
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 13

A Multilevel Genetic Algorithm for the Maximum
Satisfaction Problem

Noureddine Bouhmala

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78299

Abstract

Genetic algorithms (GA) which belongs to the class of evolutionary algorithms are
regarded as highly successful algorithms when applied to a broad range of discrete as
well continuous optimization problems. This chapter introduces a hybrid approach com-
bining genetic algorithm with the multilevel paradigm for solving the maximum con-
straint satisfaction problem (Max-CSP). The multilevel paradigm refers to the process of
dividing large and complex problems into smaller ones, which are hopefully much easier
to solve, and then work backward toward the solution of the original problem, using the
solution reached from a child level as a starting solution for the parent level. The promis-
ing performances achieved by the proposed approach are demonstrated by comparisons
made to solve conventional random benchmark problems.

Keywords: maximum constraint satisfaction problem, genetic algorithms, multilevel
paradigm

1. Introduction

Many problems in the field of artificial intelligence can be modeled as constraint satisfaction

problems (CSP). A CSP is a tuple X;D;Ch i where, X ¼ x1; x2;…; xnf g is a finite set of variables,

D ¼ Dx1
;Dx2

;…;Dxnf g is a finite set of domains. Thus each variable x∈X has a corresponding

discrete domain Dx from which it can be instantiated, and C ¼ C1;C2;…;Ckf g is a finite set of

constraints. Each k-ary constraint restricts a k-tuple of variables, x1; x2;…; xkð Þ and specifies a

subset of D1 �…�Dk, each element of which are values that the variables cannot take simulta-

neously. A solution to a CSP requires the assignment of values to each of the variables from their

domains such that all the constraints on the variables are satisfied. The maximum constraint

satisfaction problem (Max-CSP) aims at finding an assignment so as to maximize the number of

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

satisfied constraints. Max-CSP can be regarded as the generalization of CSP; the solution maxi-

mizes the number of satisfied constraints. In this chapter, attention is focused on binary CSPs,

where all constraints are binary, that is, they are based on the cartesian product of the domains of

two variables. However, any non-binary CSP can theoretically be converted to a binary CSP [1].

Algorithms for solving CSPs apply the so-called 1-exchange neighborhood under, which two

solutions are direct neighbors if, and only if, they differ at most in the value assigned to one

variable. Examples include the minimum conflict heuristic MCH [2], the break method for

escaping from local minima [3], and various enhanced MCH (e.g., randomized iterative

improvement of MCH called WMCH [4], MCH with tabu search [5], and evolutionary algo-

rithms [6]). Algorithms based on assigning weights on constraints are techniques that work by

introducing weights on variables or constraints in order to avoid local minima. Methods belong-

ing to this category include genet [7], guided local search [8], the exponentiated subgradient [9],

discrete Lagrangian search [10], the scaling and probabilistic smoothing [11], evolutionary algo-

rithms combined with stepwise adaptation of weights [12], methods based on dynamically

adapting weights on variables [13], or both (i.e., variables and constraints) [14]. Methods based

on large neighborhood search have recently attracted several researchers for solving the CSP

[15]. The central idea is to reduce the size of local search space relying on a continual relaxation

(removing elements from the solution) and re-optimization (re-inserting the removed elements).

Finally, the work introduced in [16] introduces a variable depth metaheuristic combing a greedy

local search with a self-adaptive weighting strategy on the constraints weights.

2. Algorithm

2.1. Multilevel context

The multilevel paradigm is a simple technique, which at its core involves recursive coarsening

to produce smaller and smaller problems that are easier to solve than the original one.

