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Clinical Aspects Related to Plasma 
Serotonin in the Horse
Katiuska Satué Ambrojo, Juan Carlos Gardon Poggi  

and María Marcilla Corzano

Abstract

Serotonin (5-HT) is a neurotransmitter that has important functions such as the 
physiological regulation of hemostasis, blood clotting, bone metabolism, cardiovas-
cular growth, contractile activity and gastrointestinal motility, renal function, and 
stress and sexual behavior, among others. In this review, we consider the potential 
of 5-HT to contribute to the development of various pathological conditions, 
including metabolic, vascular, and nervous disorders in horses. The values of 5-HT 
in circulation are modified under common pathological conditions. Thus, laminitis, 
endotoxemia, surgical cramps, recurrent airway obstruction, Cushing’s syndrome, 
central fatigue, and certain behavioral alterations such as stereotypes and other 
acute or chronic conditions can cause increased levels of 5-HT.

Keywords: horse, pathology, plasma serotonin

1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is an important neurocrine messenger 
that is synthesized from tryptophan (TRP) by tryptophan hydroxilase in the brain 
and mastocytes and enterochromaffin (EC) cells in the gastrointestinal (GI) tract 
[1]. TRP is able to cross the blood-brain barrier and metabolize into 5-HT in the 
raphe nuclei within the brain stem. In the intestinal tract, 5-HT is produced by EC 
and to a lesser extent by serotonergic neurons and released upon mucosal stimula-
tion. The synthesis of 5-HT is identical in the central nervous system (CNS) and in 
the gut, where TRP is first converted to 5-hydroxytryptophan (5-HTP) via trypto-
phan hydroxylase (TPH), the rate-limiting enzyme in the biosynthesis of enzyme. 
5-HT is eliminated from the interstitium by 5-HT transporters on enterocytes 
and neurons; 5-HT overflow from the gut reaches the intestinal lumen and portal 
circulation. In the circulation, it is quickly removed from the plasma by uptake into 
platelets (PLTs) or metabolized by monoamine oxidase (MAO) into 5-hydroxy-
indoleacetic acid (5-HIAA) in hepatic and lung endothelial cells. Plasma 5-HT is 
quickly transported into the PLTs via 5-HT reuptake transporter (5-HT transporter; 
SERT) on the PLT membrane. PLTs accumulate, store, and release 5-HT in an analo-
gous manner to central serotoninergic synaptosomes. The free plasma 5-HT exerts 
important systemic functions, modulating PLT aggregation, and has been reported 
to be also involved in vasomotor function [1, 2].

In GI tract, 5-HT interacts with receptors on afferent neurons, initiating peri-
staltic, secretion, and secretory reflexes. On the other hand, 5-HT induces smooth 
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muscle cell contraction and proliferation but stimulates endothelial cells to release 
vasodilating substances and acts as a “helper agonist” of PLT aggregation [2, 3].

Measurement of 5-HT in whole blood gives a reasonable approximation of 5-HT 
in PLTs [4], and the free 5-HT/whole blood-5-HT (f-5HT/WB-5-HT) ratio may be a 
marker of PLT activation [5]. The concentration of free 5-HT is typically measured 
in PLT-poor plasma (PPP), produced by prolonged or high-speed centrifugation of 
plasma and containing <10,000 PLTs/μl [6]. Several researchers reported PPP 5-HT 
values in healthy horses range from 2.5 ng/ml to 90 ng/ml, with a majority varying 
between 3 ng/ml and 30 ng/ml [7–16]. Plasma 5-HT is the fraction which shows the 
equilibrium state between synthesis by EC cells, the inactivation by liver and lung 
by MAO and PLT uptake.

5-HT plasma concentrations in horses are subject to physiological variations 
such as age [17, 18], exercise [7–9], stress [19], seasonal, circadian and nycthemeral 
rhythms [15, 20], altitude [21], reproductive status [22], and type of anticoagulant 
and laboratory technique [23–25]. In addition, these factors also influence the 
analytical results of this neurotransmitter. Even in healthy horses, reported refer-
ence values for 5-HT are not consistent, which hampers further research into the 
role of 5-HT in equine diseases. One possible explanation for this inconsistency is 
the use of different biological samples and analytical methods for 5-HT determina-
tion. Indeed, to determine the concentrations of 5-HT in whole blood high-pressure 
liquid chromatography (HPLC) [7] and in serum, commercially available enzyme-
linked immunosorbent assays (ELISA) or radioimmunoassays (RIAs) [19] have 
been used. Torfs et al. [24] showed that for accurate determination of plasma levels 
of 5-HT, it is essential to use PPP. It is believed that 5-HT in PPP reflects the amount 
of 5-HT synthesized and recently secreted in EC cells. Although ELISA [23] and 
HPLC [18, 21] have been used, the tandem chromatographic mass spectrometry 
(LC-MS/MS) method is suitable for determining the plasma reference values of 
5-HT and analyzing changes in 5-HT associated with pathological conditions.

