 and T2.
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const:00 ≈
2:5 � 23

πnM#w1=2

¼
18:064

nM#w1=2

¼

2:875

CPA

1

nM#w1=2

¼
2:875

CPT

1

nM#w1=2

(37)

where CPA is the Plouffe’s constants and CPT is the Pythagorean triple constant for the hypot-

enuses19. As an alternative to Eq. 33, it is also possible to write:

ln
k2

k Tm,Θ1ð Þ

� �

¼ �
const:00T2

m,Θ1M
#

R

1

T2
�

1

Tm,Θ1

� �

: (38)

These relations enable to describe M as the slope of plot ln k2=k1ð Þ vs. 1=T2 � 1=T1ð Þ as

ln k2=k Tm,Θ1ð Þ versus 1=T2 � 1=Tm,Θ1ð Þ (Figure 3). The right side numerator of the last two

equations is equal to Ea (Eq. 1). Eq. 33 can be applied to the isothermal as well as

nonisothermal kinetic experiment, while Eq. 38 is suitable for nonisothermal experiment only.

Since the dimension of term:

Ea

R
¼ T0 ¼ �

∂ ln k

∂
1
T

 !

p

, i:e:
J

mol
J

mol K

¼ K

" #

(39)

Figure 3. Graphs of ln k2=k1ð Þ vs. T
�1
2 � T

�1
1

� �

(a) and ln k2=kTm,Θ1

� �

vs. T
�1
2 � T

�1
m,Θ1

� �

(b).

19

An interesting consequence of these relations is to be solved in the next article.
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is equal to the temperature (temperature term of activated complex, please refer to Eqs. (80)

and (81)), it is also possible to easily calculate the volume of activated state (V#) as follows:

V# ¼
RT0

p
¼

Ea

p
¼ 8:205 � 10�5T0: (40)

The combination with Eq. 36 in Chapter 2 then leads to the condition:

T0

V#
¼

T

Vm Tð Þ
¼

R

p
(41)

where T�=V# ¼ f Tð Þ, so the temperature of the reaction affects the thermodynamics (stability)

of activated complex, that is, the reaction rate which is given by its decomposition, (Eq. 7 in

Chapter 2), but the temperature does not alter the value of activation energy. It can be further

derived that:

V#

Vm Tð Þ
¼

T0

T
¼

Ea

RT
: (42)

The density of activated state could be solved to:

r
# ¼

M#

V#
¼

M#p

RT0 ¼
p

r#T0 (43)

where r# ¼ R=M# is the specific gas constant and p=T�¼ R=V# (please refer to Eq. 80 and the

discussion thereof). Since:

M# ¼ r
#V# ¼ r

# RT
0

p
¼

4

3
π r# 3

AC r
#: (44)

The effective diameter of activated complex can be calculated as follows:

r#AC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 M#

πr#NA

3

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 m#
1ð Þ

πr#

3

s

: (45)

If we consider that the velocity of activated state is equal to the term [2]:

vx ¼

ffiffiffiffiffiffiffiffiffiffi

Ea

M#

r

, i:e:

ffiffiffiffiffi

J
mol
kg
mol

v

u

u

t ¼
m

s

2

4

3

5 (46)

and:
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2v2x ¼ v2: (47)

Assuming the parity that for the peak of energetic barrier it is �vx ¼ vx
20, it is also possible to

derive that:

r
#v2x ¼

r
#v

2

2

¼ p, i:e:
kg

m3

m

s

� �2

¼
kg

ms
¼ Pa

� 

(48)

and then:

r
#v

2

2

� p ¼ 0: (49)

Since the energetic density in activated volume is equal to the pressure:

p ¼
Ea

V#
, i:e:

J
mol
m3

mol

¼ Pa

" #

(50)

more general form of Eq. 49 can be predicted:

r
#v

2

2

þ r
#ϕ� p ¼ 0 (51)

which was first introduced in the previous work [2]. This equation predicts the way, how the

energetic density of activated state could be affected via the potential force field (ϕ).

It is possible to derive the mass velocity (mass current density or mass flux) of activated

complex (j
#
) in solution from the dimension of the following term:

Ea

V#vx
¼

J
mol
m3

mol
m
s

¼
kg

m2s

" #

¼ j
#
¼

p

vx
¼

101325

vx
¼ r

#vx: (52)

Since the activation energy of the process is considered to be constant, the velocity vector of

activated state does not vary with time either:

20

The details can be found in the previous work [2].
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∂vx
∂ tδ

¼ 0 ) ∇v ¼ 0: (53)

That means that the divergence of velocity vector is zero and the net total flux through the

surface of activated complex must be equal to zero.

Since the dimension of term:

δ ¼
vx
A

¼

ffiffiffiffiffi

Ea

M#

q

A
¼ 24 vxw1=2,Θ1 exp �

Ea

RTm,Θ1

� �

m½ � (54)

has a physical meaning of length, it is possible to calculate the length of energetic barrier (δ)

from this relationship. From the combination of Eq. 54 with the Arrhenius equitation, it can

also be derived that w1=2,Θ1k Tm,Θ1ð Þ ¼ 1=24. Therefore, the rate constant for the peak temper-

ature Tm,Θ1 can be directly calculated k Tm,Θ1ð Þ ¼ 1= 24 w1=2,Θ1

� �� �

using full width at half

maximum of peak measured with the heating rate Θ ¼ 1 K∙min�1.

The mean lifetime of activated complex (tδ), that is, the time, which is required to overcome the

energetic barrier is then equal to:

tδ ¼
δ

vx
¼ A�1 ¼

exp � Ea

RT

� �

k Tð Þ
¼ 1:443 t1=2 ) A ¼

1

tδ
¼

1

δ

ffiffiffiffiffiffiffi

Ea

M#

r

(55)

where t1=2 ¼ ln 2=A ¼ tδ ln 2 is the half-life of activated complex. That means that the concen-

tration of activated complex can be written in terms of the exponential decay equation (please

refer also to Eq. 7 in Chapter 2):

C
#


 �

t
¼ C

#

 �

0
exp �Atð Þ;

where term At ¼ t=tδ (Atδ ¼ 1) and C
#


 �

t
and C

#

 �

0
are the concentrations of activated com-

plexes at time t and t = 0, that is, the initial quantity. This formula then enables to write:

k Tð Þ ¼ �
1

t
ln

C
#


 �

t

C
#


 �

0

exp �
Ea

RT

� �

¼)k Tð Þ ¼
ln e

tδ
exp �

Ea

RT

� �

¼) ln k Tð Þ

¼ ln
1

tδ
�

Ea

RT
t ¼ tδ ) C

#

 �

t
¼

C
#


 �

0

e

" #

;
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(please refer also to Eq. 20 in Chapter 1 and to discussion of Eq. 27 in Chapter 2). The effective

rate of activated complex21 can be then formulated as follows:

21

It is also interesting to apply the Albert Einstein’s (1879–1955) special theory of relativity (STR), where it is possible to

calculate the invariant mass of activated state as follows:

m#,0
1ð Þ ¼ m#

1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
v2

c2

s

; ðaÞ

which is, e.g. for calcite 2.915�10�25 kg. Since activated on the peak of energetic barrier, it has the kinetic energy only

(please refer to the discussion of Eqs. 79 and 82 in Section 4), it can further be written:

Ea

NA

¼ E 1ð Þ ¼ Ek 1ð Þ ¼ m#
1ð Þc

2 �m#,0
1ð Þ c

2 ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� v
2

c2

q � 1

0

B

@

1

C

A
m#,0

1ð Þ c
2 ¼ γ� 1

� �

m#,0
1ð Þ c

2; ðbÞ

where the subscript (1) denotes the value pertinent to one activated molecule, i.e. the molar value divided by the

