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Abstract

The effect of substitution on the potential energy surfaces of RAl☰SbR (R = F, OH, H, CH3,
SiH3, SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*) is investigated using density functional theo-
ries (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp). The theoret-
ical results demonstrated that all the triply bonded RAl☰SbR compounds with small
substituents are unstable and can spontaneously rearrange to other doubly bonded iso-
mers. That is, the smaller groups, such as R = F, OH, H, CH3 and SiH3, neither kinetically
nor thermodynamically stabilize the triply bonded RAl☰SbR compounds. However, the
triply bonded R’Al☰SbR´ molecules that feature bulkier substituents (R´ = SiMe(SitBu3)2,
SiiPrDis2, Tbt, and Ar*) are found to possess the global minimum on the singlet potential
energy surface and are both kinetically and thermodynamically stable. In particular, the
bonding characters of the R’Al☰SbR´ species agree well with the valence-electron bonding
model (model) as well as several theoretical analyses (the natural bond orbital, the natural
resonance theory, and the charge decomposition analysis). That is to say, R’Al☰SbR´
molecules that feature groups are regarded as R0

dAl SbdR0. Their theoretical evidence
shows that both the electronic and the steric effects of bulkier substituent groups play a
decisive role in making triply bonded R0Al☰SbR0 species synthetically accessible and
isolable in a stable form.

Keywords: aluminum, antimony, group 13 elements, group 13 elements, triple bond

1. Introduction

The chemical synthesis and structural characterization of molecules that feature triple bonds

[2] between heavier group 14 elements (E14 = Si, Ge, Sn and Pb) are of interest because of their

interesting structural chemistry and their potential applications in organic and inorganic

synthesis [1–10]. Although understanding of these RE14☰E14R molecules that feature heavier

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



group 14 atoms has increased during the last two decades, the understanding of the

RE13☰E15R compounds, which are isoelectronic to acetylene from a valence electron view-

point, is still limited. The reason for this limited knowledge of acetylene analogues,

RE13☰E15R, could be due to the fact that there has been limited preparation and the isolation

of these species in a stable form [11, 12]. Theoretical methods allow a theoretical design of the

RE13☰E15R molecules to be made that increases understanding of their potential properties.

The III-V semiconductors that contain antimony have several important applications in opto-

electronic devices that operate in the infrared region and in high-speed devices, which has

prompted widespread studies of promising precursor systems for these materials [13]. In

particular, the chemical synthesis and structural characterization of AlSb single-source pre-

cursors of the type R3Al-SbR´3 has attracted much attention, owing to their importance in

CVD procedures [14], which is a developing industry for the production of thin films of the

corresponding semiconducting materials [15]. As far as the authors are aware, only a handful

of group 13 antimonides that contain AldSb σ-bonds have been discovered [16], No triply

bonded RAl☰SbR species, which is isoelectronic to HC☰CH, has been reported both experi-

mentally and theoretically.

Density functional theory (DFT) is sued to determine the structures, the kinetic stability and

bonding properties of various RAl☰SbR triply bonded forms on the singlet ground state, in

order to obtain a better understanding of aluminum☰antimony triple bonds. This work

reports the possible existence of triply bonded RAl☰SbR molecules, from the viewpoint of

the effect of substituents, using DFT [17]. That is, M06-2X/Def2-TZVP, B3PW91/Def2-TZVP

Scheme 1. Four bulky ligands, which are SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*.
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and B3LYP/LANL2DZ + dp are used for small substituents (R = H, F, OH, CH3, and SiH3) and

M06-2X/Def2-TZVP [18] for large substituents (R = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*; see

Scheme 1) [19].

2. General considerations

The valence-bond bonding model is a well-known satisfactory method, which is an approxi-

mate theory to explain the electron pair or chemical bond by quantum mechanics, for

predicting molecular geometries [20]. Two valence-bond bonding models (Figure 1) are thus

used to interpret the bonding properties of triply bonded RAl☰SbR species. In model [1], the

RAl☰SbR molecule is partitioned into two units: a singlet RdAl and a singlet RdSb. In model

[2], the RAl☰SbR compound is divided into two moieties: a triplet RdAl and a triplet RdSb.