2. Role of serotonin in the equine clinic

In horses, changes in 5-HT levels are associated with gastrointestinal pathologies 
such as ileus, colic or endotoxemia, vascular dysfunctions such as digital hypoper-
fusion causing laminitis, recurrent airway obstruction and endocrine disruption 
such as intermediate equine pituitary dysfunction (PPID) or Cushing syndrome, 
and behavioral alterations such as stereotypes [26, 27].

2.1 Gastrointestinal diseases: ileus, colic, and endotoxemia

In the intestine, there are three types of cells that produce 5-HT, such as immune 
cells, nerve cells and EC cells [26]. Free plasma 5-HT concentration is a potential 
predictive parameter for postoperative ileus, since it may reflect intestinal integrity, 
as well as the circulatory effects associated with inflammation or endotoxemia. 
Therefore, 5-HT quantitation might be an aid in prognosticating the outcome in 
horses with postoperative colic. The knowledge of plasma 5-HT changes in colic 
horses is also important in the quest for an effective treatment for ileus, since 
certain classes of prokinetic drugs target 5-HT receptors [26]. A risk of receptor 
desensitization [27] might exist when these drugs are used in patients with already 
elevated 5-HT levels.

5-HT contractile receptors have been identified in the longitudinal and circular 
layers of the smooth muscle [28] and myenteric neurons of descending colon, ileum 
and submucosal neurons of ileum, and duodenum in horses [29, 30], in which 5-HT 
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exerts local actions, causing the activation of intrinsic and extrinsic afferent neu-
rons. This initiates secretory and peristaltic responses to transmit the information to 
the CNS [27]. While the interaction of 5-HT with 5-HT2, 5-HT3, and 5-HT4 receptors 
stimulates contractibility, 5-HT1 and 5-HT7 receptors induce relaxing effects in the 
GI tract [31]. Among these types of receptors, 5-HT4 exerts important control over 
intestinal motility. Indeed, a prokinetic effect occurs following the administration 
of 5-HT4 agonists, such as Tegaserod and Mosapride [32].

In horses with intestinal hypomotility, the agonist of 5-HT4 receptor 
Prucalopride can increase motor contractility of the duodenum, cecum, and colon, 
30–90 minutes after oral administration. This motor activity is maximal in the 
duodenum, with a minimal increase in the cecum and left colon related with other 
intestinal segments [33]. Tegaserod is other selective agonist of 5-HT4 receptor 
that induces increase in the frequency and amplitude of contractions in equine 
ileum and pelvic flexion [34], speeding up GI transit time and increases frequency 
of bowel sounds and defecation [29]. In this way, Tegaserod can offer therapeutic 
potential in horses suffering from impaction or paralytic ileus. Cisapride is an 
indirect cholinergic prokinetic agent that acts by promoting the release of acetyl-
choline from intramural nerve terminals (myenteric plexus) through stimulation 
of 5-HT4 receptors [35]. Mosapride is other selective agonist of 5-HT4 receptors. 
The use of this agonist improves gastric, jejunal, and cecal motility in horses [36]. 
A disadvantage of this medication is the oral administration route. This complicates 
the use in horses with postoperative ileus. Unfortunately, the availability of this 
drug is also limited. On the other hand, Tegaserod with a higher risk of cardiac 
events in humans has been suspected (as for cisapride), its availability is limited, 
as well as its application in equine practice, explaining the lack of more clinical 
reports. This drug is a potent dopamine D2 receptor antagonist, a moderate 5-HT3 
receptor antagonist, and 5-HT4 receptor agonist [29] that increases the contractility 
of smooth muscle [37] and improved in vivo motility of the jejunum [36].

The final effects of 5-HT in the intestine will depend on plasma concentrations 
and the balance between activation and desensitization of these receptors. The 
concentrations of 5-HT in the intestinal mucous membrane and its association with 
postoperative bowel recovery may better reflect the net effects of 5-HT on intestinal 
motility [38].

5-HT is a very potent proinflammatory, vasoconstrictor, and immunomodula-
tory agent. Although Delesalle et al. [11] reported an increase in plasma concentra-
tions of 5-HT in horses with intestinal strangulation, Ayala et al. [19] showed a 
decrease in serum concentration of 5-HT in horses with acute abdominal pain.

