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Abstract

Carbon capture is proposed as a viable way of exploiting the fossil resources for power 
plants and industrial processes. The post-combustion capture by chemical absorption 
in amine aqueous solutions has been in use in chemical and petrochemical areas for 
decades. As an alternative, the absorption in aqueous ammonia has received great atten-
tion recently. The carbon capture by aqueous ammonia is based on the conventional 
absorption-regeneration scheme applied to the ternary system CO

2
–NH

3
–H

2
O. It can be 

implemented in a chilled and a cooled process, depending upon the temperatures in the 
absorber and, hence, the precipitation of salts. The process simulation can be conducted 
in two manners: the equilibrium and the rate-based approaches. The specific heat duty is 
as low as 3.0, for the cooled process, and 2.2 MJ/kg

CO2
, for the chilled one. Moreover, the 

index  SPECCA  is as low as 2.6, for the cooled, and 2.9 MJ/kg
CO2

, for the chilled one. The 
overall energy performances from the simulations in the rate-based approach, compared 
against those in the equilibrium approach, result only slightly penalized. From an eco-
nomic perspective, the carbon capture via chemical absorption by aqueous ammonia is a 
feasible retrofitting solution, yielding a cost of electricity of 82.4 €/MWh

e
 and of avoided 

CO
2
 of 38.6 €/t

CO2
 for the chilled process.

Keywords: carbon capture, post-combustion capture, chemical absorption, aqueous 
ammonia, salt precipitation, ammonia slip

1. Introduction

The ongoing scientific debate does not focus on whether fossil fuels will have to meet a 
major portion of the short- and the mid-future energy demand, but rather on how they will 

be exploited most effectively in terms of primary energy use, environmental impact, and 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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end-user cost. Meanwhile, renewable sources are expected to be implemented more and more 

diffusely to allow independence from fossils in a later future.

Carbon capture is proposed as a viable way of effectively exploiting the conventional 
resources. It can be implemented in a pre-combustion, a post-combustion, or even an oxy-

combustion configuration. Among them, the post-combustion option has the large benefit of 
being readily applicable to the already existing power plants as well as industrial processes 

that are fueled by coal and natural gas.

The post-combustion carbon capture can be accomplished by adsorption on solid materials 

or by chemical absorption in liquid solutions. The chemical absorption in amine aqueous 

solutions has been in use for decades in a number of chemical and petrochemical areas, such 

as the Oil & Gas or the urea preparation. Currently, the so-called advanced amines are under 

research with the goal of reducing the energy demand when applied to power plants and 

industrial processes. As an alternative to amines, the chemical absorption in ammonia aque-

ous solution has received great attention during the last decade.

This chapter covers the chemical absorption of carbon dioxide by an aqueous solution of 

ammonia. The next sections will present, in sequence, an overview of a number of works 

retrieved from the open literature, the simulation by either an equilibrium- or a rate-based 

approach, the environmental as well as economic assessments and, lastly, the future develop-

ments of the process itself.

2. Bibliographic review

The possibility of obtaining carbon dioxide from gas mixtures attracts the attention of inven-

tors and investigators toward the end of the nineteenth century, as narrated by Wellford 
Martin and Killeffer [1]. In 1937, the two authors turn to be among the first ones to recognize 
the possibility of producing CO

2
 from the flue gases of power plants.

In the first decades of the twentieth century, the process employing aqueous ammonia for 
the removal of CO

2
 and H

2
S is used extensively for the purification of coke-oven gas. Carbon 

dioxide is indeed a major component that must be removed to greatly increase the heating 

value of that gas. During the following years, amines, specifically alkanolamines, become 
preferred over ammonia for few reasons [2]. First, the use of amines leads to lower issues of 

pipe plugging and air polluting. Second, amines are characterized by higher effectiveness 
in capture H

2
S, which can be used as an affordable source of elemental sulfur. Ultimately, 

ammonia is still an expensive substance because the industrial ammonia production is still to 

be established. Historically, the first alkanolamine to become commercially viable is trietha-

nolamine (TEA) in the year 1930.

