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1. Introduction

The modern age of information may be regarded as the era of fast- and high-bandwidth

communication, which exploits fiber-optic communication system. Transmission of signals

spanning distances of over thousands of kilometers essentially cause signal degradation. Due

to varieties of loss mechanisms in the medium (the optical channel used for transmission),

there happens gradual attenuation in the power of signals being transmitted, as those propa-

gate through a communication channel. Clearly, the attenuation imposed by the medium

remains a serious issue that affects light propagating ultra-long distances through a fiber-

optic cable (the communication link). The degradation of signal must be overcome, which

makes the utilization of the process of amplification (of signal) vital. Further, in order for the

information carried by a signal to be detectable at the receiving end, there must be a minimum

amount of threshold power, which the signal must possess. As such, optical amplifiers, which

would incorporate optical fibers and/or waveguides, remain indispensable in fiber-optic com-

munication systems owing to the limitations imposed by the transmission channels/systems.

These limitations would arrive in the form of fiber loss and dispersion, which are usually

overcome by exploiting varieties of amplifiers. In reality, loss and dispersion are related to

each other [1], which can be well-understood upon giving a thought to a pulse shape—more

broad a pulse becomes (causing dispersion), more will be the decrease in power (causing loss),

and vice-versa.

In earlier days, optoelectronic repeaters were in use for the purpose of amplification, wherein

the optical signal is first converted into an electric current, and then regenerated using a

transmitter [2]. However, the process of regeneration used to be quite complex and expensive,

in particular, when multichannel optical systems are in use. As such, the exploitation of optical

amplifier evolved as the alternative approach for amplifying optical signals during transmis-

sion. It is a device that directly amplifies an optical signal, without the need of conversion to an

electrical signal—the feature needed in the so-called repeaters.
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2. The mechanism involved

To the very fundamental level, optical amplifiers amplify the incident light through the process

of stimulated emission—the mechanism similar to what exploited in the operation of lasers.

One would say that optical amplifiers are, in fact, lasers without feedback mechanism, and the

optical gain is realized when the amplifier is pumped to achieve population inversion [3]. The

achieved optical gain depends not only on the frequency of the incident optical signal, but also,

the local beam intensity at any point inside the amplifier. As such, the bandwidth of an

amplifier remains greatly important as it determines the frequency and intensity dependence

of the optical gain (of an amplifier).

3. A few different amplifier types

Optical amplifiers can be of varieties of forms ranging from the solid-state type to the fiber-

based ones [2]. Usually the operation of an optical amplifier relies on the process of feedback,

which essentially yields enough gain corresponding to the frequency of signal. An optical

amplifier can also be without feedback—the category addressed as traveling wave amplifiers

[4]. In these, the amplified signal travels in the forward direction only. In solid-state kind of

amplifiers, the resonator is generally made of certain solid materials (e.g., semiconductors), the

shape and structure of which tailor the gain parameter. On the other hand, fiber-based ampli-

fiers would rely on the phenomenon of inelastic scattering of light, and/or certain dopants (in

the fiber) would make the guide itself an all-optical type of structure to yield the required

amount of gain. In this section, a few different types of optical amplifiers are touched upon in

cursory form.

3.1. Semiconductor optical amplifiers

Semiconductor optical amplifiers (SOAs) fall in the category of solid-state amplifier, wherein

semiconductor lasers are used [5]. These experience a relatively large amount of feedback

because of multiple reflections (of light) occurring at the cleaved facets of the Fabry-Perot (FP)

kind of laser cavity. As such, SOAs can be used as amplifiers when biased below threshold.

These amplifiers are easy to fabricate, but the optical signal gain remains highly sensitive to the

variations in temperature (of amplifier) and the input optical frequency.