Several authors have observed higher concentrations of 5-HT after ischemia-
reperfusion in the peritoneal fluid intestinal lumen and mesenteric, portal, and 
hepatic veins [11, 39]. Increased plasma of 5-HT can have important consequences 
in colic horses. It has been shown in vitro and in vivo that 5-HT is an important and 
very powerful vasoconstrictor agent [16]. The accumulation of 5-HT in the systemic 
circulation of horses that have colic may reinforce continuous intestinal ischemia. 
Both local lesions in the intestinal wall and the associated inflammatory and endo-
toxemic systemic reactions promote the development of ileus. The concentration 
of free 5-HT in plasma is a possible predictive parameter in cases of postoperative 
ileus, as it may reflect the integrity of the intestine, as well as the circulatory effects 
associated with inflammation or endotoxemia. For this reason, the quantification 
of 5-HT in horses could be an important tool to predict postsurgical evolution as a 
consequence of colic [26, 40].

Coagulation of circulating PLTs, as well as EC from necrotizing intestinal 
segments, could serve as a source of 5-HT. In horses, it is argued that intestinal 
ischemia makes the mucosa more permeable. This event leads to an important 
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translocation of endotoxins and amines from the diet, among which 5-HT passes 
from intestinal contents to systemic circulation [28]. Indeed, Davis et al. [41] 
showed liver lesions in horses suffering from proximal duodenitis-jejunitis. In 
addition to the lesion caused by the ascending bile duct infection, these authors 
also propose the absorption of endotoxins or inflammatory mediators of portal 
circulation. In addition, hepatic hypoxia resulting from systemic inflammation and 
endotoxemic shock may be possible causes of liver injury.

Intestinal microorganisms are also important for the 5-HT synthesis. Yano 
et al. [42] estimated that 90% of peripheral 5-HT is produced by the intestinal 
microbiota. These authors found that in germ-free mice, the production of 5-HT 
was approximately 60% less in comparison to mice with normal intestinal bacteria. 
Indeed, when bacterial colonies were restored in the intestines of germ-free mice, 
5-HT levels are recovered. Several metabolic byproducts of the intestinal microbiota 
are controlled by the mixture of spore-forming bacteria acting on EC to alter 5-HT 
production. However, bacteria are capable to produce 5-HT on their own. In fact, 
Lactobacillus spp. produce acetylcholine and GABA; Bifidobacterium spp. produce 
GABA, Escherichia produce norepinephrine, 5-HT, and dopamine; and Streptococcus 
and Enterococcus produce 5-HT. Bacillus species have also been shown to produce 
norepinephrine and dopamine [43].

Torfs et al. [24] showed that the plasma concentrations of 5-HT are significantly 
lower in horses with small bowel surgical colic compared to healthy animals. In 
addition, it was demonstrated that 5-HT concentrations remained low until at least 
the first morning after surgery. A previous study on horses with signs of acute colic 
showed significantly lower concentrations of 5-HT compared to healthy ones [19]. 
However, this earlier study focused on serum concentration of 5-HT used the ELISA 
method of analysis. This situation complicates the comparison of these results with 
the current ones. In contrast to these achievements, Delesalle et al. [11] indicated 
an increase in plasma concentrations of 5-HT, measured by HPLC, in a small group 
of horses undergoing small bowel surgery. In addition to the analytical differences 
between these studies, there are multiple possible physiological and pathological 
explanations for variations in the results obtained.

2.2 Vascular dysfunctions: Laminitis

The GI flora produces relatively high concentrations of dietary amines by 
fermenting the consumed amino acids [44, 45]. It is thought that the link between 
the GI system and the equine foot occurs through dietary amines.

The bacteria responsible for the fermentation of carbohydrates produce enzymes 
(amino acid decarboxylase) that convert free amino acids to monoamines. Then, 
the fermentation of large amounts of carbohydrates in the large intestine is associ-
ated with a greater number of Gram-positive bacteria (Streptococci and Lactobacilli) 
and elevated production of dietary amines [12]. These bacteria increase in the 
production of lactate, which is responsible for the decrease in intraluminal pH caus-
ing death of Gram-negative bacteria and therefore an increase in endotoxin release 
(lipopolysaccharide, LPS). Tryptamine is the most potent amine in the cecum. It 
causes vasoconstriction both in vitro and in vivo through direct activation of seroto-
nergic receptors and 5-HT displacement of PLTs. Monoamines found in the horse’s 
cecum could potentially induce hemodynamic disturbances in the hoof resulting in 
lamellar ischemia and therefore laminitis [46–50]. Besides, these monoamines pres-
ent in the cecum can also be detected at much lower concentrations in blood plasma.