Through the last few decades, the amines that reach commercial maturity for gas purification 
are monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanol-amine (MDEA). 

In particular, MEA is taken frequently as the reference process for the carbon capture in 
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post-combustion configuration. By contrast, the aqueous ammonia is reconsidered explicitly 
for carbon capture only quite recently by both research centers and industrial companies.

The following sections provide an overview of the information about the general absorption-

regeneration scheme, the chemistry of solution, the thermodynamic equilibrium models, the 

kinetics investigations, and the aqueous ammonia process for carbon capture.

2.1. General absorption-regeneration scheme

The carbon capture by aqueous ammonia as well as aqueous amines is based on the conven-

tional absorption-regeneration scheme, which is illustrated in Figure 1. In simple words, the 

gas to be treated flows upward through the absorber, countercurrent to the falling absorbing 
solution, and purified from CO

2
. The generated rich solution from the bottom of the absorber 

is heated in a heat exchanger, recovering energy from the lean solution (see subsequent text), 

and enters the regenerator at a point near to its top. In the regenerator, a heat source (such as 

steam) releases the captured CO
2
, which exits from the top of the column, while the gener-

ated lean solution from the bottom. The lean solutions flow, through the mentioned heat 
exchanger, to the top of the absorber closing the scheme. An exhaustive description of the 

absorption-regeneration scheme is provided by Kohl and Nielsen [3].

2.2. Chemistry of the solution

The carbon capture by aqueous ammonia is based on the ternary system CO
2
–NH

3
–H

2
O, which 

yields an electrolyte solution. At the absorber conditions, the main reactions are [4] as follows:

  2  H  
2
   O ⇆  H  

3
    O   +  +  OH   −   (1)

   CO  
2
   + 2  H  

2
   O ⇆  H  

3
    O   +  +  HCO  

3
  −   (2)

    HCO  
3
  −  +  H  

2
   O ⇆  CO  

3
  2−  +  H  

3
    O   +   (3)

   NH  
3 (aq) 

   +  H  
2
    O  

 (l) 
   ⇆  NH  4  

+  +  OH   −   (4)

   NH  
3 (aq) 

   +  HCO  
3
  −  ⇆  NH  

2
    COO   −  +  H  

2
    O  

 (l) 
    (5)

   NH  4  
+  +  HCO  

3
  −  ⇆ N  H  4    HCO  

3 (s) 
    (6)

The ternary system is explored by Burrows and Lewis as early as 1912 [5]. In a more recent 

work, 1982, Pawlikowski et al. [6] investigate vapor-liquid equilibria of many systems, includ-

ing CO
2
–NH

3
–H

2
O, by way of the gas-liquid chromatography for temperatures ranging from 
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100 to 150°C. Kawazuishi and Prausnitz [7] provide measurements from previous works by 

other scientists with the scope of calibrating the expressions of dissociation equilibrium con-

stants and Henry’s constants for temperatures in the 100–205°C interval and for total liquid-

phase concentrations to 10 molal. Göppert and Maurer [8] report vapor-liquid equilibrium 

data between 333.15 and 393.15 K at pressures up to about 7 MPa for water-rich mixtures and 
concentrations to about 16 molal for ammonia and 13 molal for carbon dioxide. In 1992, Pelkie 
et al. [9] use conductivity measurements to estimate the ammonium ion, NH4+, concentration 

at a temperature of 25°C and over a wide span of pressures and concentrations. The vapor-

liquid-solid equilibrium is considered in the work by Kurz et al. [10], which focuses on the 

solubility of weak electrolyte gases into the aqueous phase in the temperature range from 313 

to 353 K at pressures up to 0.7 MPa. In a subsequent study, the enthalpy changes upon partial 
evaporation of aqueous solutions, including CO

2
–NH

3
–H

2
O, are reported by Rumpf et al. [11] 

at temperatures from 313 to 393 K. Finally, speciation is measured with 13C NMR by Holmes 

et al. [12] at 25 and 35°C and by Mani et al. [4] at room temperature.