Figure 1. The valence-bond bonding models [1, 2] for the triply bonded RAl☰SbR molecule.
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As a result, the choice of the bonding model that is used to explain the bonding characters of

RAl☰SbR depends on the promotion energies (ΔEST = Etriplet � Esinglet) of the RdAl and RdSb

fragments. According to current theoretical calculations (see below), it is known that RdAl

occupies the singlet ground state, but RdSb occupies the triplet ground state. In consequence,

if the value of ΔEST for RdAl is much larger than that for RdSb, the latter easily jumps to the

singlet excited state. Hence, model [1] can be used to explain the bonding nature of the

RAl☰SbR molecule. In contrast, if the value of ΔEST for RdAl is smaller than that for RdSb,

the former is readily promoted to the excited triplet state. Therefore, model [2] is used to

interpret the bond constitutions of the RAl☰SbR compound.

Two points are worthy of note. The first is that since aluminum and antimony respectively

belong to group 13 and group 15 and both elements have different atomic radii (covalent radii:

118 pm and 140 for Al and Sb, respectively) [20], the overlapping populations between Al and

Sb should not be strong. The second is that the lone pairs of both aluminum and antimony

feature the valence s character. This, in turn, makes the overlap integrals between the lone pair

orbital and the pure p orbital small. These two factors mean that the triple bond between

aluminum and antimony is weak, unlike the traditional triple bond in acetylene.

Bearing the above bonding analyses in mind, theoretical evidences are given in the following

sections.

3. Results and discussion

3.1. Small ligands on substituted RAl☰SbR

Five small substituents (R = F, OH, H, CH3 and SiH3) are chosen, which include electronegative

and electropositive groups, to determine their stability and bonding properties on the triply

bonded RAl☰SbR molecules using the three types of DFT calculations (i.e., M06-2X/Def2-TZVP,

B3PW91/Def2-TZVP and B3LYP/LANL2DZ + dp). Figure 2 shows the potential energy surfaces

of the intra-molecular 1,2-migration reactions for five triply bonded RAl☰SbR compounds that

feature small substituents. That is to say, the triply bonded RAl☰SbR species can undergo a

1,2-shift to give either R2Al〓Sb: or: Al〓SbR2 doubly bonded isomers.

As seen in Figure 2, the three DFT computational results demonstrate that the triply bonded

RAl☰SbR species that feature small substituents are all both kinetically and thermodynami-

cally unstable on the intra-molecular 1,2-migration reaction potential energy surfaces. In other

words, once the triply bonded RAl☰SbR with small substituents is formed, it can easily

proceed along the 1,2-migration to give the thermodynamically stable doubly bonded isomer,

either R2Al〓Sb: or: Al〓SbR2. The theoretical findings give strong evidence that the triply

bonded RAl☰SbR molecules that feature the small ligands are highly unlikely to be detected

experimentally.

Although current theoretical observations show that the formation of RAl☰SbR involving

small ligands is not likely, some of their physical properties, which are shown in Table 1, must

be theoretically determined in order to design much more stable aluminum☰antimony acety-

lene analogues.
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Figure 2. The 1,2-migration energy surfaces for RAl☰SbR (R = H, F, CH3, OH, and SiH3). These relative Gibbs free energies

(kcal/mol) are computed at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.
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As seen in Table 1, the three DFT computational results predict that the Al☰Sb triple bond
distance (Å) is in the ranges 2.388–2.539 (M06-2X/Def2-TZVP), 2.397–2.536 (B3PW91/Def2-
TZVP) and 2.436–2.565 (B3LYP/LANL2DZ + dp). Table 1 also shows that all of the geometrical

R F OH H CH3 SiH3

AlαSb (Å) 2.528
(2.536)
[2.556]

2.531
(2.518)
[2.565]

2.388
(2.397)
[2.436]

2.466
(2.462)
[2.499]

