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Abstract

Mycotoxigenic fungi that contaminate grain crops can lead to reduced grain quality, crop 
yield reduction and mycotoxicosis among humans and livestock. Preharvest management 
of fungi and mycotoxin contamination is considered among the most important mitigating 
strategies. Approaches include the breeding of resistant cultivars, use of microorganisms 
chemical control, production practises and the management of plant stressors. Resistant 
plants provide an effective and environmentally sound strategy to control mycotoxigenic 
fungi and mycotoxins; and have been documented. Their incorporation into commercial 
cultivars is, however, slow and complex. Therefore, emphasis should be placed on deter-
mining the resistance of cultivars and landraces currently used by producers. Chemical 
control has been successfully used for wheat; yet little to no research has been done on 
other important crops. Biological control strategies have focussed on Aspergillus flavus that 
produces aflatoxins and infects commercially important crops like maize and groundnuts. 
Commercial biological control products have been developed and field-tested in several 
African countries with promising results. The impacts of production practises are unclear 
under variable environmental conditions; but subsequent disease manifestation and myco-
toxin contamination can be reduced. Each preharvest approaches contribute to managing 
mycotoxigenic fungi and their mycotoxins but integrating approaches may provide more 
effective management of fungal and mycotoxin contamination in crops.

Keywords: preharvest management, mycotoxins, tolerance, cereals, cultural practices

1. Introduction

The contamination of food and feed crops with mycotoxigenic fungi is a persistent problem con-

tributing to food safety and security worldwide. The infection of crops by these fungal pathogens 
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affects crop yield and quality but of greater concern are the secondary metabolites they produce, 
collectively known as mycotoxins. Ingestion of mycotoxin-contaminated products has been asso-

ciated with a wide range of noxious effects on humans and livestock. The major food and feed 
crops affected by mycotoxigenic fungi and mycotoxins include rice, maize, wheat, soybean, sor-

ghum and groundnut, although several other crops are also affected. The association of these 
crops with mycotoxigenic fungi is ubiquitous, and crops are affected wherever they are pro-

duced. Three major groups of mycotoxigenic fungi are associated with mycotoxin contamination 
namely Aspergillus, Fusarium and Penicillium. They each produce a number of mycotoxins, but six 

mycotoxins have been studied extensively and are considered among the most important and 

they include the aflatoxins (AF), fumonisins (FUM), trichothecenes (TCT), zearalenone (ZEA), 
ochratoxin (OT) and patulin (PAT). Mycotoxin contamination levels in food and feed crops have 
therefore elicited numerous countries to institute regulations regarding the maximum permis-

sible levels of these mycotoxins in unprocessed and processed products.

More than 100 countries have established mycotoxin regulations, including 15 African coun-

tries [1–3]. The European Union and United States Food and Drug Administration estab-

lished maximum allowable levels for certain food contaminants, including mycotoxins, with 

the aim to reduce their presence in foodstuffs to the lowest levels reasonably achievable 
by means of good manufacturing or agricultural practices [4]. Most of the countries have 

mycotoxin regulations for at least AFB1, produced predominantly by Aspergillus spp., to aid 

in minimising food safety concerns. Although fewer countries regulate Fusarium mycotox-

ins, a marked increase in the regulation of this mycotoxin has been observed recently. These 

regulations have globally significant implications for the importation and exportation of 
products. Regulatory infrastructure, however, does not enable inspection and enforcement 

[5], making the regulatory control of mycotoxins in Africa largely ineffective [6].

The management of mycotoxigenic fungi and their subsequent mycotoxins is therefore vital 

towards ensuring sustainable, safe food and feed production. Integrated management prac-

tises that reduce the incidence of mycotoxigenic fungi as well as the management of abiotic 

factors that contribute to mycotoxin contamination are required before and following har-

vest. However, preharvest management is considered the most important in limiting the 

overall contamination of crops. Therefore, the use of tolerant varieties is deemed the most 

proficient and environmentally sound approach to manage fungi and their toxins. In addi-
tion, several other management approaches such as optimal plant production, cultural prac-

tises, chemical control and the management of mycotoxigenic fungi by atoxigenic strains or 

bacteria could further reduce fungal incidence and subsequent mycotoxin contamination.

2. Management of mycotoxigenic fungi and their mycotoxins

Managing mycotoxigenic fungi and their mycotoxins in crop plants requires a proper under-

standing of the biology, epidemiology and genetics/genomics of the fungus and host plant. 