2.3. Thermodynamic equilibrium models

As indicated, the ternary system is an electrolyte solution. The thermodynamic model for 

such a complex system shall account for the electric interactions among the species, including 

strong and weak forces. The strong forces are described by long-range terms that represent 

electrostatic interactions between ions. The weak forces instead by short-range terms that 

represent the ion dipole interactions and the non-electrostatic interactions.

Two common equilibrium descriptions are the Electrolyte Non-Random Two Liquid (e-NRTL) 
model [13] and the Extended UNIQUAC model [14]. A comparison between them is proposed 

Figure 1. Process flow diagram of the absorbtion-regeneration scheme for ammonia and amines [3].
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by Darde et al. [15]. The most recent improvement of the Extended UNIQUAC model [16] 

comprises a full set of equilibrium reactions. First, speciation reactions are as follows:

   NH  
3 (aq) 

   +  H   +  ⇆  NH  4  
+   (7)

   CO  
2 (aq) 

   +  H  
2
    O  

 (l) 
   ⇆  HCO  

3
  −  +  H   +   (8)

   HCO  
3
  −  ⇆  CO  

3
  2−  +  H   +   (9)

   NH  
3 (aq) 

   +  HCO  
3
  −  ⇆  NH  

2
    COO   −  +  H  

2
    O  

 (l) 
    (10)

Moreover, three vapor–liquid equilibrium relations are as follows:

   CO  
2 (g) 

   ⇆  CO  
2 (aq) 

    (11)

   NH  
3 (g) 

   ⇆  NH  
3 (aq) 

    (12)

   H  
2
    O  

 (g) 
   ⇆  H  

2
    O  

 (l) 
    (13)

Lastly, the four solid formations are as follows:

   NH  4  
+  +  HCO  

3
  −  ⇆ N  H  4    HCO  

3 (s) 
    (14)

   NH  4  
+  +  NH  

2
    COO   −  ⇆  NH  

2
    COONH  4 (s) 

    (15)

  2  NH  4  
+  +  CO  

3
  2−  ⇆   ( NH  4  )   2    CO  

3
   ·  H  

2
    O  

 (s) 
    (16)

  2  NH  4  
+  +  CO  

3
  2−  + 2  HCO  

3
  −  ⇆   ( NH  4  )   2    CO  

3
   · 2 N  H  4    HCO  

3 (s) 
    (17)

Figure 2 illustrates a comparison of the experimental data by Kurz et al. [10], indicated by hol-

low markers, and the computed values by way of the improved extended UNIQUAC model, 
indicated by lines. The agreement is generally high.

2.4. Kinetics investigations

There are relatively few investigations on the kinetics for the ternary system NH
3
–CO

2
–H

2
O.  

Hsu et al. [17] describe the absorption reaction kinetics of amines and ammonia solutions with 

carbon dioxide in flue gases. The temperature of investigation is 50°C, which is relatively high 
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for the carbon capture process. Similarly, Diao et al. [18] investigate the removal efficiency 
of the sole ammonia solution in the 25–55°C interval and regress the parameters of the rate 

constant for the capture reaction in the Arrhenius form.

Among the reactions that describe the system, only a subset is expected to significantly influ-

ence the kinetics of the overall process. These kinetics-affecting reactions are as follows:

   CO  
2
   +  OH   −  →  HCO  

3
  −   (18)

   HCO  
3
  −  →  CO  

2
   +  OH   −   (19)

   NH  
3
   +  CO  

2
   →  NH  

2
    COO   −  +  H   +   (20)

   NH  
2
    COO   −  +  H   +  →  NH  

3
   +  CO  

2
    (21)

Among them, reactions (R18) and (R20) are considered to be the slowest. The first is studied 
by Pinsent et al. [19], while the second by five different works as discussed subsequently.