Avogadro constant (Footnote 11 in Chapter 2), c is the speed of light in vacuum and the term:

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� v
2

c2

q

0

B

@

1

C

A
¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
v

q ¼ γ;where βv ¼
v

c
; ðcÞ

is known as the Lorentz factor (Lorentz term), which was named after Dutch physicist Hendrik Antoon Lorentz (1853–

1928, awarded by Nobel prize for Physics in 1902). Since the dimensionless rate ratio of activated complex to the speed of

light βv is very low the value of γ ! 1, e.g. 1.00000000001177 for calcite. It can be then verified that:

Ea ¼ E 1ð ÞNA ¼ Ek 1ð ÞNA ¼ γ� 1
� �

m#,0
1ð Þc

2 ¼ ðdÞ

¼ 1:00000000001177� 1ð Þ∙2:915∙10�25
∙2997924582∙6:022∙1023 ¼ 185:73∙103 J∙mol�1

:

Please compare this value to data in Table 1. Using special theory of relativity, the energy of activated state can be

expressed as follows:

E ≈m#,0
1ð Þ c

2 þ E 1ð Þ ¼ m#,0
1ð Þ c

2 þ
1

2
m#

1ð Þv
2; ðeÞ

i.e. as the sum of Einstein’s mass-energy equivalence formula (E ¼ mc2) and kinetic (activation) energy. That enables to

formulate the energy ratio:

o ¼
E 1ð Þ

m#,0
1ð Þ c

2
: ðfÞ

The value of this ratio is 1.177∙10�11 and 1.2∙10�11 for in this book investigated samples of calcite and aragonite,

respectively. The relation between o and βv is given by the formula:

1� β2
v ¼

1

1þ oð Þ2
: ðgÞ

For the effective mass (h), the velocity (ch) and the momentum (i) of activated complex, the relations can be then written:

m#
1ð Þ ¼ m#,0

1ð Þ 1þ oð Þ ¼
m#,0

1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
v

q ; ðhÞ

v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oð Þ2 � 1
q

1þ o
; ðiÞ

and:

p#1ð Þ ¼ m#,0
1ð Þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oð Þ2 � 1

q

: ðjÞ
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vx ¼
δ

tδ
¼

ffiffiffiffiffiffiffi

Ea

M#

r

) Ea ¼ M#v2x ¼
1

2
M#v2 ¼ Ek (56)

for the peak of energetic barrier.

The effective rate of activated complex (Eqs. 46, 47 and 56) can also be formulated using the

relation for the speed of sound in ideal gas as follows:

vx ¼

ffiffiffiffiffi

p

r#

r

(57)

and:

v ¼

ffiffiffiffiffiffiffiffi

γ
p

r#

r

¼

ffiffiffiffiffiffiffiffi

2
p

r#

r

(58)

where γ is the value of adiabatic index, that is, the isentropic expansion factor. The value of this

index is given by the ratio:

λ ¼
cpm

cvm
¼

2R

R
¼ 2 ¼

ΔH#

ΔU#
(59)

where ΔU# is the internal energy of activation. From Eq. 58, it can be further derived that:

v ¼

ffiffiffiffiffiffiffiffi

2
p

r#

r

¼

ffiffiffiffiffiffiffiffiffiffiffi

2
RT0

M#

s

¼

ffiffiffiffiffiffiffiffiffiffi

2
Ea

M#

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2
kT0

m#
1ð Þ

s

: (60)

Since:

v ¼

ffiffiffiffiffiffi

KB

r#

s

(61)

the bulk modulus of activated complex can also be calculated as follows:

KB ¼ r
#v2 ¼ 2p: (62)

The nature of velocities vx and v can also be easily solved from the statistic probability function

known as the Maxwell-Boltzmann distribution:

F v2
� �

¼

ffiffiffiffi

2

π

r

nP
m

kBT

� �3=2

exp
�mv2P
2kBT

� �

v2P (63)

where nP is the number of particles with the velocity vP . With regard to the translation energy

(Eq. 56) and two degrees of freedom [2] of activated state, it can then be written:
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F v2
� �

¼
ffiffiffiffi

2

π

r

M#

RT0

� �

exp �M# v2

2RT0

� �

v2: (64)

This relation can be further transformed to the following formula:

F v2
� �

¼

ffiffiffi

2
π

q

v2x

v2

e
¼

ffiffiffi

2
π

q

a2

b
2

e
(65)

where the scale parameter of Maxwell–Boltzmann distribution (a) is:

a ¼ vx ¼

ffiffiffiffiffiffiffiffi

RT0

M#

s

) 1

a2
¼ M#

RT0 ¼
1

vx
2
¼ 1

const:00T2
m,Θ1

(66)

and the mode of Maxwell-Boltzmann distribution (b) is:

b ¼ v ¼ a
ffiffiffi

2
p

(67)

that is, the diagonal of the square with the side length equal to a ¼ vx (Figure 4).

These equations Eqs. 64–66 also define the role of const.” (Eq. 1) in the Maxwell–Boltzmann

distribution. Furthermore, Eq. 65 can be solved as follows:

0:58705… ¼
2

ffiffiffi

2
π

q

e
¼

ffiffiffiffi

2

π

r

v2

ev2x
) v2

v2x
¼ 2: (68)

Eq. 68 then also provides an important proof for the validity of Eq. 47. From this point of view,

the velocities vx and v are the scale factor and the mode, that is, the most probable speed, in

Maxwell-Boltzmann distribution, respectively. Furthermore, it can also be written that:

M# ¼
�2Ea ln

1
e

� �

v2
¼ 2Ea ln eð Þ

b
2

¼ Ea

v2xð Þ
: (69)

Figure 4. The relation between vx and v. Please refer to Eqs.47 and 68.
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Eq. 67 means that all activated complexes have constant values of the ratio:

v

vx
¼ 1:4142… ¼

ffiffiffi

2
p

¼ Ma (70)

where Ma is the Mach number, which is defined as the dimensionless ratio of velocity of object

and of speed of sound in given medium, that is in this particular case it is the ratio of v and vx
(Eqs. 47 and 68), respectively. With regard to the most probable rate of activated complex

(mode of the Maxwell-Boltzmann distribution, Eq. 64), the translation of activated molecule

along the reaction coordinate is always supersonic.

The combination of Eq. 70 with Eqs. (1) and (56) then leads to the formula:

Ea ¼
Ma

2

2
M# v2x ¼ M# v2x: (71)

Furthermore, the combination of Eqs. (56) and (71) leads to the relation between both v and vx,

that is, to Eq. 47.

The values of v and vx are also related to the velocity of De Broglie’s “phase wave” (phase

velocity vp ¼ Ea=p
# ¼ λ

#=T# ¼ ω
#=k ) Ea ¼ ω

#p#
� �

=k), which should occur in the phase with

intrinsic particle periodic phenomenon [33]. The relation between these velocities can then be

expressed by the formula:

v ¼
ffiffiffi

2
p

vx ¼ 2 vp ¼ 2
Ea

p#
¼ 2 λ

#
ν
# ¼

p#1ð Þ c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2p#21ð Þ þm#,02

1ð Þ

q

c4
(72)

where m#,0
1ð Þ is the invariant mass of activated complex (please refer to Eq. (a) in Footnote 21).