If the SOA is to be of the traveling wave type, the feedback due to reflection from the end facets

is to be suppressed. A simple way to reduce the reflectivity would be to coat the facets with

a kind of antireflection coating. Indeed, the reflectivity of one of the facets must be extremely

small (<0.1%) for the SOA to be operated as a traveling wave amplifier. The minimum amount

reflectivity would depend on the amplifier gain. However, it remains almost impossible to

realize low reflectivity values of facets in a predictable form—the feature that motivated to

investigate other possibilities to achieve the same. Within the context, one of the possibilities

would be to use a tilted resonator cavity in laser. In such a kind of laser structure, the angled-facet
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makes the reflected light to be physically separated from the light propagating in the forward

direction. However, to attain a vanishing amount of feedback is almost impossible, due to the

physical properties of light propagating in a guiding channel. Apart from this kind of structure,

another form would be to use a window-facet structure, wherein a transparent window in

implanted between the ends of active region and the facets. Losses take place in such structures

due to the spreading of signal in the window section—the feature that causes to minimize the

reflectivity.

3.2. Fiber Raman amplifiers

It has been known that the response of any dielectric medium to light becomes nonlinear in the

case of high electric fields. Such nonlinearities would result in nonlinear (or inelastic) scatter-

ing, and the frequency of the scattered light would be downshifted, thereby resulting into a

kind of loss (in the fiber). As such, the scattering of photon contributes to the loss of power at

the incident frequency. However, corresponding to low incident power levels, the scattering

cross-sections remain very small, and therefore, the loss becomes negligible. On the other

hand, for high incident optical fields, the nonlinear phenomenon of stimulated Raman scatter-

ing (SRS) takes place that leads to a considerable amount of loss. Once the incident optical

power exceeds a threshold value, the intensity of the scattered light grows exponentially.

In fiber Raman amplifiers, SRS takes place in silica fibers in the case, when an intense optical

pump signal propagates through it [6]. Here the incident pump photon gives up its energy to

create another photon of reduced energy at a lower frequency. The remaining amount of

energy is absorbed by the medium in the form of molecular vibrations, thereby generating

optical phonons. As such, fiber Raman amplifiers are pumped optically to achieve gain. The

difference in energy is known as Stokes shift. The pump and signal frequencies are injected

into a fiber, and the energy is transferred from the pump beam to the signal beam through the

process of SRS, as the two beams co-propagate along the fiber. The pump and signal beams can

also be injected into the fiber in such a way that they would counter-propagate (inside the

fiber). Indeed, it depends on the pumping configurations used to achieve the required amount

of gain with certain merits and demerits.

Fiber Raman amplifiers exhibit broad bandwidth—the feature which remains useful for ampli-

fying several channels simultaneously, and also, short optical pulses [7]. These amplifiers can

also be used to overcome fiber loss in soliton-based communication systems, and therefore,

highly recommended for distributed amplification. However, these suffer from the drawback

of the need of high-power lasers for optical pumping, thereby making the communication not

enough cost-effective.

3.3. Fiber Brillouin amplifiers

Fiber Brillouin amplifiers operate similarly to fiber Raman amplifiers except that the gain in

this case is provided by the process of stimulated Brillouin scattering (SBS), instead of SRS.

When such amplifiers are pumped optically, a part of the pump power is transferred to the

signal through SBS [8–13]. Each pump photon uses most of its energy to create a signal photon,
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and the remaining amount of energy is used to excite an acoustic phonon. As such, the

amplifier system relies on acoustic phonons, instead of optical phonons, as we come across in

the case of fiber Raman amplifiers [14, 15]. The phenomenon of SBS differs from SRS in the

following forms:

• In SBS, amplification occurs only when the signal beam propagates in a direction opposite

to that of the pump beam (backward pumping configuration), whereas in the case of SRS,

both kinds of configurations would be exploited.

• The Stokes shift in SBS is smaller (nearly 10 GHz) by three orders of magnitude compared

with that obtained in SRS.

• The Brillouin gain spectrum is narrow (less than 100 MHz).

This much amount of narrow bandwidth results into low gain-bandwidth product provided

by fiber Brillouin amplifiers, which is the prime disadvantage of this kind of device for the

usage in amplifying optical signals in lightwave communication systems. As such, better usage

of Fiber Brillouin amplifier would be as preamplifier to improve the receiver sensitivity. In

addition, the noise figure of such amplifiers is quite large (over 15 dB).