Multilevel techniques have been developed in the period after 1960 and are among the most

efficient techniques used for solving large algebraic systems arising from the discretization of

partial differential equations. In recent years, it has been recognized that an effective way of

enhancing metaheuristics is to use them in the multilevel context. The pseudo-code of the

multilevel genetic algorithm is shown in Algorithm 1. Figure 1 illustrates the multilevel

paradigm used for six variables and two coarsening levels. The multilevel paradigm consists

of four phases: coarsening, initial solution, uncoarsening, and refinement. The coarsening

phase aims at merging the variables associated with the problem to form clusters. The clusters

are used in a recursive manner to construct a hierarchy of problems each representing the

original problem but with fewer degrees of freedom. The coarsest level can then be used to

compute an initial solution. The solution found at the coarsest level is uncoarsened (extended

to give an initial solution for the parent level) and then improved using a chosen optimization

algorithm. A common feature that characterizes multilevel algorithms, is that any solution in

any of the coarsened problems is a legitimate solution to the original one. Optimization

algorithms using the multilevel paradigm draw their strength from coupling the refinement

process across different levels.

Artificial Intelligence - Emerging Trends and Applications264

Algorithm 1. The multilevel genetic algorithm.

Figure 1. The different steps of the multilevel paradigm.

A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem
http://dx.doi.org/10.5772/intechopen.78299

265

2.2. Multilevel genetic algorithm (GA)

GAs [17] are stochastic methods for global search and optimization and belong to the group of

nature-inspired metaheuristics leading to the so-called natural computing. It is a fast-growing

interdisciplinary field in which a range of techniques and methods are studied for dealing with

large, complex, and dynamic problems with various sources of potential uncertainties. GAs

simultaneously examine and manipulate a set of possible solutions. A gene is a part of a

chromosome (solution), which is the smallest unit of genetic information. Every gene is able to

assume different values called allele. All genes of an organism form a genome, which affects the

appearance of an organism called phenotype. The chromosomes are encoded using a chosen

representation and each can be thought of as a point in the search space of candidate solutions.

Each individual is assigned a score (fitness) value that allows assessing its quality. The members

of the initial population may be randomly generated or by using sophisticated mechanisms by

means of which an initial population of high-quality chromosomes is produced. The reproduc-

tion operator selects (randomly or based on the individual’s fitness) chromosomes from the

population to be parents and enter them in a mating pool. Parent individuals are drawn from

the mating pool and combined so that information is exchanged and passed to off-springs

depending on the probability of the crossover operator. The new population is then subjected to

mutation and enters into an intermediate population. The mutation operator acts as an element

of diversity into the population and is generally applied with a low-probability to avoid

disrupting crossover results. Finally, a selection scheme is used to update the population giving

rise to a new generation. The individuals from the set of solutions, which is called population

will evolve from generation to generation by repeated applications of an evaluation procedure

that is based on genetic operators. Over many generations, the population becomes increasingly

uniform until it ultimately converges to optimal or near-optimal solutions. The different steps of

the multilevel weighted genetic algorithm are described as follows:

• construction of levels: let G0 ¼ V0;E0ð Þ be an undirected graph of vertices V and edges E.

The set V denotes variables and each edge xi; xj
� �

∈E implies a constraint joining the

variables xi and xj. Given the initial graph G0, the graph is repeatedly transformed into

smaller and smaller graphs G1, G2,…, Gm such that ∣V0∣ >, ∣V1∣ >,… > ∣Vm∣. To coarsen a

graph from Gj to Gjþ1, a number of different techniques may be used. In this chapter,

when combining a set of variables into clusters, the variables are visited in a random

order. If a variable xi has not been matched yet, then the algorithms randomly select one

of its neighboring unmatched variable xj, and a new cluster consisting of these two vari-

ables is created. Its neighbors are the combined neighbors of the merged variables xi and

xj. Unmatched variables are simply left unmatched and copied to the next level.