2.539
(2.524)
[2.560]

∠R-Al-Sb (�) 176.8
(176.2)
[179.2]

173.4
(172.0)
[176.5]

170.7
(167.6)
[167.6]

177.7
(173.8)
[173.2]

176.8
(176.2)
[179.7]

∠Al-Sb-R (�) 88.86
(88.07)
[88.53]

86.55
(86.13)
[90.43]

82.25
(84.42)
[86.43]

94.46
(96.42)
[96.75]

88.86
(88.07)
[88.53]

∠R-Sb-Al-R (�) 179.9
(179.9)
[180.0]

179.7
(176.9)
[178.6]

180.0
(180.0)
[180.0]

179.6
(179.9)
[178.2]

179.9
(179.9)
[180.0]

QAl
1 0.5201

(0.495)
[0.715]

0.418
(0.401)
[0.469]

0.164
(0.161)
[0.414]

0.291
(0.262)
[0.282]

0.208
(0.219)
[0.193]

QSb
2 0.329

(0.277)
[0.217]

0.196
(0.136)
[0.119]

�0.134
(�0.107)
[-0.032]

�0.054
(�0.018)
[�0.134]

�0.198
(�0.100)
[�0.179]

ΔEST for Al-R (kcal/mol)3 79.78
(71.44)
[73.78]

72.05
(65.86)
[67.75]

43.73
(40.25)
[40.80]

48.75
(42.38)
[45.00]

32.87
(29.08)
[31.97]

ΔEST for Sb-R (kcal/mol)4 �32.40
(�28.88)
[�27.52]

�25.88
(�21.16)
[�20.04]

�33.35
(�29.42)
[�27.91]

�31.52
(�27.31)
[�26.00]

�30.78
(�25.61)
[�25.21]

HOMO-LUMO (kcal/mol) 165.5
(168.4)
[167.2]

159.8
(140.1)
[145.2]

257.6
(205.2)
[277.6]

146.4
(123.3)
[129.2]

172.2
(179.5)
[177.9]

BE (kcal/mol)5 25.82
(32.05)
[27.43]

22.77
(27.32)
[21.96]

55.28
(64.05)
[56.79]

42.23
(51.72)
[46.41]

61.00
(67.80)
[57.43]

WBI6 1.483
(1.556)
[1.560]

1.474
(1.550)
[1.555]

1.754
(1.799)
[1.779]

1.659
(1.714)
[1.733]

1.581
(1.596)
[1.637]

1The charge density on the Al element.
2The charge density on the Sb element.
3
ΔEST = E(triplet state for RdAl) � E(singlet state for RdSb).
4
ΔEST = E(triplet state for RdAl) � E(singlet state for RdSb).
5BE = E(singlet state for RdAl) + E(triplet state for RdSb) � E(singlet state for RAl☰SbR).
6The Wiberg bond index (WBI) for the Al☰Sb bond: see Ref. [22].

Table 1. The key geometrical parameters, the singlet-triplet energy splitting (ΔEST), the natural charge densities (QAl and
QSb), the binding energies (BE), the HOMO-LUMO energy gaps, and the Wiberg bond index (WBI) for RAl☰SbR using
the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP (in round brackets) and B3LYP/LANL2DZ + dp (in square brackets) levels
of theory.
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structures of RAl☰SbR adopt the bent form, as demonstrated in Scheme 2. That is,

∠RdAldSb ≈ 180.0� and ∠AldSbdR ≈ 90.0�. The reason for this vertical angle at the Sb

center can be ascribed to the relativistic effect, as discussed previously [21]. The three DFT

calculations shown in Table 1 all indicate that the electronic ground states for RdAl and the

RdSb fragments are singlet and triplet, respectively. In particular, all of the DFT results shown

in Table 1 show that most of the singlet-triplet energy splitting (ΔEST) of R-Al is larger than

that of the corresponding RdSb. This strongly implies that the bonding characters of the triply

bonded RAl☰SbR species that feature small substituents are better described by model [1], as

shown in Figure 1. In other words, the triple bond consists of one donor-acceptor σ bond and

two donor-acceptor π bonds, which are schematically represented as RdAl SbdR. As

previously mentioned, since the lone pair orbitals of both the R-Al and the R-Sb fragments

feature the valence s character, their overlapping populations between the lone orbital and the

valence p orbital should be smaller. Indeed, the supporting evidence from Table 1 shows that

all bond orders for the RAl☰SbR species are estimated to be less than 2.0 (WBI = 1.474–1.799),

which is less than the bond order for the C☰C triple bond in acetylene (WBI = 2.99).