Major crops vary significantly in susceptibility to mycotoxigenic fungi and subsequent myco-

toxin contamination. Maize is widely considered to be among the most susceptible of major 
crops to mycotoxins, while rice is considered among the least susceptible crop [7–9].
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2.1. Tolerance to mycotoxigenic fungi

Crops with resistance to numerous mycotoxigenic fungi have been documented [10–12], 

but none of these are immune. Resistance to mycotoxigenic fungi therefore appears to be 

quantitative rather than qualitative. Breeding programmes at both public and private insti-

tutions are initiating and expanding their efforts to develop disease-resistant inbred and 
hybrid materials [13]. A number of international institutions such as the International Maize 
and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical 
Agriculture (IITA) in African countries including Kenya and Nigeria have established 
breeding programmes with the primary focus on producing inbred lines with improved 

resistance to A. flavus and AF. The development of tolerant cultivars, however, has been 
slow due to the polygenic, quantitative nature of resistance to mycotoxigenic fungi [14–17], 

the unavailability of immune germplasm [11, 15] and the effect of the environment on dis-

ease development and mycotoxin production [18–20]. The development of tolerant variet-

ies, therefore, may be a long (8–10 years) and costly process that needs to be conducted as 
effectively as possible. Little to no commercial plant crop, completely resistant to mycotoxi-
genic fungi and mycotoxins, has been produced by conventional breeding, with the excep-

tion of wheat [21–23].

2.2. Conventional breeding strategies

Diallel analysis to determine the general combinability (GC) and specific combinability (SC) 
of resistant genotypes has been reported for Aspergillus and Fusarium, mostly performed on 

maize [24–27] and wheat [28–30]. The response of an inbred line to F. verticillioides and FUM, 
and the corresponding GC in hybrids, was significantly correlated. This indicates that an effi-

cient way to improve resistance to F. verticillioides and FUM in maize hybrids, specifically, is 
to first evaluate and select resistant inbred lines that can be used to develop resistant hybrids 
[24]. This was also demonstrated for breeding resistance to Fusarium head blight (FHB) of 
wheat [30]. Maize hybrid performance for resistance to F. graminearum could, however, not be 

predicted based on the GC of inbred line parents [27]. Therefore, this relationship needs to be 

determined for each crop and fungal pathogen, respectively.

Inbred lines with resistance to aflatoxin contamination were evaluated for GCA and SCA for 
resistance to fumonisin accumulation, and two lines with resistance to FUM and AF were 
registered [25]. That research demonstrated the ability to breed resistance to multiple myco-

toxigenic fungi and/or their mycotoxins. Furthermore, improved resistance to F. verticillioides 

and FUM in inbred lines derived from cross-pollination of resistant and elite maize lines has 
been demonstrated [31]. The subsequent hybrids produced from the crossing of improved 

lines with elite lines, however, did not demonstrate an improved activity against Fusarium 
ear rot (FER) and FUM accumulation, although some improved lines performed well as an 
inbred line and as a component of a hybrid [31]. To date, little to no research is reported on the 
development of tolerant varieties using recurrent selection breeding methods. Considering 

that resistance to mycotoxigenic fungi is polygenic and quantitative, recurrent selection pres-

ents a feasible breeding strategy; however, time and cost involved in this breeding strategy 

may be strong deterrent factors.

Preharvest Management Strategies and Their Impact on Mycotoxigenic Fungi and Associated Mycotoxins
http://dx.doi.org/10.5772/intechopen.76808

43



Quantitative trait loci (QTL) associated with resistance to mycotoxigenic fungi has been 
mapped in maize and wheat and can be used for marker-assisted selection [15, 16, 32–36]. 

Some QTLs, however, displayed pleiotropic effects, sometimes resulting in resistance to both 
traits [15, 32, 37]. QTL analyses have also demonstrated pleiotropic effects for resistance to 
other mycotoxigenic fungi and/or their associated mycotoxins. In QTL studies involving mul-
tiple ear rot pathogens, maize resistant to FER and FUM accumulation was also resistant to 
F. graminearum and/or A. flavus, with common loci for ear rots and FUM, respectively [15, 37, 

38]. Research revealed that some of the genes involved in resistance to FER and Aspergillus 
ear rot (AER) of maize caused by A. flavus, as well as their associated mycotoxins (FUM and 
AF, respectively), were identical or genetically linked [38]. These studies highlighted com-

mon genes and/or resistance mechanisms to multiple mycotoxigenic fungi, demonstrating the 

potential for breeding resistance to one type of mycotoxigenic fungus, and its mycotoxin may 

lead to similar responses among other mycotoxigenic fungi and associated mycotoxin. The 

value of marker-assisted selection for improving Fusarium head blight resistance in wheat 
has been confirmed by numerous researchers and success stories from breeding programmes 
implementing MAS [39–47].