• initial assignment: the process of constructing a hierarchy of graphs ceases as soon as the

size of the coarsest graphs reaches some desired threshold. A random initial population is

generated at the lowest level Gk ¼ Vk;Ekð Þ. The chromosomes, which are assignments

of values to the variables are encoded as strings of bits, the length of which is the number

of variables. At the lowest level, the length of the chromosome is equal to the number of

clusters. The initial solution is simply constructed by assigning to all variable in a cluster,

a random value vi. In this work, it is assumed that all variables have the same domain

Artificial Intelligence - Emerging Trends and Applications266

(i.e., same set of values), otherwise different random values should be assigned to each

variable in the cluster. All the individuals of the initial population are evaluated and

assigned a fitness expressed in Eq. (1), which counts the number of constraint violations

where < xi; sið Þ, xj; sj
� �

> denotes the constraint between the variables xi and xj where xi is

assigned the value si from Dxi and xj is assigned the value sj from Dxj .

Fitness ¼
X

n�1

i¼1

X

n

j¼iþ1

Violation W i, j < xi; sið Þ; xj; sj
� �

>
� �

(1)

• initial weights: the next step of the algorithm assigns a fixed amount of weight equal to 1

across all the constraints. The distribution of weights to constraints aims at forcing hard

constraints with large weights to be satisfied thereby preventing the algorithm at a later

stage from getting stuck at a local optimum.

• optimization: having computed an initial solution at the coarsest graph, GA starts the search

process from the coarsest level Gk ¼ Vk, Ekð) and continues to move toward smaller levels.

The motivation behind this strategy is that the order in which the levels are traversed offers a

bettermechanism for performing diversification and intensification. The coarsest level allows

GA to view any cluster of variables as a single entity leading the search to become guided in

faraway regions of the solution space and restricted to only those configurations in the

solution space in which the variables grouped within a cluster are assigned the same value.

As the switch fromone level to another implies a decrease in the size of the neighborhood, the

search is intensified around solutions from previous levels in order to reach better ones.

• parent selection: during the optimization, new solutions are created by combining pairs of

individuals in the population and then applying a crossover operator to each chosen pair.

Combining pairs of individuals can be viewed as a matching process. In the version of GA

used in this work, the individuals are visited in random order. An unmatched individual

ik is matched randomly with an unmatched individual il.

• genetic operators: the task of the crossover operator is to reach regions of the search space

with higher average quality. The two-point crossover operator is applied to each matched

pair of individuals. The two-point crossover selects two randomly points within a chro-

mosome and then interchanges the two parent chromosomes between these points to

generate two new offspring.

• survivor selection: the selection acts on individuals in the current population. Based on each

individual quality (fitness), it determines the next population. In the roulette method, the

selection is stochastic and biased toward the best individuals. The first step is to calculate

the cumulative fitness of the whole population through the sum of the fitness of all

individuals. After that, the probability of selection is calculated for each individual as

being PSelectioni ¼ f i=
PN

1 f i, where f i is the fitness of individual i.

• updating weights: the weights of each current violated constraint is then increased by one,

whereas the newly satisfied constraints will have their weights decreased by one before

the start of new generation.

A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem
http://dx.doi.org/10.5772/intechopen.78299

267

• termination condition: the convergence of GA is supposed to be reached if the best individ-

ual remains unchanged during five consecutive generations.

• projection: once GA has reached the convergence criterion with respect to a child level

graph Gk ¼ Vk;Ekð Þ, the assignment reached on that level must be projected on its parent

graph Gk�1 ¼ Vk�1;Ek�1ð Þ. The projection algorithm is simple; if a cluster belongs to

Gk ¼ Vk;Ekð Þ is assigned the value vli, the merged pair of clusters that it represents

belonging to Gk�1 ¼ Vk�1;Ek�1ð Þ are also assigned the value vli,

3. Experimental results

3.1. Experimental setup

The benchmark instances were generated using model A [18] as follows: each instance is

defined by the 4-tuple n,m, pd, pt, where n is the number of variables; m is the size of each

variable’s domain; pd, the constraint density, is the proportion of pairs of variables, which have

a constraint between them; and pt, the constraint tightness, is the probability that a pair of

values is inconsistent. From the n� n� 1ð Þ=2ð Þ possible constraints, each one is independently

chosen to be added in the constraint graph with the probability pd. Given a constraint, we select

with the probability pt, which value pairs become no-goods. The model A will on average have

pd � n� 1ð Þ=2 constraints, each of which has on average pt �m2 inconsistent pairs of values.