In brief, the three DFT calculations shown in this work show that irrespective of their electro-

negativity, the triply bonded RAl☰SbR molecules that feature small ligands are highly

unlikely to exist, even in the low-temperature matrices. In particular, the bond orders of these

Al☰Sb triple bonds are theoretically predicted to be a weak double bond, rather than a triple

bond.

3.2. Large ligands on substituted R’Al☰SbR´

Three bulky groups were then used to search for kinetically stable triple-bonded R’Al☰SbR´

molecules: R´(〓SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*) [19]. These are shown in Scheme 1. It is

known that London dispersion (nonvalent interactions) plays a prominent role in both chem-

ical and physical properties of inorganic molecules [23]. As a result, the dispersion-corrected

M06-2X/Def2-TZVP method is used in the present study to investigate the behaviors of the

triply bonded R’Al☰SbR´ compounds bearing bulky substituents. Similarly to the cases for

small ligands on substituted RAl☰SbR, the dispersion-corrected M06-2X/Def2-TZVP level of

theory is used to determine the potential energy surfaces for the intra-molecular 1,2-migration

Scheme 2. The geometrical structure of RAl☰SbR with the small substituent, R.
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reactions of R’Al☰SbR´, as shown in Scheme 3. The computed relative energies are listed in
Table 2. The reaction enthalpies for both the 1,2-shift reactions (R’Al☰SbR´ ! R2’Al〓Sb and
R’Al☰SbR´! R2’Sb〓Al) are apparently too high. They are estimated to be at least 80 kcal/mol.
The reason that both doubly bonded R2’Al〓Sb and R2’Sb〓Al isomers occupy such high
energy points is simply because two bulky groups can cause steric overcrowding. As a conse-
quence, the theoretical findings strongly suggest that the triply bonded R’Al☰SbR´, which is
attached by two bulkier substituents, is kinetically stabilized.

Table 2 shows that the Al☰Sb triple bond distance is predicted to be 2.422–2.477 Å. Since no
experimental results for the Al☰Sb triple bond length have been reported, these values are
estimates. These theoretical calculations also show that the geometrical structures of
R0Al☰SbR0 molecules that feature bulky groups adopt a bent structure; i.e., ∠R0

dAldSb
≈ 160.0� and ∠AldSbdR0

≈ 120.0�. As stated previously, the triply bonded R0Al☰SbR0 species
feature this bent geometry because of the relativistic effect [23].

In addition, the bonding energy (BE) that is shown in Table 2 shows that the central aluminum
and antimony atoms in the substituted R0Al☰SbR0 compounds are strongly bonded, since the

Scheme 3. The qualitative potential energy surface of the R´Al☰SbR´ isomers with the bulky substituent, R´.

Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry90



BE values are in the range 71–97 kcal/mol for R0 = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*.
Table 2 also shows that the modulus ΔEST (kcal/mol) for AldR0 and SbdR0 fragments are
predicted to be 43–27 and 31–16. These theoretical values allow two interpretations. Firstly,
even when attached by bulkier groups, it is theoretically verified that both the AldR0 and the
SbdR0 units occupy the ground singlet state and the ground triplet state, respectively. Since
the ΔEST values for AldR0 are so small (compared with those for AldR, as shown in Table 1),
model [2] in Figure 1 is most suitable to interpret the triple bonding characters in the
R0Al☰SbR0 species that feature bulky substituents. As schematically shown in Figure 1, the
nature of the Al☰Sb triple bond can be considered as one conventional σ bond, one conven-
tional π bond and one donor-acceptor π bond. That is, R0