3.4. Doped-fiber amplifiers

Doped-fiber amplifiers make use of rare earth elements (namely erbium, holmium, neodym-

ium, samarium, thulium and ytterbium) as a gain medium (i.e., the cavity resonator). Such

elements are doped in usual silica fibers, and therefore, the characteristics of these amplifiers

are determined by the dopants rather than by the silica fiber [2]; the latter one plays the role of

host medium only. The use of different types of dopants makes the fiber amplifier to operate in

different wavelengths covering a range of 0.5–3.5 μm. Among the others, the erbium-doped

fiber amplifiers (EDFAs) are greatly attractive as these operate near 1.55 μm wavelength,

corresponding to which the fiber loss remains minimum [16, 17]. The key element in EDFA is

erbium— a rare earth element in the lanthanide series.

Erbium was a relatively unimportant element in the past, but now it has been postulated that

what silicon is to the semiconductor technology, erbium will be to the photonics technology.

According to Emmanuel Desurvire [18], small amount of erbium doping in optical fibers

—“makes it possible to distribute the gain over the fiber itself, thereby minimizing the power excursion

of the signal. Such an approach makes possible virtually lossless signal transmission from one fiber

network to the next.”

EDFAs can be designed to operate in such a way that the pump and signal beams propagate

along the same direction (unidirectional pumping configuration). In bidirectional pumping,

the amplifier is pumped in both directions simultaneously by using two semiconductor lasers

located at the two fiber ends. Both the types of configurations have their relative merits and

demerits. Some of such relevant configurations have been reported before in Refs. [19–21].

The gain characteristics of EDFAs depend on the pumping scheme as well as the other co-

dopants, such as germania and alumina—the materials that remain present in the fiber core.
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The amorphous nature of silica broadens the energy levels of Er3+ ions into Er3+ bands—the

feature facilitating different possible transitions that can be used to pump the EDFA. Structural

disorders lead to inhomogeneous broadening of the EDFA gain profile, whereas Stark splitting

of various energy levels is responsible for homogeneous broadening. The addition of alumina

to the core broadens the gain spectrum even more.

Efficient EDFA pumping generally requires semiconductor lasers operating near 0.98 and

1.48 μm. The required amount of pump power can be reduced by using silica fibers doped

with aluminum and phosphorous or by using fluorophosphate fibers. Within the context, the

EDFA gain spectrum can vary from amplifier to amplifier even when the core composition is

the same. This is because the EDFA gain also depends on the length of amplifier, that is, the

size of FP cavity resonator wherein multiple reflections take place. Gain essentially depends on

both the absorption and emission cross-sections, which have distinct spectral characteristics.

Apart from these, other device as well as operational parameters, such as Er3+ ion concentra-

tion, amplifier length, core radius and pump power, also play vital roles to determine EDFA

gain spectrum.

EDFAs exhibit relatively low noise levels, making them suitable for applications in lightwave

communication systems. Nevertheless, long haul fiber-optic communication systems employ-

ing multiple EDFAs suffer from the issues related to amplifier noise. Such problems become

severe when the system operates in the anomalous dispersion region of fiber. This happens

primarily due to the fact that the nonlinear phenomenon, known as modulation instability,

plays a prime role to enhance the amplifier noise, thereby degrading the spectral characteris-

tics of signal.

As stated before, EDFAs are ideal for lightwave communication systems operating near

1.55 μm wavelength. However, worldwide telecommunication network contains huge span

of communication link optimized for operations at other wavelengths as well, at 1.3 μm.

Clearly, signal amplification in such communication networks needs other forms of amplifiers.

Within the context, silica fibers, doped with neodymium ions, would provide fiber amplifiers

that can be operated in the 1.30–1.36 μm wavelength span. However, such amplifiers suffer

from the undesirable effects, such as excited-state absorption and radiative transitions, thereby

limiting the performance characteristics. To overcome the issues, varieties of other forms of

amplifiers, such as Nd3+ ion-doped fluoride fibers, ZABLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fibers

doped with praseodymium (Pr3+) ions, ytterbium-doped fibers, etc., were investigated with

their relative merits and demerits [2].