For each pair of density tightness, we generate one soluble instance (i.e., at least one solution

exists). Because of the stochastic nature of GA, we let each algorithm do 100 independent runs,

each run with a different random seed. Many NP-complete or NP-hard problems show a phase

transition point that marks the spot where we go from problems that are under-constrained

and so relatively easy to solve, to problems that are over-constrained and so relatively easy to

prove insoluble. Problems that are on average harder to solve occur between these two types of

relatively easy problem. The values of pd and pt are chosen in such a way that the instances

generated are within the phase transition. In order to predict the phase transition region, a

formula for the constrainedness [19] of binary CSPs was defined by:

κ ¼
n� 1

2
pd log m

1

1� pt

� �

: (2)

The tests were carried out on a DELL machine with 800 MHz CPU and 2 GB of memory. The

code was written in C and compiled with the GNU C compiler version 4.6. The following

parameters have been fixed experimentally and are listed below:

• Population size = 50

• Stopping criteria for the coarsening phase: the reduction process stops as soon as the

number of levels reaches 3. At this level, MLV-WGA generates an initial population.

• Convergence during the optimization phase: if there is no observable improvement of the

fitness function of the best individual during five consecutive generations, MLV-WGA is

assumed to have reached convergence and moves to a higher level.

Artificial Intelligence - Emerging Trends and Applications268

3.2. Results

The plots in Figures 2 and 3 compare the WGA with its multilevel variant MLV-WGA. The

improvement in quality imparted by the multilevel context is immediately clear. Both WGA and

MLV-WGA exhibit what is called a plateau region. A plateau region spans a region in the search

space where crossover and mutation operators leave the best solution or the mean solution

unchanged. However, the length of this region is shorter with MLV-WGA compared to that of

WGA. The multilevel context uses the projected solution obtained at Gmþ1 Vmþ1;Emþ1ð Þ as the

initial solution for Gm Vm;Emð Þ for further refinement. Even though the solution at

Gmþ1 Vmþ1;Emþ1ð Þ is at a local minimum, the projected solution may not be at a local optimum

with respect to Gm Vm;Emð Þ. The projected assignment is already a good solution leading WGA

to converge quicker within few generations to a better solution. Tables 1–3 showa comparison of

Figure 2. MLV-GA vs. GA: evolution of themean unsatisfied constraints as a function of time. Csp-N30-DS40-C125-cd026ct063.

Figure 3. MLV-GA vs. GA: evolution of the mean unsatisfied constraints as a function of time. Csp-N35-DS20-C562-

cd094-ct017.

A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem
http://dx.doi.org/10.5772/intechopen.78299