dAl SbdR0. It is worthy of note
that two factors affect the overlapping populations between the central Al and Sb elements.
The first is that the lone pair orbital of the SbdR0 moiety features the valence s character. This,
in turn, renders the overlap population between the pure p orbital of Al and the lone pair
orbital of Sb very small. The other is that the sizes of the valence p orbitals for Al and Sb are
quite different, since they belong to different rows of the periodic table having different
principal quantum numbers. As a result, the triple bond in R0Al☰SbR0 molecules that feature

R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

Al☰Sb (Å) 2.463 2.422 2.477 2.447

∠R0
dAldSb (�) 157.6 152.0 161.3 165.0

∠AldSbdR0 (�) 126.5 123.6 122.2 124.6

∠R’dAldSbdR0 (�) 173.5 172.9 167.2 166.0

QAl
1 0.619 0.637 1.008 1.027

QSb
2

�0.387 �0.492 �0.025 �0.114

ΔEST for AldR0 (kcal/mol)3 28.89 27.30 42.50 40.21

ΔEST for SbdR0 (kcal/mol)4 �16.89 �24.80 �30.51 �15.92

HOMO-LUMO (kcal/mol) 53.56 60.07 56.08 56.68

BE (kcal/mol)5 71.29 72.97 87.43 74.33

ΔH1 (kcal/mol)6 94.23 84.67 92.12 82.68

ΔH2 (kcal/mol)6 83.15 84.08 80.01 88.19

WBI7 2.174 2.181 2.072 2.016

1The charge density on the Al element.
2The charge density on the Sb element.
3
ΔEST (kcal mol�1) = E(triplet state for R0

dAl) � E(singlet state for R0
dAl).

4
ΔEST (kcal mol�1) = E(triplet state for R0

dSb) � E(singlet state for R0
dSb).

5BE (kcal mol�1) = E(triplet state for R0
dAl) + E(triplet state for R0

dSb) � E(singlet for R0Al☰SbR0).
6See Scheme 3.
7The Wiberg bond index (WBI) for the AlαSb bond: see Ref. [22].
See also Scheme 3.

Table 2. The key geometrical parameters, the singlet-triplet energy splitting (ΔEST), the natural charge densities (QAl and
QSb), the binding energies (BE), the HOMO-LUMO energy gaps, reaction enthalpies, and the Wiberg bond index (WBI)
for R0Al☰SbR0 at the dispersion-corrected M06-2X/Def2-TZVP level of theory.
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bulky substituents is predicted to be quite weak. Indeed, the theoretical evidences given in

Table 2 shows that the bond order is a little bit higher than 2.0 (WBI ≈ 2.17, 2.18, 2.07 and 2.02

for R0 = SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar*, respectively). The bond order for the conven-

tional C☰C bond in acetylene is estimated to be 2.99.

Besides these, Dapprich and Frenking developed a useful method [24], which is called the

introduced charge decomposition analysis (CDA), from which one may analyze donor-

acceptor interactions of a A-B molecule. From CDA, one may obtain three parts. The first part

is the number of electrons donated from the R0dAl unit to the R0dSb monomer, which can be

considered as (R0dAl) ! (R0dSb). The second part is the number of electrons back donated

from the R0dSb component to the R0dAl moiety, which can be represented as (R0dAl)  

(R0dSb). The third part is the repulsive interactions between (R0dAl) and (R0dSb), which can

be described as (R0dAl) $ (R0dSb). The CDA results about the (SiMe(SitBu3)2)Al☰Sb(SiMe

(SitBu3)2) molecule based on the dispersion-corrected M06-2X/Def2-TZVP method are given in

Table 3. As seen in Table 3, for the (R0dSb) fragment, its largest contribution is No. 267

(HOMO) orbital, displaying that a R0dSb component donates electrons to a R0dGa unit

mainly through the HOMO orbital. In consequence, the net amount of electron transfer is

estimated to be �0.207, implying that the R0dSb part donates more electrons to the R0dAl

moiety. This theoretical finding agrees well with the valence-electron bonding model shown in

Figure 1 (i.e., model [2]). Namely, the bonding character of R0Al☰SbR0 can be recognized as

R0Al SbR0.