4. Applications

There can be various forms of applications of optical amplifiers. For example, as stated earlier,

the use of optical amplifiers is particularly attractive for multichannel systems since they can

amplify all channels simultaneously. The use of SOAs as preamplifiers increases the sensitivity

of optical receivers. In such a kind of application, the signal is optically amplified before it falls

on the receiver. The preamplifier boosts the signal to a level that the receiver performance is

Introductory Chapter: A Revisit to Optical Amplifiers
http://dx.doi.org/10.5772/intechopen.78671

5



improved in terms of noise figure. Such amplifiers are used in local area networks (LANs) as

well in order to compensate the loss due to the distribution of signal. SOAs can also be used as

power amplifiers to boost the signal power. Further, a power amplifier can increase the

distance of optical transmission by 100 km or more. However, it essentially depends on the

amplifier gain and channel loss. Finally, the purpose of using amplifiers in transmission links is

to boost the propagating power [2].

After all these different types of applications of SOA, it must be emphasized that these suffer

from many drawbacks, namely polarization sensitivity, interchannel cross-talk, and large

coupling loss, which essentially limit their usage as in-line amplifiers. Fiber amplifiers do not

suffer from such severe issues and can be exploited satisfactorily for signal amplification in the

1.55 μm-based communication links. However, as to the 1.3 μm-based lightwave systems,

SOAs remain better alternative because fiber amplifiers do not perform well in this wave-

length. Furthermore, SOAs can be used as wavelength converter and fast switch for wave-

length routing in wavelength-division-multiplexed (WDM) networks [22].

5. Current scenario

Varieties of optical amplifiers have been put forward by the investigators that are capable for

usages based on specific needs. The scope of the present introductory chapter remains out of

accounting all those in concise forms. Just to state a few, one may focus on the organic

semiconductor lasers, which contribute to major advances in the area of organic light emitting

diodes (LEDs). Such semiconductors exhibit high absorption and broadband spectra. Further,

their operations in the visible spectrum regime make them highly prudent for many applica-

tions [23]. These amplifiers are pumped optically, and day-by-day, the pumping scheme has

seen improvements to the extent that compact sources, such as microchip lasers [24], have been

in use with high efficiency. High absorption yields large gain, and therefore, the gain-

bandwidth product becomes very large for such solid-state amplifiers [25]. Furthermore, these

amplifiers exhibit good compatibility with polymer-based optical fibers.

The communication schemes currently employ WDM systems, and therefore, optical amplifiers

are designed accordingly so that all the channels with different wavelengths can be simulta-

neously amplified. As such, the demand remains for optical amplifiers with better performance,

in terms of optical nonlinearities, channel crosstalk, gain flatness, large gain-bandwidth product,

etc. Meeting these specifications only would make the amplifier suitable for dense-WDM sys-

tems. Within the context, hybrid optical amplifiers (HOAs) are of promising use as these are

suitably applicable for high-speed broadband applications in cost-effective ways [26]. In fact, the

combination of more than one optical amplifier in any configuration is termed as HOA. The

implementation of such scheme has the potential benefits of large gain over a broad bandwidth

with large channel spacing and reduced nonlinear losses. However, these also suffer from cross

talk, noise and nonlinear losses. HOA can be used in DWDM systems where high gain and/or

gain bandwidth with less variation is required. However, relative merits and demerits of differ-

ent configurations have been making the investigators engaged in coming up with new ideas to

design such amplifiers with enhanced efficiencies [27–31].
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6. Summary

Optical amplifiers are the key components in the present-day distant communication systems,

wherein fiber-based networks are vigorously exploited under the principle of WDM. Indeed,

merits and demerits remain in adopting different configurations, which essentially depend on

the need of operation. The very basic principles of some of the forms of optical amplifiers are

discussed in this introductory chapter. This is made primarily with the aim of creating the

background before authors read the contributions by the different authors in this Book. Apart

from this chapter, there are six other chapters included—all of which are dedicated to the recent

advancements in the area of optical amplifiers; the introductory chapter would make the under-

standing of the remaining part (of the Book) fairly simpler. With such thoughts, the editor of the

Book expects the volume to be of help for graduate students as well as established scientists—the

former group of readers would generate their own ideas, where the latter ones would foster own

research with having glimpse of the ongoing investigations in the relevant field.
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