Reaction (R18) is investigated by Pinsent et al. [19] via the rapid thermal method in the range 

0–40°C. The fitting yields the Arrhenius constant with a second order as follows:

    
− d  CO  

2
  
 ______ 

dt
   = r =  k  

2
   ∗  [ CO  

2
  ]  [ OH   − ]   (1)

   k  
2
   = A ∗  e     

− E  
A
  
 ____ 

RT
    with A = 4.32 ∗  10   13    kmol ______ 

 ( m   3  ∗ s) 
   and  E  

A
   = 13249   cal ____ 

mol
    (2)

Moreover, Pinsent et al. [20] assess reaction (R20) by the rapid thermal method in the range 

of ammonia concentration between 0.027 and 0.19 mol/l. By contrast, Puxty et al. [21] study 

it by measuring the rate of CO
2
 absorption into a falling thin film using a wetted wall column 

Figure 2. Comparison of the computed values via the Extended UNIQUAC model [16] (indicated by Ex-UQ) of the 
partial pressure of CO

2
 and NH

3
 against the experimental data by Kurz et al. [10]. Left: at 313 K and 6.3 molal of NH

3
. 

Right: at 353 K and 11.8 molal of NH
3
.
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for aqueous ammonia between 0.6 and 6 mol/L, temperature between 5 and 20°C, and the 
initial thin liquid film CO

2
 loading between 0 and 0.8 mol

CO2
/mol

NH3
. Wang et al. [22] assess the 

kinetic of reaction (R20) by the stopped flow apparatus in the range of temperature between 
15 and 45°C, ammonia concentration between 2.0 and 16 mmol/L, and the initial CO

2
 between 

3 and 10 mmol/L. Lastly, Jilvero et al. [23] study it by a different perspective. They implement 
an adsorption column in a commercial code taking the design parameters of an existing pilot 

plant and they tune the kinetics parameters against the experimental data.

Lillia et al. [24] conduct a comparison of these four investigations and the resulting param-

eters, reported in Table 1, for the Arrhenius equation written as follows:

    
− d  NH  

3
  
 ______ 

dt
   = r =  k  

2
   ∗  [ NH  

3
  ]  [ CO  

2
  ]   (3)

   k  
2
   = A ∗  e     

− E  
A
  
 ____ 

RT
      (4)

Figure 3 visualizes the trends with respect to the (reciprocal of the) temperature and 

against the experimental data from the investigations. Each Arrhenius law fits the data well 
for each work. Apparently, though, the data themselves are not in complete agreement. 

The results from Pinsent et al. and Wang et al. are in mutual agreement, but in disagree-

ment with those by Puxty et al. and Jilvero et al. Noticeably, Pinsent et al. and Wang et al. 
measured the data at low ammonia concentrations, while Puxty et al. and Jilvero et al. at 
high concentrations. In short, there is likely a dependence of the kinetic parameters on the 

ammonia concentration.

Subsequently, Lillia et al. [25] propose an alternative kinetics based on the two-film theory [26] 

as represented in Figure 4. Their study covers the region typical for the absorption columns: 

temperatures from 15 to 35°C, NH
3
 concentrations from 5 to 15%, and CO

2
 loadings from 

0.2 to 0.6. The study yields an Arrhenius constant with a pre-exponential factor of 1.41 × 108 

[mol/(m3s)] and an activation energy of 60,680 [J/mol]. It has a linear dependence on the CO
2
 

concentration and a dependence on the NH
3
 concentration with an exponent of 1.89.

2.5. Aqueous ammonia process for carbon capture

The concept on what was going to be referred to as the novel ammonia-scrubbing process for 

the carbon capture is proposed by Bai and Yeh in 1997 based on experimental data [27].

Their work highlights the remarkable potential of high removal efficiencies, over 95%, and 
absorption capacities, around 0.9 kg of CO

2
 per kg of NH

3
. Shortly after, Yeh and Bai [28] 

complete another experimental campaign with the scope of comparing amine and ammonia 

scrubbing and they confirm the potential of the second over the first solvent. Experiments are 
conducted at room temperature in their first work and between 10 and 40°C in the later one. 
In 2005, Yeh et al. [29] publish the results of three-cycle absorption-regeneration tests con-

ducted on MEA and ammonia in a batch reactor maintained at about 25°C. They also reported 

an approximate estimate of energy usage that is lower than the one for MEA.
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In 2006, EIG Inc. [30] applies for a patent on the chemical absorption of the carbon dioxide into 

aqueous ammonia at chilled conditions. The company Alstom is engaged in its intensive devel-