269

MLV-WGA WGA

Instance Min Max Mean REav Min Max Mean REav

N25-DS20-C36-cd-014-ct083 3 7 4.58 0.128 3 8 5.41 0.151

N25-DS20-C44-cd012-ct087 6 10 8.04 0.183 8 14 9.91 0.226

N25-DS20-C54-cd018-ct075 3 7 5.37 0.100 4 9 6.91 0.128

N25-DS20-C78-cd026-ct061 2 8 4.33 0.056 2 10 5.79 0.073

N25-DS20-C225-cd078-ct027 3 8 4.16 0.019 3 9 5.66 0.026

N25-DS20-C229-cd072-ct029 4 9 6.04 0.014 4 11 8.16 0.036

N25-DS20-C242-cd086-ct025 1 6 3.5 0.015 3 10 5.70 0.024

N25-DS20-C269-cd086-ct025 4 10 5.66 0.022 4 10 7.54 0.029

N25-DS20-C279-cd094-ct023 2 7 4.75 0.018 4 9 6.75 0.025

N25-DS40-C53-cd016-ct085 6 11 8.91 0.169 8 13 10.70 0.202

N25-DS40-C70-cd026-ct069 2 6 4.25 0.061 3 8 5.75 0.083

N25-DS40-C72-cd022-ct075 6 12 9 0.125 6 15 10.45 0.146

N25-DS40-C102-cd032-ct061 5 12 8.12 0.080 7 14 10.33 0.102

N25-DS40-C103-cd034-ct059 5 9 6.83 0.067 4 12 8.79 0.086

N25-DS40-C237-cd082-ct031 3 8 5.66 0.024 5 10 7.87 0.034

N25-DS40-C253-cd088-ct029 3 7 4.95 0.020 5 12 8.04 0.032

N25-DS40-C264-cd088-ct029 5 10 6.91 0.027 6 16 8.91 0.034

N25-DS40-C281-cd096-ct027 3 9 5.62 0.020 4 12 8.54 0.031

N25-DS40-C290-cd096-ct027 4 10 7.08 0.025 6 14 9 0.032

REav denotes the relative error in percent. The value in bold shows the algorithm with the lowest RE.

Table 1. MLV-WGA vs. WGA: number of variables: 25.

MLV-WGA WGA

Instance Min Max Mean REav Min Max Mean REav

N30-DS20-C41-cd012-ct083 2 6 3.70 0.026 3 7 5.08 0.124

N30-DS20-C71-cd018-ct069 1 7 3.37 0.048 3 10 5.66 0.080

N30-DS20-C85-cd020-ct065 3 9 6 0.071 5 12 8.37 0.099

N30-DS20-C119-cd028-ct053 3 10 5.70 0.048 6 12 8.83 0.075

N30-DS20-C334-cd074-ct025 6 13 8.16 0.025 6 14 9.87 0.030

N30-DS20-C387-cd090-ct021 3 9 6.66 0.018 5 13 8.70 0.033

N30-DS20-C389-cd090-ct021 2 9 6.08 0.016 4 14 8.95 0.024

N30-DS20-C392-cd090-ct021 3 10 7.08 0.019 5 15 9.16 0.024

N30-DS20-C399-cd090-ct021 5 13 7.70 0.020 6 14 9.79 0.025

N30-DS40-C85-cd020-ct073 5 11 7.75 0.092 7 14 10.87 0.152

N30-DS40-C96-cd020-ct073 8 12 16 0.167 11 19 14.58 0.015

Artificial Intelligence - Emerging Trends and Applications270

MLV-WGA WGA

Instance Min Max Mean REav Min Max Mean REav

N30-DS40-C121-cd026-ct063 8 14 10.5 0.087 9 19 14.33 0.152

N30-DS40-C125-cd026-ct063 8 18 12.20 0.098 10 19 15.58 0.125

N30-DS40-C173-cd044-ct045 4 10 6.41 0.038 6 14 9.20 0.054

N30-DS40-C312-cd070-ct031 7 14 10.5 0.033 7 19 13.33 0.025

N30-DS40-C328-cd076-ct029 6 13 10.37 0.032 10 18 13.45 0.042

N30-DS40-C333-cd076-ct029 7 13 10.25 0.031 9 18 12.62 0.038

N30-DS40-C389-cd090-ct025 6 13 9.33 0.024 9 17 12.20 0.032

N30-DS40-C390-cd090-ct025 6 14 9.29 0.024 10 17 13 0.031

REav denotes the relative error in percent. The value in bold shows the algorithm with the lowest RE.

Table 2. MLV-WGA vs. WGA: number of variables: 30.