Orbital Occupancy A B A-B W

257 2.000000 0.000897 0.000398 0.000499 0.000052

258 2.000000 �0.000691 �0.000223 �0.000469 �0.003158

259 2.000000 0.000003 0.000212 �0.000209 �0.000135

260 2.000000 �0.000574 0.001495 �0.002069 �0.003430

261 2.000000 0.000322 0.000997 �0.000676 �0.003797

262 2.000000 0.000333 0.000068 �0.002466 �0.012549

263 2.000000 0.000927 0.007097 0.000859 0.000836

264 2.000000 0.001417 0.031682 �0.003680 �0.003811

265 2.000000 0.005618 0.033540 �0.057513 �0.129159

266 2.000000 0.016174 0.031540 �0.017366 0.011841

HOMO 267 2.000000 �0.000521 0.063131 �0.032203 �0.047961

LUMO 268 0.000000 0.000000 0.000000 0.000000 0.000000

269 0.000000 0.000000 0.000000 0.000000 0.000000

Suma 534.000000 0.043071 0.250110 �0.207039 �0.099090

For clearness, only list the X, Y, and W terms for HOMO(no.267)-11 � LUMO+2.
aSummation of contributions from all unoccupied and occupied orbitals.

Table 3. The charge decomposition analysis (CDA) for R0Al☰SbR0 (R0 = SiMe(SitBu3)2) system based on M06-2X orbitals,

where a is the number of electrons donating from R0dAl unit to R0dSb unit, B is the number of electrons donating from

R0-Sb moiety to R0-Al moiety and W is the number of electrons involved in repulsive polarization.
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The bonding characters of the Al☰Sb triple bond in R0Al☰SbR0 molecules were examined

using the natural bond orbital (NBO) [22] and the natural resonance theory (NRT) [25] analy-

sis, whose results are given in Table 4, are used to determine the bonding properties. For

instance, Table 4 shows that for (SiMe(SitBu3)2)Al☰Sb(SiMe(SitBu3)2), the NBO model shows

that the Al-Sb σ bonding orbital contains about 23% natural Al orbitals and 77% natural Sb

orbitals. Also, the Al☰Sb π bonding orbital contains averagely about 25% natural Al orbitals

and 75% natural Sb orbitals (Figure 3). These values give strong evidence that the Al☰Sb π

bond is polarized. Table 4 also shows that the Al☰Sb π bonding interaction: π⊥(Al☰Sb) = 0.529

(3s3p1.98)Al + 0.849(5s5p12.43)Sb and πk(Al☰Sb) = 0.475(3s3p99.99)Al + 0.880(5s5p99.99)Sb, which

again implies that the predominant bonding interaction between the AldR and the SbdR

moieties originates from 3p(Al) 5p(Sb) donation. In other words, the electron deficiency on

Al and the π bond polarity are partially balanced by the donation of the Sb lone pair to the

empty Al p orbital (Figure 3). Table 4 also shows that, on the basis of the NRT analyses of the

electron density for (SiMe(SitBu3)2)Al☰Sb(SiMe(SitBu3)2), its Al☰Sb triple bond has a greater

R’Al☰SbR’ WBI NBO analysis NRT analysis

Occupancy Hybridization Polarization Total/covalent/

ionic

Resonance

weight

R’ = SiMe

(SitBu3)2

2.17 σ: 1.91 σ: 0.4799 Al (sp3.23) + 0.8773 Sb

(sp0.60)

23.03% (Al)

76.97% (Sb)

2.06/1.25/0.81 AldSb: 10.84%

Al〓Sb: 71.95%

Al☰Sb: 17.21%
π⊥: 1.81 π⊥: 0.5288 Al (sp1.98) + 0.8487 Sb

(sp12.43)