opment, establishing the commercial name Chilled Ammonia Process (CAP). As summarized 
by Lombardo et al. [31], the chilled process is tested first at bench scale with SRI International. 
Later, it is verified at pilot scale with the Electric Power Research Institute and two utilities: 
WE energies in its Pleasant Prairie (WI, USA) and E.ON in its Karlshamm (Sweden) plant. 
Ultimately, the product validation is executed in the facility of the American Electric Power 
in Columbus (OH, USA) and in the world’s largest test facility of the Technology Center of 
Mongstad (Norway). The process has evolved during the years and it is still under develop-

ment by the company General Electric, which has acquired it recently [32].

At the same time, the process is investigated by a number of research centers. Ullah et al. [33] 

analyze the use of a capacitive deionization in the conventional scheme of the ammonia-based 

process to reduce the regeneration energy requirement, concluding that the reduction can be 

as much as 37.5%. Sutter et al. [34] propose instead the controlled solid bicarbonate formation 

to decrease the energy requirement. Precipitation, separation, and dissolution of the solid 

Figure 3. Comparison among values for k2 and experimental data from cited works: Puxty et al. [21], Wang et al. [22], 

and Pinsent et al. [20]. The dashed lines are obtained fitting the experimental data. The dashed line for Jilvero et al. [23] 

is the trend proposed by the authors of that work.

Source Arrhenius parameters of   k  
2
    in Eq. (4)

A [kmol/(m3s)] E
A
 [cal/mol]

Pinsent et al. [20] 1.35 × 1011 11,585

Puxty et al. [21] 1.66 × 1014 14,577

Wang et al. [22] 5.01 × 1011 12,279

Jilvero et al. [23] 6.51 × 1013 14,362

Table 1. Arrhenius parameters of the rate of reaction (R20) from different experimental works.
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phase are realized in a dedicated process section, while the packed absorption and desorption 

columns operate free of solids. A similar approach is proposed by Gao et al. [35], pursuing 

the decreasing energy consumption by the addition of alcohols to reinforce the crystallization.

Bonalumi et al. [36] suggest to operate the process at cool conditions (20–35°C) rather than 

chilled (5–20°C), to minimize the load on the chillers in favor of the load on air coolers. The 

two processes are visualized in Figure 5. In the cool process, one chilling load is still present 

Figure 4. Representation of the two-film theory [26] applied to the ternary system CO
2
–NH

3
–H

2
O. Left: the CO

2
 partial 

pressure profile in the gas and the CO
2
 concentration profile in the liquid phase. Right: the CO

2
 partial pressure profile 

in both the gas and liquid phases.

Figure 5. Process flow diagram of the chilled (top) and cooled (bottom) aqueous ammonia process.
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for the water wash on top of the absorber. Water wash is required indeed to minimize the 
tendency of ammonia to escape from the absorber, which is called ammonia slip.

The ammonia-based capture is proposed typically for existing coal- and natural gas-fired 
power plants. Nonetheless, Bonalumi and Giuffrida [37] consider it for an air-blown inte-

grated gasification combined cycle (IGCC) fired with high-sulfur coal, while Pérez-Calvo 
et al. [38] for cement plants, both achieving promising indications.

3. Process simulation with the equilibrium approach

In general, the computer simulation of a chemical process can be conducted in two different 
manners: the equilibrium- and the rate-based approaches, depending on whether the kinet-

ics is not taken or it is taken into consideration, respectively. The results at the equilibrium 

represent the performance theoretically achievable, while the rate-based the realistic one.

Evaluating the integration of a power plant with the ammonia-based capture using the equi-

librium approach, as both chilled and cooled processes, Bonalumi et al. [36] focus on the flue 
gas from a coal-fired plant, as opposed to a gas-fired. The main difference is the CO

2
 concen-

tration, which is in the neighborhood of 15%, on a volume and dry basis, for coal- and of 4% 
for gas-fired. The reference power plant is the one defined by the European Benchmark Task 
Force [39] with the scope of establishing a framework for the consistent comparison of capture 

technologies. The plant has a nominal net electric power output and efficiency of 754 MW
e
 

and 45.5%. The carbon dioxide flow is 160.7 kg
CO2

/s at a concentration of 15.2%.