Leukocytes can be indirectly activated by PLTs and mainly by LPS. Therefore, 
endotoxin may contribute to the initiation of early inflammatory changes observed 
in experimental models of acute laminitis [13]. This may occur because the amines 
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are able to mimic and potentiate the effects of the biogenic amines (5-HT, epi-
nephrine, norepinephrine, and dopamine) in the circulation. Gut-derived amines 
mimic the actions of the endogenous biogenic amines by displacing 5-HT from PLTs 
or norepinephrine from sympathetic nerve ending or by directly activating the 
receptors for these amines on the vasculature [49]. The potentiation of the action 
of endogenous amines is produced by two processes: inhibition of absorption in 
endothelial cells and PLTs [47, 48] or by competition between amines derived from 
the intestines and endogenous amines by the metabolism of the enzyme amine 
oxidase [12, 47, 48].

Dietary amines are similar to substances normally produced by the body, 
including catecholamines and 5-HT. Since 5-HT is a potent vasoconstrictor that is 
mainly stored in PLTs, it helps to maintain low plasma concentrations that reduce its 
effects. Bailey et al. [46] reported that the absorption of 5-HT by PLTs is a saturable 
process in horses. The most efficient way to work is at substrate concentrations 
below the micromole. The noncompetitive inhibition of 5-HT absorption by other 
natural monoamines may result in increased plasma concentrations of 5-HT and 
endotoxin release. The amines present in the diet inhibit the uptake of 5-HT from 
the PLTs. As a result, plasma concentration of 5-HT would increase above the level 
at which digital vasoconstriction occurs [44, 51]. However, other peripheral blood 
vessels are unaffected, since digital vessels are much more sensitive to the vaso-
constriction effects of 5-HT [52, 53]. Dietary amines can also cause digital vaso-
constriction directly [49]. The overall result is the digital ischemia and subsequent 
reperfusion, which could lead to the activation of metalloproteinases.

Endotoxins act as a mechanism that triggers laminitis. These substances activate 
the coagulation cascade directly through the Hageman factor (factor XII, in the 
intrinsic coagulation pathway). They are called the contact factor because the 
activation occurs by contact with nonendothelial and foreign surfaces. In addition, 
endotoxins are the initial stage of intrinsic plasma coagulation. They also cause 
damage to endothelial cells and favor the addition of PLTs, thereby establishing a 
blood profile compatible with disseminated intravascular coagulation (DIC). As a 
result, peripheral vasoconstriction initially results in decreased capillary perfusion 
of the hoof with some degree of ischemia [47, 48].

The aggregation of PLTs and the formation of microthrombi in the capillaries of 
the hull contribute to maintain vascular occlusion ischemia. In addition, a potent 
vasoconstrictor such as thromboxane A2 is released from PLTs, which adds to 
increase the process. At the same time, the inflammatory response begins with the 
release of autacoids such as histamine, 5-HT, bradykinin, prostanoids, leukotrienes, 
and interleukin 1. Histamine plays a very important role in acute inflammation. 
It has a vasodilatory action on arterioles, but the role in inflammation is more 
important, since it improves the action of other mediators such as histamine and 
bradykinin. This results in arteriolar dilation, increased capillary permeability, and 
hyperalgesia. Leukotriene B4 is also involved in the passage of leukocytes to inflam-
matory exudate [16].

The relationship between the appearance of digital hypoperfusion and increases 
in plasma concentration of 5-HT is consistent. This is because PLTs-derived media-
tors are associated with LPS-induced laminitis. These experimental data support 
the use of antiPLT therapy in the prevention of laminitis related to endotoxemic 
diseases [16].

2.3 Endocrine diseases: pituitary pars intermedia dysfunction

Pituitary pars intermedia dysfunction (PPID) or Cushing’s disease is character-
ized by hypertrophy and hyperplasia of the Pituitary Pars Intermedia and is argued 
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to be due to a reduction in dopamine synthesis or degeneration of periventricular 
pituitary dopaminergic neurons [54]. PPID is more frequent in adult horses and 
result of a progressive loss of the neurotransmitter at central and peripheral level as 
result of the degeneration of the pineal gland [15].

The role of 5-HT in the regulation of the PPID it is not clear. Treatment of PPID 
in horse includes 5-HT antagonists [55], such as cyproheptadine. Antagonist of 
5-HT is potent secretagogue of ACTH in pituitary rat tissue, and it was used effec-
tively in human Cushing’s disease. Cyproheptadine decreases the 5-HT-induced 
stimulation to the pituitary pars intermedia, the synthesis of pro-opiomelano-
cortin (POMC), and finally, ACTH secretion. Cyproheptadine (0.25–0.5 mg/kg 
PO, SID, or BID) was used for the treatment of PPID result in an improvement in 
clinical status and normalization of laboratory parameters within 1–2 months of 
treatment initiation, being effective in 28–60% of cases [56]. However, similar 
improvements were achieved with improved nutrition, preventive care, and 
management alone [57].