MLV-WGA WGA

Instance Min Max Mean REav Min Max Mean REav

N40-DS20-C78-cd010-ct079 6 12 8.91 0.115 5 13 9.04 0.116

N40-DS20-C80-cd010-ct079 7 13 9.62 0.121 7 13 10.04 0.153

N40-DS20-C82-cd012-ct073 4 9 6.25 0.073 4 11 6.95 0.085

N40-DS20-C95-cd014-ct067 2 8 4.45 0.047 2 7 4.12 0.044

N40-DS20-C653-cd084-ct017 2 14 9.37 0.015 6 16 10.62 0.018

N40-DS20-C660-cd084-ct017 6 14 9.12 0.014 7 6 9.75 0.015

N40-DS20-C751-cd096-ct015 6 13 9.91 0.014 5 13 9.83 0.014

N40-DS20-C752-cd096-ct015 5 17 9.29 0.013 3 13 9.20 0.013

N40-DS20-C756-cd096-ct015 6 15 9.95 0.014 5 16 8.75 0.012

N40-DS40-C106-cd014-ct075 7 14 11.08 0.105 7 16 11.5 0.109

N40-DS40-C115-cd014-ct075 12 20 15.5 0.135 11 20 15.5 0.135

N40-DS40-C181-cd024-ct055 6 17 12.04 0.067 7 17 11.75 0.065

N40-DS40-C196-cd024-ct055 11 12 16.58 0.085 12 20 15.54 0.080

N40-DS40-C226-cd030-ct047 7 14 10.91 0.051 7 16 11.16 0.050

N40-DS40-C647-cd082-ct021 11 23 15.66 0.025 11 20 15.20 0.024

N40-DS40-C658-cd082-ct021 11 22 16.33 0.025 13 21 16.70 0.026

N40-DS40-C703-cd092-ct019 9 21 13.41 0.020 8 20 13.58 0.020

N40-DS40-C711-cd092-ct019 12 23 15.75 0.023 8 20 14.87 0.021

N40-DS40-C719-cd092-ct019 8 21 16.54 0.024 10 20 15.16 0.022

REav denotes the relative error in percent. The value in bold shows the algorithm with the lowest RE.

Table 3. MLV-WGA vs. WGA: number of variables 40.

A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem
http://dx.doi.org/10.5772/intechopen.78299

271

the two algorithms. For each algorithm, the best (Min) and the worst (Max) results are given,

while mean represents the average solution. MLV-WGA outperformsWGA in 53 cases out of 96,

gives similar results in 20 cases, and was beaten in 23 cases. The performance of both algorithms

differs significantly. The difference for the total performance is between 25 and 70% in the

advantage ofMLV-GA. Comparing the worst performances of both algorithms,MLV-WGAgave

bad results in 15 cases, both algorithms give similar results in 8 cases, and MLV-WGA was able

to perform better than WGA in 73 cases. Looking at the average results, MLV-WGA does

between 16 and 41% better than WGA in 84 cases, while the differences are very marginal in the

remaining cases where WGA beats MLV-WGA.

4. Conclusion

In this work, a multilevel weighted based-genetic algorithm is introduced for MAX-CSP. The

results have shown that the multilevel genetic algorithm returns a better solution for the

equivalent run-time for most cases compared to the standard genetic algorithm. The multilevel

paradigm offeres a better strategy for performing diversification and intensification. This is

achieved by allowing GA to view a cluster of variables as a single entity thereby leading the

search becoming guided and restricted to only those assignments in the solution space in

which the variables grouped within a cluster are assigned the same value. As the size of the

clusters gets smaller from one level to another, the size of the neighborhood becomes adaptive,

and allows the possibility of exploring different regions in the search space while intensifying

the search by exploiting the solutions from previous levels in order to reach better solutions.

Author details

Noureddine Bouhmala

Address all correspondence to: noureddine.bouhmala@usn.no

Department of Maritime Technology and Innovation, University SouthEast, Raveien, Borre,

Norway

References

[1] Dechter R, Pearl J. Tree clustering for constraint networks. Artificial Intelligence. 1989;38:

353366

[2] Minton S, Johnson M, Philips A, Laird P. Minimizing conflicts: A heuristic repair method

for constraint satisfaction and scheduling scheduling problems. Artificial Intelligence.