In their evaluation, Bonalumi et al. [36] adopt values of the design parameters differentiated 
between the chilled and the cooled process, as indicated by Table 2. Moreover, in the chilled 

process, the temperature of the streams entering the absorber is 7°C, leading to a maximum 

temperature in the absorber of around 18°C, despite the reaction of absorption being exother-

mic, and promoting the salt precipitation in a wide range of concentrations of the reactants. In 

the cooled process, instead, the temperature of those streams is 20°C, leading to a maximum 

temperature in the absorber of around 27°C and preventing the solid formation.

Different indexes can be defined to assess the carbon capture performance. First, the carbon 
capture efficiency is defined as the ratio of the flow rates [kmol/s or kg/s] of the carbon dioxide 
exiting the compression island and of that entering the exhaust chilling island. As a second 

Parameter Unit Chilled Cooled

Ammonia initial concentration %(mass) 20 7.5

Ammonia-to-carbon dioxide ratio kmol/kmol 3.2 5

Recycle fraction — 0.8 0.2

Regeneration pressure bar 20 5

Regeneration temperature °C 95.4 105.6

Table 2. Design parameters for the chilled and the cooled aqueous ammonia capture proposed by Bonalumi et al. [36].
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common performance index, the specific heat duty [MJ
th

/kg
CO2

] is defined as the ratio of the 
reboiler heat duty [MW

th
] and the mass flow rate [kg

CO2
/s] of effectively captured carbon diox-

ide. However, this second index does not include the information on the capture efficiency 
(first index) nor on the temperature at which the heat duty is required (or, in equivalent terms, 
the loss of electric power generation from the steam turbine due to the steam bled for the 

regenerator).

A third index is adopted to solve this issue about the specific heat duty. Consequently, the 
new index allows to compare consistently plants characterized by different capture efficien-

cies, regeneration temperatures, and electric efficiency penalties. The Specific Primary Energy 
Consumption for Carbon Avoided ( SPECCA ) [MJ

th
/kg

CO2
] is defined as

  SPECCA ≝   
HR −  HR  

REF
  
 _________ 

 E  
REF

   − E
   ≡   

3600 (  1 __  η  
e
     −   1 ____  η  

e,REF
    ) 
  ___________ 

 E  
REF

   − E
    (5)

where all parameters refer to either the power plant equipped with the carbon capture or 

the reference plant without it:  HR  is the heat rate [MJth/MWh
e
],  E  the specific CO

2
 emission 

[kg
CO2

/MWh
e
],   η  

e
    [−] the net electric efficiency, and  REF  stays for reference.

Electric power, MW
e

Chilled Cooled Electric power, MW
e

Chilled Cooled

Exhaust cooling (1)

AC11 2.357 2.351 CH24 0.045 0.000

AC12 0.000 0.132 FN21 3.154 3.342

CH11 4.860 0.000 PM21 1.629 1.410

CH12 1.058 0.000 PM22 2.362 1.121

FN11 3.943 4.177 PM23 <0.001 0.003

PM11 0.597 0.592 PM24 0.010 0.010

PM12 0.201 0.142 Subtotal 64.380 17.219

PM13 0.102 0.000 Power island

Subtotal 13.148 7.394 RB21 45.131 57.207

ABS-RGN-GW (2) RB22 1.878 15.321

AC21 0.220 0.671 Subtotal 47.009 72.528

AC22 0.144 4.626 CO
2
 Compression (3)