Additionally, Bailey et al. [46] measured peripheral plasma concentrations of 
5-HT in summer, autumn, winter, and spring in clinically normal ponies and those 
predisposed to laminitis, and no significant differences were observed. Although 
light/dark differences were not investigated in the latter work, nycthemeral 
increases in serum 5-HT in the healthy, athletic horse have been reported [20]. 
Later, Haritou et al. [15] reported seasonal changes in circadian peripheral plasma 
concentrations of melatonin, 5-HT, dopamine, and cortisol in aged horses with 
PPID. Six horses and ponies with PPID were matched with six controls to test the 
hypothesis that aged horse responds differently to changes in season because of 
deficiency in melatonin production. They also examined the link between the 
presence or absence of the clinical signs of PPID and peripheral plasma concen-
tration of 5-HT, dopamine, and cortisol. Results showed that the 24-h pattern of 
plasma melatonin concentrations during the four seasons of the year was similar in 
both groups, indicating that impaired melatonin output is unlikely to play a role in 
PPID. However, 5-HT profiles were affected by season, with lower 5-HT detected 
in PPID horses in the summer and winter. Although the reasons for this reduc-
tion remain unknown, enhanced conversion of 5-HT to melatonin could account, 
at least in part, for the lowered circulating level. The total amount of dopamine 
released was dependent on season and markedly lower in PPID horses versus 
controls. These results implicate both serotonin and dopamine in the pathogenesis 
of the disease [15].

2.4 Behavioral alterations: stereotypes

Most frequently observed stereotypies in domestic horses are crib biting, weav-
ing, box walking, wind sucking, and wood chewing. However, there is no scientific 
consensus as to whether wood chewing is definitely a stereotypy [58]. More 
recently, some morphological variations of these stereotypic activities have also 
been identified as equine stereotypies, such as licking the environment, lip licking, 
sham chewing or teeth grinding, self-biting, and rubbing self, as well as locomotion 
stereotypies, including pawing, tail swishing, door kicking or box kicking, and head 
tossing/nodding [59]. The most common forms of equine stereotypies are within 
two general categories, oral and locomotion stereotypic behaviors.

The neurobiological consequences of equine stereotypies focus on neurotrans-
mitter systems, specifically the serotonergic and dopaminergic pathways [59, 60]. 
5-HT is implicated in the underlying pathology of stereotypies. Indeed, Lebelt et al. 
[61] found a trend for lower basal 5-HT levels in crib-biting compared to nonstereo-
typic horses, suggesting that the serotonergic system of crib-biters may differ from 
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that of noncrib biting horses (mean 201.5 vs. 414.3 nmol/l). The precise role of 5-HT 
in the development or maintenance of the behavior remains unclear however, and 
the results obtained by these authors have yet to be confirmed or refuted through 
additional experimental studies of the serotonergic system in crib-biting horses.

However, blood levels of 5-HT in horses with weaving is more than triple 
compared to healthy horses. Thus, 5-HT is recognized as the “happiness hormone” 
or “pleasure hormone” [62]. It can be assumed that during the demonstration of 
stereotypical disorder, horses are “happy,” and that repetitive disturbance is a means 
of increasing 5-HT levels in the blood and therefore the feeling of comfort [63].

Serotonin reuptake inhibitors (SRI) are a type of drug which acts as a reuptake 
inhibitor of the neurotransmitter serotonin (5-hydroxytryptamine (5-HT)) by 
blocking the action of the serotonin transporter (SERT). This in turn leads to 
increased extracellular concentrations of serotonin and, therefore, an increase in 
serotonergic neurotransmission. Although administration of SRIs drugs has been 
associated with the reduction of stereotypies, it was dubious if such medications 
decreased stereotypic behaviors due to general sedative effects or selectively influ-
enced stereotypic behavior. These uncertainties were due to general sedative effects 
or selective influence on the type of behavior. As previously expressed, the specific 
role of 5-HT in the development or maintenance of behavior remains uncertain  
[60, 61, 64, 65], and further studies are needed to provide a more accurate interpre-
tation of stereotypes.

Pharmacological preparations containing TRP are marketed worldwide as 
relaxing agents for treating excitable horses. The few studies in which TRP has been 
administered to horses suggest that low doses cause mild excitation. However, high 
doses reduce endurance capacity and cause acute hemolytic anemia when given 
orally due to the presence of a toxic metabolite in the intestine [65, 66]. Despite 
questions about its effectiveness, TRP is marketed as an equine sedative and is 
related to sedation, inhibition of aggression, fear, and stress.