2.3. Unconventional breeding strategies

2.3.1. Genetic modification

Genetically modified crops are plants of which the DNA has been altered through the intro-

duction of a foreign gene to express a trait not inherent to the modified plant. Three trans-

gene-mediated strategies have been proposed for the management of mycotoxigenic fungi and 

mycotoxins in maize [48]. These include (1) the reduction of fungal infection, (2) the degrada-

tion of mycotoxins and (3) interfering with the mycotoxin biosynthetic pathway. To reduce 
infection by the fungus, the incorporation of antifungal and/or resistance genes, as well as the 

overexpression of defence-related genes, is required. Catabolic enzymes from microbes have 
been used to detoxify certain mycotoxins both in vitro and in situ, before they accumulate in the 

plant [49–51]. Fumonisin esterase and amine oxidase genes encoding FUM-degrading enzymes 
have been identified in Exophiala spinifera de Hoog and Hasse [48]. None of these genes have, 
however, been successfully introduced into maize. Maize plants have, however, been geneti-
cally engineered to interfere with the biosynthesis of AF and TCT [52, 53]. The best-known 

example of using genetically modified maize for reducing FER and FUM contamination of 
grain is Bt maize [54, 55]. This is due to the close association between kernel damage by insects 

and infection by F. verticillioides [56]. Bt maize plants that prevent insect damage, therefore, also 
reduce FUM contamination of maize grain. Genetically modified maize is not authorised in all 
countries and, consequently, conventional breeding efforts are still commonly used.

2.3.2. Mutation breeding

Exposure of seeds or other heritable materials to chemicals or radiation with the purpose to 

induce DNA changes (mutations) is known as mutation breeding. Nuclear technology for 
crop improvement makes use of ionising radiation, which causes induced mutations with a 
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high mutation frequency in plants [57]. These mutations might be beneficial and alter physi-
ological characters of plants, including plant height, ear height and improved root architec-

ture [58, 59]. The radiation of seeds may also cause genetic variability that enables breeders to 

select new genotypes with improved grain yield and quality [60]. Mutation breeding has been 

successfully used to generate genetic variation in cereal crops, including maize, for a number 
of aspects including enhanced yield and productivity, altered ear length, drought tolerance 

and enhanced stem structure [61–63]. It can thus potentially provide an attractive means for 
generating tolerance to mycotoxigenic fungi and their mycotoxins.

2.4. Host-plant resistance

The planting of disease-resistant plants is an effective, affordable and environmentally sound 
strategy to control ear rot diseases and mycotoxin accumulation [64]. Commercial hybrids 

differ in their ability to accumulate mycotoxins [64], while hybrids grown outside of their 

adapted range are more susceptible to mycotoxins than those grown within their adapted 

range [18]. Determining host-plant resistance to mycotoxigenic fungi and mycotoxin accu-

mulation is a fundamental step towards developing commercially tolerant plant varieties. 

Several factors require careful consideration when screening materials for resistance to myco-

toxigenic fungi and their mycotoxins. Inoculation technique significantly contributes to the 
efficacy of the screening protocol and should, therefore, be appropriate, produce consistent 
results and consider the disease cycle of the pathogen. Numerous studies relating to differ-

ent crops report on the importance of screening for resistance under variable environmental 

conditions since genotype by environment interactions (GEI) plays such a vital role in disease 
development and mycotoxin contamination. Furthermore, GEI and stability indicators pro-

vide for the selection of material tolerant across a broad range of environments or alterna-

tively exhibiting tolerance in specific environments.

Various countries have reported on the tolerance levels of maize and wheat cultivars to 
mycotoxigenic fungi and associated mycotoxins [65–67]. However, focus has been placed 

on the characterisation of inbred lines for the identification of appropriate breeding mate-

rial towards resistance to mycotoxigenic fungi and their toxins [68–74]. Genetically modified 
maize, expressing Bacillus thuringiensis genes (BT maize), has been found to accumulate less 
FUM than its non-modified isolines [54].