Therefore, the ratio of v : vx (Eq. 70) has exactly the same value as the ratio of vx : vp:

v

vx
¼ vx

vp
¼

ffiffiffi

2
p

¼ 1:4142… (73)

so:

vx ¼
ffiffiffi

2
p

vp: (74)

It is then obvious that vx is the diagonal of the square with the side length equal to vp. Since the

ratio:

v2 : v xð Þ
2

: v pð Þ
2 ¼ 1 : 2 : 4 (75)

the squares of these velocities (v2, vx
2 and vp

2) then form a geometric sequence (Figure 5) with

common ratio = 2 (Eq. 68).
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The values of v2, vx
2 and vp

2 for the example of thermal decomposition of calcite and aragonite

applied in this book are:

529045.43: 1058090.86: 2116181.72;

and

539291.80: 1078583.61: 2157167.22;

respectively. That also enables to express the value of v2
x
as the geometric ratio of v2 and vp

2:

vx
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

v
2
vp

2
q

: (76)

Therefore, the quantum numbers of activated complex, that is, the activation energy and the

momentum of activated complex, enable to express the following three velocities, that is:

1. The group velocity of a supersonic activation wave, which is equal to the most probable

velocity (mode) resulting from the Maxwell-Boltzmann distribution (v).

2. Sonic dissipation (shock) wave, which corresponds to the velocity of sound. This velocity

(scale parameter of Maxwell-Boltzmann distribution) is termed in this work as the effective

speed of activated complex (vx).

3. Phase velocity, that is the subsonic De Broglie “phase wave” (vp), which is equal to the

speed at which the phase of the wave propagates in given medium.

That behavior makes it possible to suggest the theory that the formation of activated complex

(reversible process, please refer to Chapter 2) also generates the irreversible dissipative wave

(shock wave). This discontinuity in the pressure, temperature and density preserves the energy,

but increases the system entropy. That means that the formation of activated state (activated

Figure 5. The diagram showing the geometric series of v2, vx
2 and vp

2.
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molecule and shock wave) causes increasing entropy of the system, even in the case, that

activated complex decomposes back to the reactants.

Also, there is really interesting fact that v which relates to the process of thermal decomposi-

tion of calcite (Table 1) and aragonite (Table 2), is of the magnitude, which corresponds to the

rate of sound or ultrasound in liquids (please refer also to the discussion of Eq. 56), for

example, 1497 m∙s�1 in distilled water at 25�C. Since only the longitudinal wave22 can be

propagated in liquids and gases (fluids in general), the activated complex can oscillate (transfer

energy) along the direction of the reaction coordinate only. It can be then derived:

vx
2 ¼ p

r#
¼ Ea

M#
¼ v2

2
¼ const:00T2

m,Θ1 (77)

and then:

v2 ¼ 2const:00Tm,Θ12 )

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2const:00
p

Tm,Θ1 ¼ 1:505… Tm,Θ1 ≈

ffiffiffiffiffi

5 e

6

r

Tm,Θ1

: (78)

Then there is direct proportionality between v and Tm,Θ1, where the value of proportionality

constant is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 const:��
p

. From this, it can be calculated that the most probable rate of activated

complex is equal to the speed of sound in air (346.3 m∙s�1, dry air at 25�C) and water

(1497 m∙s�1) for Tm,Θ1 equal to 230.1 and 994.7 K, respectively.

Since further increasing of temperature increases the rate of activated complex as well, so it

becomes comparable with the speed of sound in the solids, it can then also be deduced that

increasing the temperature of the process (Tm,Θ1) increases the probability of oscillation in the

direction perpendicular to the reaction coordinate, that is, the activated state can get additional

Parameter of Activated complex Ea [kJ∙mol�1] A [107 s�1] n T´ [K] M# [kg∙mol�1] V# [m3
∙mol�1]

199.38 3.86 1.86 23981.8 0.1849 1.968

r
# [kg∙m3] vx [m∙s�1] δ [m] tδ [s] j

#
[kg∙m�2

∙s�1] p# [kg∙m∙s�1
∙mol�1]

9.394∙10�2 1038.5 3.39∙10�4 2.59∙10�8 97.564 271.51

The value needs to be divided by Avogadro constant (Footnote 11 in Chapter 2) to calculate the momentum of single

activated molecule, that is, p#1ð Þ ¼ 4:53∙10�22 kg∙m∙s�1 for aragonite.

Table 2. Kinetic triplet and parameters of activated complex for the process of thermal decomposition of aragonite

(Eq. 33 in chapter 2).

22

On the contrary, the longitudinal as well as transversal waves (oscillate perpendicular to the direction of energy transfer)

can propagate in the solids.

Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton68



degrees of freedom. The energy which is stored in those additional degrees of freedom then

increases the energetic density of activated complex, which is on the contrary reduced by the

value of V# which increases with temperature (Eq. 81).

Therefore, there is a possibility to formally divide the reactions according to the behavior of

activated state described above, as follows:

1. Reaction with most probable (group) velocity of activated state in fluid region, that is the

value of v is comparable to the speed of sound in gases and liquids. It can be potentially

divided to the subregion of gases and liquids.

2. Reaction with most probable velocity of activated state in solid region, that is the value of v

is comparable to the speed of sound in solids.

3. Introducing the quantum numbers of activated complex

Since the effective mass and the velocity of activated state are known, it is also possible to

calculate the momentum per mol of activated states23 as follows24:

p# ¼ M#v ¼ p#1ð ÞNA ¼ NAℏk ¼
NAh

λ
#

(79)

and to formulate the activation energy using the constitutive equation of the state of activated

complex:

f p;V#
;T0

� �

¼ 0 (80)

that is:

RT0 ¼ pV# )
V#

V
¼

T0

T
¼

Ea

RT
¼

Ea

pV
(81)

as follows:

Ea ¼
p#2

2 M#
¼

N2
A ℏ

2k
2

2M#
¼ NA hν

#
AC ¼ RT0 ¼ pV# (82)

23

The calculation of momentum per particle then requires to divide Eq. 79 by NA (Footnote 11 in Chapter 2).
24

Eq. 79 then corresponds to the de Broglie matter waves (Louis Victor Pierre Raymond de Broglie, 1892–1987, Nobel Prize

in Physics in 1929).
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where ħ is reduced Planck (Dirac25) constant26, k is the wave vector, λ# ¼ h=p#1ð Þ is the de Broglie

wavelength27 and ν
#
AC ¼ kBT

�
� �

=h (please refer to Eq. 115 and Eq. 27 in Chapter 2) is the universal

frequency of activated complex. Eq. 81 also means that the pressure can affect the temperature

and the rate constant of process, but the value of activation energy should be independent of the

pressure. The combination of Eq. 29 in Chapter 2 with Eq. 81 then leads to the formula28:

Ea ¼ p

ð

V#

Vm Tð Þ

dV þ RT ¼ p V# � Vm Tð Þ
� �

þ RT ¼ R T0 � Tð Þ þ RT (83)

that is the effect of reaction temperature on enthalpy of activation (corresponds to the work of

isobaric process) lays in the reduction of ΔH# for reversible isobaric work �p∙ Vm T2ð Þ�½

Vm T1ð Þ� ¼ �RΔT (Figure 6), and then:

Ea

RT
¼

p

RT

ð

V#

Vm Tð Þ

dV þ 1 ¼
ΔV

Vm Tð Þ
þ 1 ¼

T0

T
(84)

where ∆V ¼ V# � Vm Tð Þ. Eq. 84 could be further treated as follows:

25

Named after English physicist Paul Dirac (1902–1984). Dirac was awarded the Nobel Prize in Physics in 1933.
26

Reduced Planck constant is the ratio:

ℏ ¼
h

2 π
¼ 1:054571800∙10�34 J∙s∙rad�1; ðaÞ

or the product:

ℏ ¼ Eptp ¼
EpLp

c
) h ¼ 2π Eptp ¼

2π EpLp

c
; ðbÞ

where Ep is the Planck energy (the derived Planck unit):

Ep ¼

ffiffiffiffiffiffiffi

ℏc5

G

r

¼
ℏ

tp
≈ 1:956∙109 J; ðcÞ

tp is the Planck time (the basic Planck unit):

tp ¼

ffiffiffiffiffiffiffi

ℏG

c5

r

¼
ℏ

Ep
≈ 5:391 16∙10�44 s; ðdÞ

c = 299,792,458 m�s�1 is the speed of light in a vacuum and G is the Gravitational (Universal or Newton’s) constant

(6.67408�10�11 m3�kg�1�s�2). The other four basic Planck units are the Planck length:

Lp ¼

ffiffiffiffiffiffiffi

ℏG

c3

r

≈ 1:616 229∙10�35 m; ðeÞ

The Planck mass, the Planck electric charge and the Planck temperature.
27

Please refer also to Eq. 11 in Chapter 2.
28

For example, the molar volume of ideal gas at the temperature of 966.55 K (according to Figure 1 and Figure 2(b)

this temperature corresponds to thermal decomposition of calcite at the heating rate of 1 K�min�1) is Vm ¼ RT=p ¼

7:931∙10�2 m3
∙mol�1, so Eq. 83 provides the value Ea = �101,325�(7.931�10�2 - 1.833) + 8.314�966.55 = 185.73�103 kJ�mol�1.

Please compare to the value in Table 1.
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Ea

RT
� 1 ¼

1

Vm Tð Þ

ðV#

Vm Tð Þ

dV ¼
V#

Vm Tð Þ
� 1 (85)

so:

Ea

RT
¼

V#

Vm Tð Þ
) EaVm Tð Þ ¼ RTV#

: (86)

From Eq. 86 it can then be easily verified that Ea ¼ pV# ¼ RT� (Eq. 82). Therefore, if Ea > 0

(activated processes) the value of V#
> Vm Tð Þ ) ∆V > 0 (the activated complex does a posi-

tive work), so Ea > RT .

Before we continue with quantum numbers of activated complex, it is interesting to mention

that Eqs. (79) and (82) allow to solve the relation of these numbers (the activation energy and

the momentum) to the Gravitational constant (G), for example, as follows:

p# ¼ NA

L2p c
3

G
k (87)

and:

Ea ¼
N2

A L
4
p c

6 k
2

2 M#G2
¼

1

2
M#v2: (88)

As results from footnote 29, there are other equations analogical to the Planck energy26 (Ep, Eq. (c)):

p# ¼ NA

E2
pG

c5
k (89)

and:

Figure 6. The influence of temperature on the enthalpy of activation. This topic as well as the temperature dependence of

ΔS# is also described in previous work [2].
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Ea ¼
N2

AE
4
pG

2 k
2

2 M# c10
(90)

or to the Planck time26 (tp, Eq. (e)):

p# ¼ NA

t2p c
5

G
k ¼

NAYk

G
¼ NAℏk (91)

and then the relation:

Ea ¼
N2

A t
4
p c

10 k
2

2 M#G2
¼

N2
AY

2 k
2

2 M#G2
¼

N2
A ℏ

2 k
2

2 M#
(92)

can be easily formulated. It can also be clearly seen that:

L2p c
3 ¼ t2p c

5 ¼
E2
p G2

c5
¼

p#G

NAk
¼

2 EaM
#c5

N2
A k

2
E2
p

¼ Y ≈ 7:0383 � 10�45 ¼
1:866 � 10�26c2p

#

1ð Þ

8π k

(93)

where 1:866∙10�26 m∙kg�1 ¼ 8 πGð Þ=c2 is the Einstein’s constant (the coupling constant in the

Einstein field equation), which is directly proportional to the gravitational constant, constant

term Y and activation energy as well (Eq. 93). The dimension of this constant term Y can be

derived, for example, from Eq. 93 as follows:

2 EaM
#c5

N2
A k

2
E2
p

)
J

mol
kg
mol

m
s

� �5

1
mol

� �2 1
m

� �2
J2

¼
kgm7

J s5
¼

m5

s3

" #

: (94)

All abovementioned equations for the calculation of momentum and activation energy

(Eqs. 87–92) contain this term (Y) in the numerator. It can then be written that:

G ¼
NAYk

p#
¼

Yk

p

#

1ð Þ

: (95)

Using, for example Eq. 91, the relation can further be derived:

p#

k
¼

NAY

G
¼ NAℏ (96)

and Eq. 92:
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2M#Ea

k
2

¼
NAY

G

� �2

¼ NA
2
ℏ
2: (97)

It can also be verified that:

p# ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M#Ea

q

¼ M#v (98)

and:

v2 ¼
2Ea

M#
) Ea ¼

1

2
M#v2: (99)

The motion of activated complex can then be fully characterized by two numbers, that is the

activation energy and the momentum, which are directly proportional to physical action

Y=G ¼ ℏ. Therefore, these two numbers can be considered as the quantum numbers of acti-

vated complex.

4. Formulation of wave function, reduced mass and relative velocity of

activated complex

Using the momentum, the mass activation energy, etc., for one molecule of activated com-

plex20,23, the Avogadro constant is left out from these relations. Furthermore, the quantum

numbers of activated state and its mass can then be defined in terms of universal physical

constants, for example, the Gravitational constant, reduced Planck constant and the speed of

light in the vacuum.

The important consequences of relations 79 and 82 are the following:

1. The activated complex at the peak of energetic barrier, which represent the equilibrium,

but not a stable state, has the kinetic energy (momentum) only.

2. The complete characterization of the motion of activated complex alongside the reaction

coordinate requires the knowledge of two its quantum numbers:

a. Activation (kinetic) energy, it is obvious that activated processes have Ea > 0;

b. Momentum of activated complex.

3. There is not any quantization either for the energy or for the momentum of activated state.

4. The shift from the equilibrium position (the peak of energetic barrier and the bottom of

potential well at the same time) decreases the kinetic energy and increases the potential

energy of activated complex.

The expression of M# from Eq. 82 leads to the formula:
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M# ¼
1

Ea

ℏkNA

� �2

2
¼ 2:017 � 10�21 k

2

Ea
: (100)

The substitution for Ea (Eq. 1) in this formula then enables to write:

const:# ¼
1

2

ℏkNA

Tm,Θ1M
#

� �2

(101)

and:

p ¼
NA ℏk
� �2

2M#V#
¼

r
#v2

2
(102)

where:

v ¼
2Ea

p#
¼

2Ea

p 1ð ÞNA
: (103)

From the discussion above, it can then be concluded, that the definition of change in mass

when the reactants pass into the activated state, enables to calculate many important parame-

ters of activated complex. It is then feasible to use the Schrödinger equation29 for the descrip-

tion of its behavior, but the solution is in the same form as for classical physics:

Ea ¼
NA ℏk
� �2

2M#
¼ NA ℏω

# (104)

where:

ω
# ¼

Ea

NA ℏ
¼

NAℏk
2

2 M#
(105)

is an angular frequency which is related to the “ordinary” universal frequency of activated

complex ν#
AC (ν#

AC=ν
# ¼ Ea=RTð Þ ¼ lnA=kþ 1=e, please refer to Eq. 27 in Chapter 2 ) the

reaction rate constant ratio kArhenius=kEyring ¼ 1=e ≈ 1=2:71828 ¼ 0:36788) via the relation:

29

Erwin Rudolf Josef Alexander Schrödinger (1887–1961). The Schrödinger’s equation describes the behavior (evolution

with time) of a physical system in which the quantum effects, such as the particle-wave duality take place:

iℏ
∂ψ r; tð Þ

∂t
¼ bHψ r; tð Þ; ðaÞ

where i is the imaginary unit, ℏ ¼ h=2π is reduced Planck constant,ψ is the wave function (psi), r is the position vector, t is

the time. The Hamiltonian (evolutional) operator:

bH ¼ bT þ bV ¼ �
ℏ

2m
∇

2 þ V r; tð Þ; ðbÞ

where bT is the kinetic and bV is the potential energy operator, characterizes the total energy of wave function. This

operator was named after Irish physicist, astronomer and mathematician William Rowan Hamilton (1805–1865) who

was awarded the Royal Medal (The King’s (Queen’s) Medal) in 1835.

Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton74



ω# ¼ 2πν#AC ¼ 2π
Ea

hNA
: (106)

It is obvious that the activated complex behaves as the pseudoparticle (instanton) that corre-

sponds to one dimensional, that is the reaction coordinate (r), plane wave with the equation:

ψ r; tð Þ ¼ e
E 1ð Þt�p#

1ð Þ
r

� ��
iℏð Þ

(107)

where r (please refer to the discussion of Eq. 113) is the shift of activated complex from

equilibrium position (the peak of energetic barrier) and the value of E 1ð Þ ¼ Ea=NA and the

Hamiltonian31 is equal to the kinetic energy operator:

bH ¼ bT ¼
bp2

2m#
1ð Þ

¼
�iℏ∇ð Þ2

2m#
1ð Þ

¼
�iℏð Þ2

2m#
1ð Þ

Δ ¼ �
ℏ
2

2m#
1ð Þ

∂
2

∂ r2
(108)

where ∇ is the nabla (del) operator30 and ∆ ¼ ∇
2 ¼ ∇∙∇ is the Laplace operator31 (Laplacian).

The pertinent kinetic energy of activated complex is then given by the formula:

E 1ð Þ ¼
p#1ð Þ2

2m#
1ð Þ

¼
p#2

2M#NA

¼ kBT
2
m,Θ1

∂ ln Q#

∂T
¼

Ea

NA
(109)

where m#
1ð Þ ¼ M

#=NA and the operator:

bp ¼ �iℏ∇ ¼ �iℏ
∂

∂ r
(110)

has the momentum:

p#1ð Þ ¼ �ℏk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m#

1ð ÞE 1ð Þ

q
¼ �

p#

NA
: (111)

The commutation of operators bT and bp then means that:

30

The vector differential operator “nabla” in three dimensional coordinate system with the basis vectors i, j and k and is

written as:

∇ ¼ i
∂

∂x
þ j

∂

∂y
þ k

∂

∂z
:

31

The differential operator given by the divergence of gradient of a function in Euclidian space:

∆ ¼ ∇∙∇ ¼ ∇
2 ¼

∂
2

∂x2
þ

∂
2

∂y2
þ

∂
2

∂z2
;

which was named after the mathematician Euclid of Alexandria. The formulation of del or Laplacian depends on the

coordinate system applied, that is, Cartesian, cylindrical and spherical coordinate.
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bT ;bp
h i

¼ 0: (112)

The solution of motion of activated complex (state) mentioned above enables to consider it and

treat it as an instanton, that is a pseudoparticle. The pertinent wave function can be then used

to describe its motion or to calculate the probability of tunneling through the energetic barrier,

e.g. by means of the WKB (Wentzel-Kramers-Brillouin) approximation.

This behavior enables touse the following idea about thenature of activated complex (Figure 7(a)32).

The activated complex is in equilibriumwith products (K#, please refer to the discussion of Eq. 5

in Chapter 2). The projection of this equilibrium is the linear spring,where the activated complex

oscillates (�r) around the equilibrium position (please refer to note (4) and the discussion of

Eq. 82). This oscillation is the characteristics symptom of negative feedback of activated complex

to the products. Furthermore, the shift from the equilibrium position reduces the kinetic energy

and increases the potential energy of activated complex.

Figure 7. Simplified scheme of energy diagram (general exothermic reaction, please refer to Figure 1(a) in Chapter 2)

showing increasing potential energy of activated complex (AC) caused by its oscillation around the peak of energetic

barrier. The equilibrium of activated complex with reactants (R) was approximated by Hooke’s spring (a). The scheme of

energy diagram that includes the oscillation of activated state around the equilibrium position (b).

32

For the peak of energetic barrier, it can then be written:

Er ¼ ∆Er þ Ea ¼ ∆Er þ
ℏ
2
k
2

2 m#
1ð Þ

; ðaÞ

that is, the relation which is analogical to the highest energies of the valence band and the lowest energies of the

conduction band in many semiconductors:

E k
� �

¼ E0 þ
ℏ
2
k
2

2 m∗
; ðbÞ

where E k
� �

is the energy of electron with the wave vector k, E0 is the edge of energy of band andm* is the effective mass of

electron.
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This behavior of activated state attached by spring to the product can be approximated by the

Hooke’s law33 [34, 35], where the force F, which shifts the activated complex from the peak of

energetic barrier34 is given by the Newton’s second law40:

F ¼ �k#s r ¼ m#
1ð Þ

∂
2r

∂ t2
¼ m#

1ð Þa
# (113)

where a# is the acceleration of activated molecule (Eq. 116) and k
#
s is the positive constant of the

spring, which can be calculated from its angular frequency:

ω
# ¼

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t ) ω
#2 ¼

k#s
m#

1ð Þ

: (114)

That also means that the universal frequency of activated state (ν#
AC) is independent of r

35, that

is it depends on the mass of activated complex only:

ν
#
AC ¼

kBT
0

h
¼

E 1ð Þ

h
¼

1

2π

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t ¼
1

2π
ω

# )

E 1ð Þ ¼
h

2π
ω

# ¼ ℏω
# ¼ kBT

0

: (115)

The acceleration of activated molecule during this oscillation is then given by the formula:

a# ¼ �ω
#2r ¼ �4π2v# 2

AC r: (116)

The potential energy, which is stored in the spring (activated complex) during the oscillation, is

given by the relation:

V#
p,1 r; tð Þ ¼

1

2
k#sr

2
: (117)

This behavior is in agreement with previous conclusions derived from Eq. 82. Since the change

in the potential energy is of constant rate, the relation can also be written:

∂
2V#

p,1 r; tð Þ

∂ r2
¼ k#s : (118)

The increase of energy (Eq. 117) then leads to the decrease of the momentum of activated

complex (Eq. 111):

33

English natural philosopher, architect and polymath Robert Hooke (1635–1703).
34

The other end of spring, that is, the reactants, is considered for the fixed position.
35

The net energy of the activated complex is constant during the time.
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p#1ð Þ r; tð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m#
1ð Þ E 1ð Þ � V#

p,1 r; tð Þ
� �

r

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m#
1ð Þ T#

1ð Þ r; tð Þ
� �

r

(119)

where T
#
1ð Þ r; tð Þ is the kinetic energy of activated complex during its oscillation around the

energetic peak, so:

E 1ð Þ ¼
p#1ð Þ r; tð Þ2

2m#
1ð Þ

þ V#
p,1 r; tð Þ: (120)