Because TRP competes with other amino acids to bind to protein transport and 
cross the blood-brain barrier, researchers are now using a ratio of TRP with other 
large neutral amino acids (ANNALs) to estimate the production of 5-HT in the CNS 
[67]. Besides, previous researchers showed that the age, breed, and gender modify 
the response of serotoninergic system due to changes in dietary TRP [17, 68]. While 
all of these factors may play a role in the permeability of the blood-brain barrier, the 
effectiveness of supplemental TRP on 5-HT biosynthesis, it is also worth consider-
ing that these types of treatments may be most effective in horses with dysfunction-
ing serotoninergic system.

Although the safety of TRP doses should be confirmed, there is no evidence 
to suggest that a single dose is an effective analgesic in horses. In fact, given that 
TRP continues to be used as a tranquilizer, there is an urgent need for research to 
confirm its efficacy and establish a range of safe therapeutic doses. In the mean-
time, available data suggest that it would be unwise to rely on the TRP to calm the 
excitable horse. Instead, more efforts should be made to identify the underlying 
causes of excitability and explore other more appropriate nonpharmacological 
solutions. Indeed, when evaluating the use of calming supplements or drugs, it is 
important to consider the welfare of the horse. While calmative compounds may be 
beneficial in alleviating short-term stress and anxiety, the cause of such emotions 
should also be evaluated. Horses kept in unnatural environments, managed poorly, 
or asked to perform beyond their level of training may show signs of stress and 
anxiety. Chronic health issues, such as ulcers or lameness, may also be the culprit. 
Sedative drugs and supplements are often utilized to limit unwanted behaviors 
such as spooking, bolting, rearing, or bucking. Looking into the potential causes of 
unwanted behaviors should be the first step before owners turn to calming drugs or 
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supplements. Providing more training, turnout time, or treatment for an underly-
ing disease or condition could result in a more sustainable way to reduce a horse’s 
unwanted behaviors and could improve welfare for the animal [65].

Equine self-mutilation syndrome (ESMS) includes glancing or biting at the flank 
or pectoral areas, bucking, kicking, vocalizing, rubbing, spinning, or rolling. Eight 
flank-biting horses with ESMS were enrolled for a behavioral study, and the effects 
of drugs that either stimulate or inhibit central opioid, dopamine, norepineph-
rine, and 5-HT neurotransmitter systems were reported. Behaviors were recorded 
hourly during the study and were compared with those of a saline control baseline 
to determine whether there were significant differences among the treatments. 
The suppression of ESMS activities with Buspirone (0.5 mg/kg) suggests a role for 
serotonergic modulation of the behavior. However, the clomipramine, a preferential 
5-HT reuptake blocker, does not produce any significant effect on ESMS behavior in 
horses [69].

Horses with compulsive disorder may help the fluoxetine at dose of  
0.25–0.5 mg/kg/day PO. Fluxetine is a selective serotonin reuptake inhibitor (SSRI) 
that increases 5-HT levels within CNS by preventing the reuptake of 5-HT at level 
of the presynaptic neuron. This allows 5-HT to accumulate in the synaptic cleft and 
affect the postsynaptic neuron. While no cases of fluoxetine-induced colic have 
been reported in horses being treated for behavior problems and because there are 
many 5-HT receptors in the gut, it is advisable to begin administering the drug at 
the lowest dose and increase it gradually in horses that do not improve and have not 
exhibited adverse effects [70].

The ability to train and control horses is an important behavioral trait for the 
handling and training of animals. Hori et al. [71] inform that horses carrying allele 
A located at c. 709G > A had a lower capacity to be handled. These results provide 
the first evidence that a polymorphism in a 5-HT-related gene may affect the man-
agement of horses with a partially different sex-related effect.

2.5 Recurrent airway obstruction

Based on the results reported in humans, in which PLTs contribute to the patho-
genesis of allergic airway disease, Hammon et al. [14] compared PLT aggregation 
induced by the activating factor PLTs (PAF), thromboxane (Tx), plasma Tx, and 
5-hydroxytryptamine (5-HT) production in ponies with recurrent airway obstruc-
tion (RAO) before and after antigen exposure. Plasma 5-HT was significantly higher 
in ponies with RAO but did not increase more by exposure to the antigen. There 
were also no differences between the aggregation of PLTs induced by PAF or the 
production of Tx or plasma Tx before or after exposure. These evidences suggest 
that there may be a difference between 5-HT uptake of PLTs in RAO and normal 
ponies. However, they do not provide evidence of PLTs activation after exposure to 
the antigen. This bronchoconstriction can be mediated by 5-HT. However, the effect 
or pathway of 5-HT may be deactivated during the development of small airway 
disease [72].