1992;58:161-205

[3] Morris P. The breakout method for escaping from local minima. In: Proceeding AAAI’93

Proceedings of the Eleventh National Conference on Artificial Intelligence. 1993. pp. 40-45

Artificial Intelligence - Emerging Trends and Applications272

[4] Wallace R, Freuder E. Heuristic methods for over-constrained constraint satisfaction prob-

lems. In: Over-Constrained Systems. LNCS. Vol. 1106. Berlin, Germany: Springer Verlag;

1995. pp. 207-216

[5] Galinier P, Hao, J. Tabu search for maximal constraint satisfaction problems. In: Principles

and Practice of Constraint Programming CP 1997. LNCS. Vol. 1330. Berlin, Germany:

Springer Verlag; 1997. pp. 196-208

[6] Zhou Y, Zhou G, Zhang J. A hybrid glowworm swarm optimization algorithm for

constrained engineering design problems. Applied Mathematics and Information Sci-

ences. 2013;7(1):379-388

[7] Davenport A, Tsang E, Wang C, Zhu K. Genet: A connectionist architecture for solving

constraint satisfaction problems by iterative improvement. In: Proceedings of the Twelth

National Conference on Artificial Intelligence. 1994

[8] Voudouris C, Tsang E. Guided local search: Handbook of metaheuristics. International

Series in Operation Research and Management Science. 2003;57:185-218

[9] Schuurmans D, Southey F, Holte E. The exponentiated subgradient algorithm for heuristic

Boolean programming. In: 17th International Joint Conference on Artificial Intelligence.

San Francisco, CA, USA: Morgan Kaufmann Publishers; 2001. pp. 334-341

[10] Shang E,Wah B. A discrete Lagrangian-based global-searchmethod for solving satisfiability

problems. Journal of Global Optimization. 1998;12(1):6199

[11] Hutter F, Tompkins D, Hoos H. Scaling and probabilistic smoothing: Efficient dynamic

local search for SAT. In: Principles and Practice of Constraint Programming CP 2002.

LNCS. Vol. 2470. Berlin, Germany: Springer Verlag; 2002. pp. 233-248

[12] AmanteD,MarinA.Adaptive penaltyweightswhen solving congress timetabling.Advances

in Artificial Intelligence, Lectures Notes in Computer Science. 2004;3315:144-153

[13] Pullan W, Mascia F, Brunato M. Cooperating local search for the maximum clique prob-

lems. Journal of Heuristics. 2011;17:181-199

[14] Fang S, Chu Y, Qiao K, Feng X, Xu K. Combining edge weight and vertex weight for

minimum vertex cover problem. In: FAW 2014. 2014. pp. 71-81

[15] Lee H, Cha S, Yu Y, Jo G. Large neighborhood search using constraint satisfaction tech-

niques in vehicle routing problem. In: Gao Y, Japkowicz N, editors. Advances in Artificial

Intelligence. Lecture Notes in Computer Science. Vol. 5549. Heidelberg: Springer Berlin;

2010. pp. 229-232

[16] Bouhmala N. A variable depth search algorithm for binary constraint satisfaction prob-

lems. Mathematical Problems in Engineering. 2015;2015:Article ID 637809, 10 pages. DOI:

10.1155/2015/637809

[17] Holland J. Adaptation in Natural and Artificial Systems. Ann Arbor: The University of

Michigan Press; 1975

A Multilevel Genetic Algorithm for the Maximum Satisfaction Problem
http://dx.doi.org/10.5772/intechopen.78299

273

[18] Xu W. Satisfiability transition and experiments on a random constraint satisfaction prob-

lem model. International Journal of Hybrid Information Technology. 2014;7(2):191-202

[19] Gent IP, MacIntyre E, Prosser P,Walsh T. The constrainedness of search. In: Proceedings of

the AAAI-96. 1996. pp. 246-252

Artificial Intelligence - Emerging Trends and Applications274