2.5. Cultural preharvest management strategies

2.5.1. Planting recommendations

Adhering to planting dates and planting plants at lower or optimal densities reduces myco-

toxin accumulation during production [75–77]. Plants should be planted at recommended 

row widths and densities to specifically reduce water stress [78] and ensure optimal nutrient 

availability. Maize ears should be harvested from the field as soon as possible because favour-

able conditions for ear rot and/or mycotoxin accumulation may occur if harvest is delayed, 

thus leading to elevated mycotoxin levels [79, 80].
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2.5.2. Crop rotation

The primary objective of cultural control of mycotoxigenic fungi is to minimise factors that 
result in plant stress. Inoculum build-up on plant residues can be reduced by crop rotation prac-

tices, such as the rotation of maize with non-host crops [75, 81, 82]. Crop rotation with legumes, 

brassicas and potato could also significantly reduce F. graminearum contamination levels [83].

2.5.3. Tillage practises

Field preparation and cultivation practices play a central role in the management of Fusarium 

diseases and associated mycotoxins [84]. The burial of plant residues from a previous planting 

season by deep ploughing can reduce the primary inoculum that causes infections [85]. This 

is especially important when crops are affected by the same Fusarium species, such as F. gra-
minearum on maize, wheat and sorghum grown in rotation [4]. While minimum tillage has signif-

icantly decreased stalk rot and increased grain yield of sorghum in South Africa [86], it has also 

increased inoculum build-up of mycotoxigenic fungi in maize cropping systems [84]. Alternate 

tillage practices, however, have had little effect on the incidence of FER in maize [87, 88].

2.5.4. Managing plant stressors

Limiting plant stress to increase plant vigour by adhering to optimum plant dates, preventing 
drought stress and the optimal use of fertilisers have reduced Fusarium infection in a number 

of grain crops [76, 89–91]. However, maize cultivated by means of organic agriculture does 
not accumulate less FUM than maize cultivated conventionally [92, 93]. Extended periods 

of heat and drought stress that lead to increased FUM levels could be managed with proper 
irrigation schedules [77, 94]. Managing plant stress conditions is also important as this is 

considered key in the symptomless endophytic relationship converting to a disease- and/or 

mycotoxin-producing interaction [95].

2.5.5. Chemical control

Fungicides have been shown to significantly reduce FHB and DON contamination of wheat 
grain. Triazole fungicides such as metconazole and tebuconazole have been shown to con-

trol FHB and DON contamination in wheat [96]. However, fungicides are neither effective in 
reducing F. verticillioides infection/FUM accumulation, nor A. flavus infection/AF accumulation 
in maize [97]. This may be due to the husks that cover maize kernels. FUM were, however, 
reduced by 95% in vitro when four fungicides and a biocontrol bacterium (Serenade, B. subtilis) 
were evaluated for the control of F. verticillioides and A. flavus [98]. No registered fungicides are 
available for the control of either F. verticillioides or A. flavus in any African country [98]. The 

use of insecticides can prevent insect wounds that contribute to fungal infection and myco-

toxin accumulation in maize kernels [91].

Reduced FHB severity and mycotoxin contamination of wheat under field conditions using 
tannic acid and the botanicals, Chinese galls and buckthorn, have been shown [100]. These 

researchers also reported disease and mycotoxin reduction efficacy close to that observed 
with a synthetic fungicide, thereby demonstrating the potential use of natural compounds 
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in managing mycotoxigenic fungi and their toxins. Furthermore, several studies report on 
a reduced fungal growth and mycotoxin contamination for Aspergillus and Fusarium using 

natural oils and phenolic compounds in vitro; however, the commercial value of such prod-

ucts has not been explored and may not be feasible [101, 102].

2.5.6. Managing mycotoxigenic fungi with other microorganisms

The use of biological control agents to manage mycotoxigenic fungi has been reported. Atoxigenic 

F. verticillioides strains competitively excluded FUM-producing strains and prevented them from 
producing FUM [103]. When these strains were applied by themselves through the silk channel, 

however, they resulted in high levels of FER. The effective control of toxigenic F. verticillioides and 

F. proliferatum by non-toxigenic Fusarium species in maize residues has also been observed [104]. 

Most success, however, has been achieved with the use of atoxigenic strains of A. flavus to con-

trol toxigenic A. flavus and A. parasiticus. When introduced into the soil, these atoxigenic strains 

reduced AF contamination of peanuts in the USA by 74.3–99.9% [105]. Atoxigenic A. flavus strains 

are now widely used to control AF in maize in several African countries (www.aflatoxinpartner-

ship.org). Endophytic bacteria have been reported to control FUM-producing fungi by competi-
tive exclusion [106], while Trichoderma strains controlled them through competition for nutrients 

and space, fungistasis, antibiosis, rhizosphere modification, mycoparasitism, biofertilisation and 
the stimulation of plant-defence mechanisms [107].