2.6 Central fatigue

Accordingly, the synthesis and metabolism of 5-HT in the CNS increase in 
response to exercise [73]. Increased 5-HT concentration in the brain is associated 
with central fatigue markers, such as decreased motivation, lethargy, fatigue, or 
loss of motor coordination [74].

It has been shown that nutritional status can alter cerebral neurochemistry, 
especially carbohydrates and 5-HT [75]. Therefore, it has been hypothesized that 
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infusion of TRP may increase the ratio of fTrp (free TRP) and fTrp to BCAA while 
decreasing the resistance of endurance horses to treadmill. Therefore, central 
fatigue may limit resistance in horses, and by manipulating fTrp and BCAA, 
exercise capacity could be altered in a predictable way [76]. However, TRP infu-
sion results are consistent with the central fatigue hypothesis where an increase in 
plasma fTrp concentration is related to the early onset of fatigue during prolonged 
exercise [77]. Piccione et al. [20] reported that if exercise is performed at the 
time of the rhythmic acrophase of the TRP (18:45, 18:16), it is likely that exercise 
performed at the time of the acrophase of the TRP rhythm (18:45, 18:16) affects 
the onset of physiological fatigue, thus turning on the body’s exercise adaptation 
mechanisms in order to maintain better physical performance.

2.7 Other conditions

Virus of Borna’s disease (BDV) can enter into the brain and infect neurons, 
often the limbic system. It can also remain active for long periods of time in the 
CNS without generating neuronal lysis. The BDV virus is unique in the order of 
mononegavirals because it replicates in the cell nucleus. Alterations include falling, 
tremor, abnormal posture, hyperactivity or hypoactivity, increased aggression, and 
paralysis. In some rodent species, BDV can cause mild or asymptomatic symptoms, 
while in other animal species such as horses, it can cause severe CNS symptoms 
that often lead to death. In humans, a common treatment for psychiatric illnesses 
such as depression or anxiety disorders is the use of SSRIs. The function of these 
drugs is to increase extracellular 5-HT. Interestingly, there are viruses that can exert 
the opposite action and reduce levels of 5-HT and therefore theoretically have an 
opposite effect to SSRI [78].

Equine hepatic encephalopathy is caused by direct damage to the liver or by 
toxins derived from the intestine that overwhelm or evade this organ. These toxins 
act on the CNS, giving rise to signs of encephalopathy. Secondary hepatic encepha-
lopathy in horses occurs more often than liver failure. This may be due to megalo-
cytic liver disease caused by ingestion of plants containing pyrrolizidine alkaloid 
(Senecio, Crotalaria and Amsinckia), Theiler’s or Tyzzer’s disease, cholangiohepati-
tis, chronic active hepatitis, liver neoplasia, toxic liver disease, and portosystemic 
shunts [79]. Because the liver is incapacitated, normal detoxification activities 
cannot be performed in all these conditions. Therefore, toxins derived from IG 
enter the CNS through the bloodstream.

In horses, hyperammonemia has been linked to clinical signs of encephalopathy 
without evidence of liver disease, which promotes the formation of Alzheimer’s 
cells II [80]. It is also suggested that alteration of amino acid metabolism with 
upward regulation of aromatic amino acids and downward regulation of BCAA 
lead to direct neuronal inhibition secondary to effects on CNS. Alteration of gamma 
aminobutyric acid (GABA) and glutamate during liver failure plays an important 
role in the physiopathology of hepatic encephalopathy. Liver impairment leads to an 
increase in substances similar to endogenous benzodiazepines that inhibit neuronal 
excitation. Therefore, the most likely scenario is that there are multiple mechanisms 
working in synergy with each other to create signs of encephalopathy.

3. Conclusions

Serotonin is a neurotransmitter associated with important physiological, diges-
tive, and vascular functions of the central nervous system. This review describes 
the involvement of serotonin in the most common pathological processes of equine 
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studies are needed to continue showing the physiopathological mechanisms with 
implications of serotoninemia in other organs of the horse.