27.96% (Al)

72.04% (Sb)

πk: 1.89 πk: 0.4753 Al (sp99.99) + 0.8798 Sb

(sp99.99)

22.59% (Al)

77.41% (Sb)

R’ = SiiPrDis2 2.18 σ: 1.91 σ: 0.5525 Al (sp1.71) + 0.8335 Sb

(sp1.15)

30.53% (Al)

69.47% (Sb)

2.48/1.29/1.19 AldSb: 10.63%

Al〓Sb: 75.53%

Al☰Sb: 13.84%
π⊥: 1.86 π⊥: 0.4723 Al (sp3.67) + 0.8815 Sb

(sp3.68)

22.30% (Al)

77.70% (Sb)

πk: 1.89 πk: 0.4476 Al (sp99.99) + 0.8943 Sb

(sp99.99)

20.03% (Al)

79.97% (Sb)

R’ = Tbt 2.07 σ: 1.95 σ: 0.6923 Al (sp0.18) + 0.7216 Sb

(sp12.38)

47.93% (Al)

52.07% (Sb)

2.22/1.41/0.82 AldSb: 5.89%

Al〓Sb: 65.89%

Al☰Sb: 28.22%
π⊥: 1.88 π⊥: 0.4488 Al (sp47.14) + 0.8936 Sb

(sp99.99)

20.14% (Al)

79.86% (Sb)

πk: 1.91 πk: 0.4772 Al (sp99.99) + 0.8788 Sb

(sp99.99)

22.78% (Al)

77.22% (Sb)

R’ = Ar* 2.02 σ: 1.96 σ: 0.6946 Al (sp0.16) + 0.7194 Sb

(sp18.14)

48.25% (Al)

51.75% (Sb)

2.01/1.44/0.57 AldSb: 11.37%

Al〓Sb: 76.76%

Al☰Sb: 11.87%
π⊥: 1.83 π⊥: 0.4543 Al (sp99.99) + 0.8908 Sb

(sp40.30)

20.64% (Al)

79.36% (Sb)

πk: 1.92 πk: 0.4266 Al (sp99.99) + 0.9044 Sb

(sp99.99)

18.20% (Al)

81.80% (Sb)

Table 4. The natural bond orbital (NBO), the natural resonance theory (NRT) analysis, and Wiberg bond index (WBI) for

R0Al☰SbR0 molecules that feature ligands (R0 = SiMe(SitBu3)2, SiiPrDis2, and NHC) at the dispersion-corrected M06-2X/

Def2-TZVP level of theory.
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covalent character, as shown by the greater covalent part of the NRT bond order (1.25), com-

pared to its ionic part (0.81). The reason for this may be due to the fact that the difference

between the electronegativity values for the Al and Sb elements is small (Al: 1.5 and Sb: 1.8) [26].

4. Conclusion

This study uses DFT computations to theoretically design substituted RAl☰SbR molecules that

feature the Al☰Sb triple bond, that are stable from the kinetic viewpoint. The theoretical

observations show that only bulky substituents (R0) can significantly stabilize the triply

Figure 3. The natural Al☰Sb π bonding orbitals ((i) and (ii)) for (SiMe(SitBu3)2)Al☰Sb(SiMe(SitBu3)2). Also, see Figure 1.

(i) π⊥, (ii) πk.
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bonded R0Al☰SbR0 compounds, and not small substituents. The theoretical findings also show

that the bonding characters of the R0Al☰SbR0 species that feature bulky groups can be

represented as R0
dAl SbdR0. That is to say, the R0Al☰SbR0 species contains a conventional

σ bond, a conventional π bond and a donor-acceptor π bond. However, due to the poor

overlapping populations between the Al and Sb elements, which is due to the different atomic

sizes of the two elements and the nature of overlapping bonding orbitals, the Al☰Sb triple

bond is very weak. The theoretical results also give strong evidence that the geometrical

structures of the R0Al☰SbR0 species adopt a bent conformation with a nearly perpendicular

angle at the antimony center.
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