2.5.7. Prediction systems

An epidemic can be described as a ‘change in disease intensity in a host population over time and 

space’ [108]. Mathematical modelling of crop disease is a rapidly expanding discipline within 

plant pathology [109] with the first models developed by Van der Plank [110, 111]. In epidemiol-

ogy, modelling aims to understand the main determinants of epidemic development in order to 

address disease management in a sustainable and efficient manner. It can, therefore, serve as an 
instrument to monitor and assess the risk of mycotoxin contamination in crops that would drive 

agronomic decisions during cultivation, in order to enhance management strategies [112].

Most research regarding disease forecasting of mycotoxigenic fungi has focussed on FHB of wheat. 
This disease is considered well suited for risk assessment modelling because of the severity of 

epidemics, compound losses resulting from mycotoxin contamination and relatively narrow time 

periods of pathogen sporulation, inoculum dispersal and host infection [113]. This can be seen 

from the online forecasting model FusaProg [114], which is a threshold-based tool to control F. 

graminearum with the optimised timing of fungicide applications and forecasts of DON content 
during flowering. DONCast is a prediction model from Canada that has been extensively vali-
dated and commercialised for wheat [112], while an adaption of this model has been proposed for 

maize. This model predicts the variation in mycotoxin levels associated with the year and agro-

nomic effects from simple linear models using wheat samples from farmers. The DONCast model 
accounts for up to 80% of the variation in DON and is commercially employed for the past 10 years.

Field-based models to predict FUM B1 contamination in maize grain have been elusive, most 
probably due to the complexity of interactions between numerous abiotic and biotic disease 
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factors [115]. The concentration and severity of FUM produced by Fusarium spp. varies with 

meteorological conditions, genotype and location [19]. In general, favourable conditions for F. 

verticillioides infection include high temperatures [56], drought stress [56, 116] and insect damage 

stress [56]. A mathematical simulation of the growth of F. graminearum and F. verticillioides in 

maize ears was developed; however, the model only simulates fungal growth and not mycotoxin 
accumulation [117]. A preliminary model developed in the Philippines and Argentina identified 
four weather periods near silking as critical to FUM accumulation at harvest [19]. This model 

accounted for 82% of the variability of total FUM across all locations in 2 years of study, but did 
not consider meteorological conditions during grain maturation when FUM are synthesised.

A risk assessment model (FUMAgrain) developed for FUM contamination of maize grain 
in Italy gives an initial risk alert at the end of flowering based on meteorological conditions 
[118]. A second alert follows at kernel maturation following assessments of grain moisture, 

European corn borer damage and FUM synthesis risk. FUMAgrain could simulate FUM syn-

thesis in maize accounting for 70% of the variation for calibration and 71% for validation. The 
importance of meteorological conditions at flowering and the growth of F. verticillioides and 

FUM synthesis during grain maturation was emphasised as the most important factors con-

tributing to FUM contamination [118]. Another model  consistently identified mean maximum 
temperature and minimum humidity as driving variables in the colonisation of maize kernels 
by fumonisin-producing Fusarium spp [99]. Furthermore, Fusarium colonisation of grain and 

fumonisins were related to prevailing weather conditions during early post-flowering and 
dough stage of grain development, respectively [99]. A prediction model using variables such 

as cultivar, climate, management practice, soil type, phenological stages of the host plant and 

pathogen variation would be advantages in identifying areas with potentially dangerous lev-

els of fungal contamination and associated mycotoxin production, enabling them to imple-

ment mycotoxin management strategies.

3. Conclusion

Food and feed crops are consistently threatened by mycotoxigenic fungi and compound their 
infection by depositing toxic metabolites, including mycotoxins. Preharvest management of 

mycotoxin contamination is vital to maintaining contamination levels below economically fea-

sible and legislated thresholds. Planting genotypes with enhanced host resistance is considered 

the most practical, affordable and environmentally sound method of controlling mycotoxi-
genic fungi and their mycotoxins. However, integrating resistant varieties with good agri-

cultural practises such as crop rotation, chemical/biological control and other strategies that 

optimise plant production by minimising stressors may further reduce the risks associated with 

mycotoxin contamination. Resistance to mycotoxigenic fungi exists and has been identified 
in appropriate breeding materials but such resistance needs to be introduced in high-yielding  

and locally adapted hybrids. To date, conventional breeding has not been able to introgress 

disease and/or mycotoxin resistance into important staple crops like maize. Therefore, further 
research is required into factors with a greater efficacy to reduce mycotoxigenic fungi and 
mycotoxins preharvest as resistant varieties are being developed.
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