Therefore, the momentum of activated complex is equal to zero when E 1ð Þ ¼ V
#
p,1 (Figure 7(b)),

that is for two spring limits, that is in amplitude positions:

rℓ ¼

ffiffiffiffiffiffiffiffiffiffiffi

2E 1ð Þ

k#s

s

¼
λ
#

π
¼ Ap (121)

where λ#=rℓ ¼ π. Since there are no losses in the energy (the activated complex is an adiabatic

system36), the activation energy has a constant value of:

E 1ð Þ ¼
1

2
k#s rℓ ¼

1

2
m#

1ð Þv
2: (122)

Furthermore the value of 2 rℓj j≪ δ is very small in comparison to the length of potential barrier

(Eq. 54). In other words, the length of energetic barrier is much longer than the section which

belongs to the oscillation of activated complex. The pertinent wave can then be described by

the equation for the simple harmonic motion:

r tð Þ ¼ Ap cos 2πν
#
AC t

� �

(123)

where Ap ¼ rℓ (Eq. 121) is the amplitude and ν#
AC is the universal frequency of activated

complex (Eq. 115). Further treatment of Eq. 123 then leads to the formula of the wave func-

tion37:

r tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

2E 1ð Þ

k#s

s

cos

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t t

0

@

1

A ¼
λ
#

π
cos

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t t

0

@

1

A (124)

and then:

36

The “walls” of this system do not allow the transport of matter and heat.
37

The formula is the solution of an ordinary differential equation (ODE):

m
#
1ð Þ

∂
2
r

∂t2
þ k

#
s r ¼ 0 ¼)m

#
1ð Þ

∂
2
r

∂t2
¼ �k

#
s r:

Please refer also to Eq. 13 in Chapter 2.
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r tð Þ ¼
λ
#

π
cos

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A ¼
λ
#

cos �1 �1ð Þ
cos

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A

ffi
λ
#

0:31831
cos

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A

: (125)

Since the magnitude of this function starts with the value r 0ð Þ ¼ rℓ , it is possible to shift the

beginning of wave function (negative phase shift about �π=2 ¼ �1:570796 radians38)39 to the

peak of energetic barrier, where r 0ð Þ ¼ 0, then the wave function can be written:

r tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

2E 1ð Þ

k
#
s

s

cos

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A�
π

2

0

@

1

A ¼
λ
#

π
sin

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A: (126)

The period of this equation is given by the relation:

T# ¼ 2π

ffiffiffiffiffiffiffiffiffi

m#
1ð Þ

k
#
s

s

: (127)

This solution also provides an important insight to the nature of the mass and the velocity

vector of activated state, which can be actually characterized as follows:

• Reduced (effective32) mass of activated state (m#
1ð Þ);

• Relative velocity of the bodies before the collision (v).

The activation can then be characterized as the change in kinetic energy during the perfectly

elastic collision. Since there is no dissipation, if the kinetic energy is dissipated (the formation

of activated state is a reversible process), the change of energy for this kind of collisions is:

38

Like e and π, the π/2 is the transcendental number. This value corresponds to 90�, i.e. to 1 quadrant. The positive phase

shift about 3π/2 = 4.712388… radians, i.e. 270� (3 quadrants), which leads to the equation:

r tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2 E 1ð Þ

k
#
s

s

cos

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

Aþ
3π

2

0

@

1

A ¼
λ
#

π
sin

ffiffiffiffiffiffiffiffiffi

k
#
s

m#
1ð Þ

v

u

u

t t

0

@

1

A; ðaÞ

has the same effect, because:

cos x�
π

2

� �

¼ cos xþ
3π

2

� �

¼ sin xð Þ: ðbÞ

39

There is a very important fact that this phase shift corresponds to complete elliptic integral of the second kind:

π

2
¼ E 0ð Þ;

especially for the investigation of kinetics of thermal decomposition of solids by TA methods1, but we will deal with the

details of this topic in future article.
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E 1ð Þ ¼
1

2
m

#

1ð Þv
2
℘

2 � 1
� �

(128)

where ℘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E 1ð Þ=E i;1ð Þ

p

¼ 1 (elastic collision) is the coefficient of restitution (COR). Its value is

defined as the ratio of the final to initial relative velocity or the square root ratio of the final

(E 1ð Þ) to initial energy (E i;1ð Þ) of two collided objects40.

The graphs of the wave function for the process of thermal decomposition of calcite (a) and

aragonite (b) are shown in Figure 8. It can be seen that calcite with lower activation energy

(Table 1 and Table 2) has longer period (2.15�10�15 s�1) than aragonite (2.0�10�15 s�1). Further-

more, the wavelength is then only a tiny quantity of length of the energetic barrier (Figure 7(a)).

The changes of the potential energy and of momentum of activated complex during the

oscillation around the equilibrium position, that is the peak of energetic barrier (r = 0), is shown

in Figure 9.

Figure 8. The wave function (Eq. 115) of activated state for the thermal decomposition of calcite (a) and aragonite (b).

Figure 9. The change of potential energy and of momentum during the oscillation of activated complex during the

process of thermal decomposition of calcite (a) and aragonite (b).

40

From this point of view, please see also the text (Van’t Hoff statement) related to the discussion of Eq. 9 in Chapter 1.
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The wave function (Eqs. 113 and 114) can also be approximated by the Taylor (Maclaurin,

please refer to footnote 15 in Chapter 2) series expansion around the point r 0ð Þ41:

r 0ð Þ ¼
λ
#

π
1�

x2

2
þ

x4

24
�

x6

720
⋯

� �

ffi
λ
#

π
; where x ¼

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t t: (129)

For Eq. 126 (or Equation in Footnote 40) with the phase shift to the peak of energetic barrier, it

is possible to write:

r 0ð Þ ¼
λ
#

π
x�

x3

6
þ

x5

120
�

x7

5440
⋯

� �

¼

ffiffiffiffiffiffiffiffiffiffiffi

2E 1ð Þ

k#s

s

x�
x3

6
þ

x5

120
�

x7

5440
⋯

� �
: (130)

Furthermore, it is also obvious (please refer to Eqs. 121–125) that:

E 1ð Þ ¼
1

2
k#s

λ
#

π

� �2

¼
1

2
m#

1ð Þv
2 (131)

that is:

k#s
λ
#

π

� �2

¼ m#
1ð Þv

2 ¼
p#1ð Þ2

m#
1ð Þ

¼ 2E 1ð Þ (132)

where:

k#s ¼ m#
1ð Þ

vπ

λ
#

� �2 kg

s2
¼

N

m

� 

: (133)

Since the activation energy per one activated complex is the sum of its kinetic (E k;1ð Þ) and

potential energy (V#
p,1):

41

Since:

f xð Þ ¼ cos xð Þ ¼) f 0ð Þ ¼ 1; ðaÞ

f� xð Þ ¼ � sin xð Þ ¼) f� 0ð Þ ¼ 0; ðbÞ

f
��
xð Þ ¼ � cos xð Þ ¼) f

�� 0ð Þ ¼ �1; ðcÞ

f
���
xð Þ ¼ sin xð Þ ¼) f

��� 0ð Þ ¼ 0, etc:; ðdÞ

the substitution to Eq. (a) in footnote 60 provides the series expansion according to Eq. 129.
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E 1ð Þ ¼ E k;1ð Þ þ V#
p,1 (134)

it can be written42:

E 1ð Þ ¼
1

2
m#

1ð Þω
#2Ap

2 cos 2
ω

#t
� �

þ 1

2
k#s Ap

2 sin 2
ω

#t
� �

: (135)

Because the frequency of E k;1ð Þ and V
#
p;1ð Þ is twice as high as the frequency of oscillation43, the

middle (average) potential (V#
p;1;avð Þ) and the kinetic energy (E k;1;avð Þ) are of the same size during

all periods. So, the relation of the middle activation energy (E 1;avð Þ) of the reaction can be

written as follows:

E 1;avð Þ ¼ E k;1;avð Þ ¼ V#
p;1;avð Þ ¼

1

4
k#s Ap

2 ¼ E 1ð Þ
2

: (136)

The value of “effective” shift (ref ) where the energy that corresponds to the value of E 1;avð Þ is

reached, can be then calculated as follows (please refer to Eqs. (70) and (121)):

ref ¼
1
ffiffiffi

2
p Ap ¼ 0:707…rℓ ¼

rℓ
ffiffiffi

2
p ¼ vx rℓ

v
: (137)

With respect to Eqs. (59) and (62), the relation can also be written:

E 1ð Þ
E 1;avð Þ

¼ ΔH#

ΔU#
¼ KB

p
¼ 2: (138)

Eq. 115 enables to use the principle of equivalency between undamped (the damping factor or ratio

ζ = 0) harmonics oscillators (universal oscillator equation) in order to imagine or simulate the

behavior of activated state as a serial RCL (Resistor, Inductor andCapacitor) or parallel RCL circuit:

ν
# ¼ 1

2π

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t ¼ 1

2π

ffiffiffiffiffiffi

1

LC

r

: (139)

In the series RCL circuit the inductance L is equal to the mass of activated molecule m#
1ð Þ and

the elastnace 1=C corresponds to the spring constant k#s . In the case of parallel RCL circuit the

value of k#s is equal to the magnetic reluctance 1=L and m#
1ð Þ to the capacitance C.

If we conceive the idea that these oscillating systems are actually not undamped, but very

slightly underdamped (factor ζ < < 1), there is an option to explain the decomposition of

activated state, by the exponential decay of angular frequency and then by the energy

(Eq. 115) of oscillator. That means that the energy of activated complex is not sufficient to

42

In the case that there is not any phase shift.
43

Please refer also to Eq. 115 and to Figure 9.
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overcome the peak of energetic barrier at certain time after its formation. Depending on actual

position on reaction coordinate (r tð Þ, refer to Eq. 124), the activated complex is decomposed

into products or into reactants.

Since the rate of reaction is proportional to the decomposition of activated state, it should be

proportional to the damping ratio as well. Therefore, the following approximation between the

rate constant of reaction (k) and dimensionless damping factor can be suggested:

k Tð Þ ¼ ζ Tð Þω# ¼ ζ Tð Þ

ffiffiffiffiffiffiffiffiffi

k#s
m#

1ð Þ

v

u

u

t : (140)

In other words, the exponential decay of underdamped oscillator is equal to k, that is the mean

lifetime (τ ¼ 1=k) of activated complex decreases with temperature, while the value of

damping factor increases with temperature. The rate of reaction then becomes faster. The

substitution of Arrhenius formula (Eq. 7 in Chapter 1) to Eq. 140 then leads to the relation:

k#s ¼ m#
1ð Þ A exp �

Ea

RT

� �

=ζ Tð Þ

� �2

¼ m#
1ð Þ

k Tð Þ

ζ Tð Þ

� �2

: (141)

The value of so called Q factor of activated complex can then be calculated from the following

relation:

Q ¼ 2π
Energy stored

Energy lost
¼

2π E 1ð Þ

Energy lost
¼

1

2ζ Tð Þ
: (142)

Using the example of the process of thermal decomposition of aragonite applied in this book,

the lost energy can be calculated (Eq. 142) to 8.622 � 10�37 J per one cycle of activated

molecule, which is only very tiny fraction of its value.

Since the loss of energy per each cycle increases with the energy of the activation impulse, the

same idea can be used to explain the decomposition of activated system which collects the

energy E ≥Ea. In other words, if tunneling (please refer to Section 5 in Chapter 2) is not taken

into the account, the energetic barrier behaves as an energy filter which allows only to the

activated molecule with the energy of Ea to pass through (to form the product). The systems

with higher or lower energy are not allowed to go through the energetic barrier. The system

with higher energy oscillates and loses its energy until it reaches the activation energy Ea and

in this stage it passes through. The condition must always be fulfilled that the net energy is the

sum of activation energy and of the energy of reaction, that is ∆Er þ Ea (please see Figure 7).

5. Other parameters that affect the effective mass of activated state

As results from previous discussion, the effective mass as well as other derived parameters of

activated complex are independent of the temperature at which the reaction proceeds at
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measurable rate44. Of course, that is possible only on the assumption that the change in

temperature does not bring the change of reaction mechanism with different activation

energy45 (Figure 10). In that case, the activation energy, the mass of activated state as well as

other above mentioned parameters of activated complex must be changed too. The example of

that behavior can be found in previous works, e.g. [36, 37].

Since the effective mass of activated state could also be affected by the isotopic composition

of the specimen (please refer to Section 5 in Chapter 2), the activation energy for the most

cases of the process is actually Relative Activation Energy. The value of which depends on

the isotopic composition of the sample. Please do not be confused with the apparent activa-

tion energy. This term is usually applied to the kinetics of processes of unknown or uncer-

tain mechanism.

Figure 10. Hypothetical example of Arrhenius plot for the change of reaction mechanism with increasing temperature.

44

On assumption that the activation energy is independent of the temperature. As was firstly assumed by van’t Hoff

(please refer to discussion of Eq. 18 in Chapter 1), the activation energy could be a function of temperature. From this

point of view, please refer also to the work of S. Vyazovkin and B.V. L’vov. Also according to our investigation, the

activation energy is most probably the function of temperature, but within the temperature interval, where the reaction

takes place in measurable rate, this change is usually smaller than the uncertainty of experimental results. We plan to

publish our solutions on this topic in the future work.
45

In this case, we can observe two or more linear parts in Arrhenius plot which are pertinent to the change of reaction

mechanism. The mechanism crossing is usually gradual without an abrupt change of the slope. The effect of temperature

on the reaction mechanism can be, for example, illustrated by the effect of temperature on the process of nucleation and

diffusion. The increasing temperature makes the transport phenomenon’s, for example, the diffusion toward growing

nucleus of new phase, easier, but it also reduces overcooling, for example, driving force of nucleation, as well.
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The change in mass when reactants pass into the activated state is also affected by polymor-

phism46, that is by the crystal structure. For example, the aragonite has higher M# than calcite,

despite the fact that both minerals have the same chemical composition (CaCO3), so their

thermal decomposition can be described by the same chemical equation (Eq. 33 in Chapter 2).

The course of thermal decomposition of aragonite specimen (La Pesquera, Spain) is shown in

Figure 11. In comparison with the process of thermal decomposition of calcite (Figure 1), the

peak temperature of the process is higher. On the contrary, the full width at half maximum of

peak (w1/2) is lower for aragonite than for calcite.

The Arrhenius plot for the process of thermal decomposition of aragonite47 is shown in

Figure 12. The process of thermal decomposition of aragonite requires slightly higher activa-

tion energy (Table 2) than that of Iceland spar (Table 1). The mechanism of the process of

thermal decomposition, which includes zero or decreasing nucleation rate of new phase and

the diffusion controlled growth of new phase, is also very similar for calcite and aragonite.

Please compare the data in Table 1 (calcite) with those in Table 2 (aragonite) for the demon-

stration of effect of polymorphism on the kinetics of thermal decomposition and properties of

activated complex. Further research has shown that there is actually not any significant effect

of the polymorphism of calcium carbonate48 or its origin on the value of activation energy for

the specimens of comparable purity [38].