AC23 0.018 1.770 AC31 0.226 0.326

AC24 0.000 0.952 AC32 0.775 0.957

AC25 0.000 0.018 CM31 6.771 15.421

CH21 36.349 2.801 CM32 6.019 14.825

CH22 20.310 0.495 PM31 1.784 0.652

CH23 0.139 0.000 Subtotal 15.575 32.181

Total loss 140.112 129.323

Table 3. Predicted electric consumption of the capture island for the chilled and the cooled aqueous ammonia capture 
computed by Bonalumi et al. [36].
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Regarding the results for the chilled and the cooled process, Table 3 compares the predicted 

electric consumptions. The exhaust cooling and the absorption-regeneration sections are more 

penalizing for the chilled process due to the major consumption of the chillers. By contrast, 
the power island is more penalizing for the cooled process, on one side, because of a large 

contribution due to the higher amount of NH
3
 that must be recovered by the water wash sec-

tion. On the other, because of another major contribution due to the higher specific heat duty 
and the higher regeneration temperature that require more steam bleeding at a higher value 

of pressure and enthalpy from the turbine. In addition, the compression stage is more penal-

izing for the cooled process since the regeneration pressure is lower. Hence, from the electric 

consumption, the chilled process is less penalizing than the cooled one.

In its turn, Table 4 summarizes the performances for the chilled and the cooled processes and it 

compares them against those of the reference power plant (without any carbon capture) and a 

plant integrated with carbon capture in MEA aqueous solution. From the index  SPECCA , which 

is as seen the most consistent perspective for evaluating a capture technology, the cooled pro-

cess is less penalizing than the chilled one, by far, than MEA.

4. Process simulation with the rate-based approach

In a recent work, Bonalumi et al. [40] adopt the rate-based approach to assess the same cooled 

aqueous ammonia process that they investigated earlier with the equilibrium approach [36]. 

Table 5 summarizes the main results from the comparison of the performances predicted by 

the two approaches. The overall energy balance for the kinetic study, compared against the 

equilibrium study, turns to be only slightly penalized. The authors explain that this penaliza-

tion originates from the larger request of energy to achieve a higher level of CO
2
 purity in the 

lean stream from the regenerator. The differences being moderate, though, the study of an 
absorption capture plant with the equilibrium approach can be considered a valid method for 

a preliminary assessment of an ammonia-based process.

Parameter Unit Reference MEA Chilled Cooled

Electric power loss MW
e

NA 198.9 140.1 129.3

Net electric power MW
e

754.0 562.4 613.9 624.7

Net electric efficiency % 45.5 33.5 37.05 37.70

Specific heat duty MJ/kg
CO2

NA 3.70 2.19 2.98

Specific CO
2
 emission kg

CO2
/MWh

e
763 104 141.4 138.9

SPECCA MJ/kg
CO2

NA 4.16 2.86 2.58

Table 4. Overall performances of the chilled and the cooled processes compared against a reference power plant (without 

carbon capture) and a plant integrated with MEA aqueous solution computed by Bonalumi et al. [36].
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5. Economic and environmental assessments

The integration of the chilled process and an ultra supercritical power plant is analyzed by 

Valenti et al. [41] via a parametric analysis from the energy and the economic perspectives. The 

capture island is simulated with an equilibrium approach. In the parametric investigation, five 
parameters are varied singularly: (1) ammonia initial concentration in the aqueous solution, 

(2) ammonia-to-carbon dioxide ratio in the absorber, (3) regeneration pressure, (4) regenera-

tion temperature, and (5) absorber chiller evaporation temperature. The economic analysis, 

with respect to a reference power plant rated at the net electric production of over 750 MW
e
, 

shows that the capital investment of the capture island is estimated to be a relatively small 

portion of that of the power island. However, due to other costs and due to the performance 

penalties, the cost of electricity increases significantly by 37.5%, from 59.90 to 82.38 €/MWh
e
; 

ultimately, the resulting cost of avoided CO
2
 is approximately 38.64 €/t

CO2
.