Figure 11. Thermal decomposition of aragonite (20 mg) heated with the rate of 1 K�min�1 under inert (N2) atmosphere

(a). DTG peak was subtracted to baseline (BS). The plot of Tm vs. Θ is shown in detail. Photograph of analyzed pseudo-

hexagonal (violet crystals show a hexagonal outline) aragonite specimen (b).

46

Polymorphism is the ability of solids to crystallize in various structures in different intervals of temperature and

pressure. In the case of chemical elements, the same ability is termed as allotropism (allotropy). For example, the calcite

and aragonite are two polymorphs of CaCO3 and graphite and diamond are two of allotropes of carbon.
47

The chemical equation is the same as for calcite (Eq. 33 in Chapter 2). The Arrhenius and Eyring plot for the process of

thermal decomposition of calcite can be found in Figure 2 in Chapter 2.
48

This behavior can be explained by very small value of enthalpy of calcite (trigonal) $ aragonite (orthorhombic) phase

transition (please refer also to the footnotes 18 and 19 in Chapter 2). The same cannot be said for vaterite, but this phase is

the synthetic hexagonal calcium carbonate polymorph, that is, vaterite cannot be classified as a mineral.
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The same cannot be recognized for polymorphs of SrCO3, which was investigated in previous

work [39]. The mass of activated state is higher for orthorhombic polymorph (0.165 kg�mol�1)

than for hexagonal (0.148 kg�mol�1) strontium carbonate, but the effect of temperature change

on the mechanism, that is the value of kinetic exponent n, of thermal decomposition was

included in this particular case. Furthermore, the kinetics of the thermal decomposition pro-

cess and then the effective mass of activated state as well could be influenced by the formation

of solid solution.

6. Conclusion

As was demonstrated in this chapter, the effective (reduced) mass of activated state is an

important parameter of activated complex, which can be easily derived from the results of

kinetic experiments. As was demonstrated on the example of calcite and aragonite, this change

in mass when reactants pass into an activated state depends on real reaction mechanism, resp.

on kinetic factor, which is often different from common transcript of the reaction. Therefore,

the mass of activated state could be different from the value resulting from this equation, that

is the sum of reactants multiplied by their stoichiometric coefficients.

The most important significance of this parameter lays also in the possibility of further defini-

tion of rate, density, energetic density, current mass density, momentum and many other

properties of activated complex. Since the activation energy and the momentum of activated

complex enable complete characterization of the motion of activated complex alongside the

reaction coordinate, these parameters are its quantum numbers.

Furthermore, it is possible to introduce the idea to approximate the behavior of activated

complex by the spring oscillation and to determine the nature of mass of activated complex as

the reduced or effective mass of activated complex. This mass is also affected by the isotopic

composition of the sample and by polymorphism.

Figure 12. Arrhenius plot (a) and Eyring plot (b) for the process of thermal decomposition of aragonite.
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Symbols and abbreviations

The following abbreviations and symbols are used in this book:

j
# mass flux (mass current density) of activated complex

vp the speed of the phase wave (phase velocity)

vx the effective speed of activated complex, which corresponds to the scale parameter

of Maxwell–Boltzmann distribution

ΔrG
�

standard Gibbs free energy of the reaction

ΔrG Gibbs free energy of the reaction

ΔG# Gibbs energy of activation

ΔH# enthalpy of activation

ΔS# entropy of activation

ΔU# internal energy of activation

ΔV# volume of activation, the change of volume when reactants pass into the activated

state

Bav xð Þ the average value of approximation parameter B xð Þ

CPA Plouffe’s constants

CPT Pythagorean triple constant for hypotenuses

E i;1ð Þ initial energy of two collided object

E0 energetic difference between energy of activated state and reactants

Ea activation energy (Arrhenius activation energy)

Ep Planck energy (1.956�109 J)

Eth activation energy (theoretically calculated)

bH Hamiltonian (Evolutional) operator

K# equilibrium constant (formation of activated complex)

Kþ equilibrium constant of activation (K# ¼ Kþ)

Kb the bulk modulus

Lp Planck length (1.616∙10�35 m)

M# the mass of activated state

Ma Mach number
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NA Avogadro constant (6.022140857∙10�23 mol�1)

Q#
0

partition function of activated complex

Qi partition function of reactant molecules

T# period of activated complex wave function

bT kinetic energy operator

T� activated complex temperature term (Ea=R)

V# molar volume of activated state (V# ¼ RT�=p)

bV potential energy operator

V#
p,1

potential energy of activated complex

Zp the size of particle

a# acceleration of activated molecule

gj degeneracy factor, that is the number of allowed equimolar quantum microstates

k# activated state rate constant (coefficient)

k wave vector

kB Boltzmann constant (1.38064852∙10�23 J∙K�1)

k exp rate constant (experimentally determined)

kth rate constant (theoretically calculated)

m#,0
1ð Þ

the invariant mass of activated complex

p momentum

r# specific gas constant

r position vector

r#AC the effective diameter of activated complex

t1=2 the half-life of activated complex

tp Planck time (5.391∙10�44 s)

tδ ¼ 1=A the mean lifetime of activated complex, that is the time required to overcome

energetic barrier

v the most probable speed of activated complex (the mode of Maxwell-Boltzmann

distribution), which corresponds to the group velocity of the activation wave
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w1=2 full width at half maximum of peak (FWHM)

αQ# coefficient of response of partition function to a change in temperature

βv dimensionless rate ratio of activated complex to the speed of light

εj energy level of j-microstate

λ# de Broglie wavelength of activated complex

ν# universal frequency (ν# ¼ kBTð Þ=h), that is the frequency of decomposition of

activated complex

ν#
AC universal frequency of activated complex (ν#

AC ¼ kBT
�

� �

=h)

νi stoichiometric coefficients

r
# density of activated state

rsf steric factor

ω# angular frequency of activated complex

∆ ¼ ∇
2 Laplace operator (Laplacian)

℘ coefficient of restitution (COR)

ΔV molar change in volume during reaction

A frequency or pre-exponential Factor, sometimes prefactor

A� temperature independent constant

AC activated complex

ART Absolute reaction rates theory

B xð Þ approximation parameter in the Doyle equation for p xð Þ

E energy, usually reaction energy

F force

G gravitational constant (Universal constant or Newton’s constant,

6.67408 � 10�11 m3�kg�1�s�2)

K equilibrium constant of reaction

P Ad hoc quantity, that is “fudge factor”

Q partition function of the molecule and Q factor

R Gas constant, also Molar, Universal or Ideal gas constant

(8.3144598 J∙K�1
∙mol�1)
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S entropy

STR Special theory of relativity

T thermodynamic or absolute temperature

TST Transition state theory

W energetic difference between reactants and activated complex in basic state

Y the constant term (Y ≈ 7:0383� 10�45
m

5=s3)

c speed of light in vacuum (299,792,458 m�s�1)

const:
�� square of temperature-rate kinetic coefficient

const:
��� temperature-rate kinetic coefficient

e the base of natural logarithms (Euler’s number, Napier’s constant)

h Planck constant (6.626070040 � 10�34 J�s)

k reaction rate constant (coefficient)

m mass

p pressure

p xð Þ temperature integral, where the quantity of x ¼ Ea=RT

q the heat of reaction

r reaction rate (rate or speed of reaction) or shift from equilibrium position

(according to the context)

Θ heating rate

∇ Nabla (del) operator

β thermodynamic beta (occasionally perk)

γ Lorentz factor (term)

δ the length of energetic barrier

κ proportionality constant (transmission coefficient)

ν frequency of harmonic oscillator

ο energy ratio

ς damping factor

τ fundamental temperature

ψ wave function (psi)

ϕ potential force-field
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