A detailed environmental life cycle analysis for an ultra supercritical power plant with and 

without carbon capture is proposed by Petrescu et al. [42]. Three capture islands are consid-

ered: (1) gas-liquid absorption with MDEA (monodiethanolamine), (2) gas-liquid absorption 

with aqueous ammonia, and (3) gas-solid absorption with calcium oxide. The environmen-

tal evaluation is performed using the “cradle-to-grave” methodology considering several 

upstream and downstream processes. Eleven environmental impact categories, according to 

the method CML 2001, are compared using GaBi software. The study highlights that carbon 
capture technologies decrease the global warming potential indicator, but they may increase 

other indicators. The amine technology achieves a good performance from the perspective of 

global warming, but not satisfactory from that of all others. Aqueous ammonia adsorption 

and calcium looping prove to be better. Some indicators, such as acidification potential, eutro-

phication potential, or those related to lethal concentrations (e.g., human toxicity potential, 

freshwater aquatic ecotoxicity potential, and marine aquatic ecotoxicity potential), are better 
in the case of aqueous ammonia. By contrast, some others, such as abiotic depletion fossil and 
abiotic depletion elements, are better in the case of calcium looping.

Parameter Unit Cooled equilibrium Cooled rate based

Electric power loss MW
e

129.3 136.4

Net electric power MW
e

624.7 617.6

Net electric efficiency % 37.70 37.27

Specific heat duty MJ/kg
CO2

2.98 3.02

Specific CO
2
 emission kg

CO2
/MWh

e
138.9 141.2

SPECCA MJ/kg
CO2

2.58 2.77

Table 5. Performances of the cooled process computed with the equilibrium and the rate-based approaches by Bonalumi 
et al. [34, 36].
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6. Future developments

A highly promising solvent-based CO
2
 capture process, named the mixed-salt technology, is 

being currently developed, as reported by Jayaweera et al. [43]. This technology adds potas-

sium carbonate to the system in order to exploit the advantages of both ammonia-based and 

potassium carbonate-based technologies. The simplistic representation of the CO
2
 absorption 

and removal reaction is as follows:

   K  
2
   C  O  

3
   · N  H  

3
   ·  H  

2
   O · xC  O  

2
   ⇆  K  

2
   C  O  

3
   · N  H  

3
   ·  H  

2
   O · yC  O  

2
    (6)

where the CO
2
 loading is the numerical difference between  y  and  x . The left and right side of 

the equilibrium represent the lean and rich solutions, respectively. Despite the system being 

characterized by the presence of several ionic species that could form a solid phase, precipita-

tion is avoided by operating the absorber at relatively high temperatures and at concentra-

tions below the solid-forming conditions. The expected advantages are a limited heat duty at 

the regenerator and a limited load for the water wash on top of the absorber.

7. Conclusions

This chapter covers the chemical absorption of carbon dioxide by an aqueous solution of 

ammonia for coal- and natural gas-fired power plants and industrial processes. It reports the 
literature review, the simulation by equilibrium- or rate-based approach, the economic as 

well as environmental assessments, and the future developments. Conclusions are as follows:

1. The ammonia-based technology confirms to be attractive compared to conventional 
amines. It can be implemented in a chilled as well as in a cooled process depending upon 

the temperature and, consequently, the precipitation of salts in the absorber.

2. The predicted specific heat duty, in the equilibrium approach, is 3.0 for the cooled process 
and 2.2 MJ/kg

CO2
 for the chilled one. Moreover, the index  SPECCA  is 2.6 for the cooled and 

2.9 MJ/kg
CO2

 for the chilled. Overall, the cooled process combines the advantage of a mod-

erate energy requirement with the absence of solid formation.

3. The predicted performances in the rate-based approach, compared against those in the 

equilibrium approach, result slightly penalized. The difference is due to the need of a 
higher level of CO

2
 purity in the lean stream from the regenerator. The index  SPECCA  value 

changes from 2.6, as seen in the equilibrium, to 2.8 MJ/kg
CO2

, in the rate-based approach, 

yielding an increase of the prediction of about 6%. Hence, the study of an absorption cap-

ture plant with an equilibrium approach is a valid methodology for a preliminary investi-

gation and optimization process.

4. From an economic perspective, the carbon capture via chemical absorption by aqueous 

ammonia is a feasible retrofitting solution, yielding a predicted cost of electricity of 82.4 €/
MWh

e
 and a cost of avoided CO

2
 of 38.6 €/t

CO2
, both for the chilled process (those for the 

cooled process are not reported yet in the open literature).
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5. The mixed-salt technology is a promising evolution of the process to further reduce the 

specific heat duty and the load for the water washing on top of the absorber.
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