11

Clinical Aspects Related to Plasma Serotonin in the Horse
DOI: http://dx.doi.org/10.5772/intechopen.77956

References

[1] Mück-Šeler D, Pivac N. Serotonin. 
Periodicum Biologorum. 2011;113:29-41. 
DOI: 10.1515/tnsci-2016-0007

[2] Mohammad-Zadeh LF, Moses 
L, Gwaltney-Brant SM. Serotonin: 
A review. Journal of Veterinary 
Pharmacology and Therapeutics. 
2008;31(3):187-199. DOI: 
10.1111/j.1365-2885.2008.00944.x

[3] Berger M, Gray JA, Roth BL. The 
expanded biology of serotonin. 
Annual Review of Medicine. 
2009;60:355-366. DOI: 10.1146/annurev.
med.60.042307.110802

[4] Kremer HP, Goekoop JG, Van 
Kempen GM. Clinical use of 
the determination of serotonin 
in whole blood. Journal of 
Clinical Psychopharmacology. 
1990;10(2):83-87. DOI: 
10.1097/00004714-199004000-00002

[5] Hara K, Hirowatari Y, Yoshika M, 
Komiyama Y, Tsuka Y, Takahashi H. The 
ratio of plasma to whole-blood serotonin 
may be a novel marker of atherosclerotic 
cardiovascular disease. The Journal 
of Laboratory and Clinical Medicine. 
2004;144:31-37. DOI: 10.1016/j.
lab.2004.03.014

[6] Pappas AA, Palmer SK, Meece D, 
Fink LM. Rapid preparation of plasma 
for coagulation testing. Archives of 
Pathology & Laboratory Medicine. 
1990;115:816-817 PMID: 1863193

[7] Alberghina D, Giannetto C, 
Piccione G. Peripheral serotoninergic 
response to physical exercise in athletic 
horses. Journal of Veterinary Science. 
2010a;11(4):285-289. DOI: 10.4142/
jvs.2010.11.4.285

[8] Alberghina D, Giannetto C, Visser 
EK, Ellis AD. Effect of diet on plasma 
tryptophan and serotonin in trained 

mares and geldings. The Veterinary 
Record. 2010b;166(5):133-136. DOI: 
10.1136/vr.c502

[9] Alberghina D, Amorini AM, 
Lazzarino G. Modulation of peripheral 
markers of the serotoninergic system in 
healthy horses. Research in Veterinary 
Science. 2011;90(3):392-395. DOI: 
10.1016/j.rvsc.2010.06.023

[10] Alberghina D, Giannetto C, Panzera 
M, Piccione G. Plasma serotonin in 
horses: Comparison between two 
different management conditions. 
Journal of Biological Research. 
2015;88:5161

[11] Delesalle C, van de Walle GR, 
Nolten C, Ver Donck L, van Hemelrijck 
A, Drinkenburg W, de Bosschere 
H, Claes P, Deprez P, Lefere L, Torfs 
S, Lefebvre RA. Determination of 
the source of increased serotonin 
(5-HT) concentrations in blood and 
peritoneal fluid of colic horses with 
compromised bowel. Equine Veterinary 
Journal. 2008;40(4):326-331. DOI: 
10.2746/042516408X293583

[12] Bailey SR, Katz LM, Berhane Y, 
Samuels T, De Brauvere N, Marr CM, 
Elliott J. Seasonal changes in plasma 
concentrations of cecum-derived 
amines in clinically normal ponies 
and ponies predisposed to laminitis. 
American Journal of Veterinary 
Research. 2003a;64:1132-1138. DOI: 
10.2460/ajvr.2003.64.1132

[13] Bailey SR, Adair HS, Reinemeyer 
CR, Morgan SJ, Brooks AC, Longhofer 
SL, Elliott J. Plasma concentrations of 
endotoxin and platelet activation in the 
developmental stage of oligofructose-
induced laminitis. Veterinary 
Immunology and Immunopathology. 
2009;129(3-4):167-173. DOI: 10.1016/j.
vetimm.2008.11.009

[14] Hammond A, Bailey SR, Marr CM, 
Cunningham FM. Platelets in equine 



Serotonin

12

recurrent airway obstruction. Research 
in Veterinary Science. 2007;82(3):332-
334. DOI: 10.1016/j.rvsc.2006.09.007

[15] Haritou SJ, Zylstra R, Ralli C, 
Turner S, Tortonese DJ. Seasonal 
changes in circadian peripheral 
plasma concentrations of melatonin, 
serotonin, dopamine and cortisol 
in aged horses with Cushing’s 
disease under natural photoperiod. 
Journal of Neuroendocrino-
logy. 2008;20(8):988-996. DOI: 
10.1111/j.1365-2826.2008.01751.x

[16] Menzies-Gow NJ, Bailey SR, Katz 
LM, Marr CM, Elliott J. Endotoxin-
induced digital vasoconstriction in 
horses: Associated changes in plasma 
concentrations of vasoconstrictor 
mediators. Equine Veterinary 
Journal. 2004;36(3):273-278. DOI: 
10.2746/0425-164044877260

[17] Ferlazzo AM, Bruschetta G, Di 
Pietro P, Medica P. The influence 
of age on plasma serotonin levels in 
thoroughbred horses. Livestock Science. 
2012;147:203-207. DOI: 10.1016/j.
livsci.2012.05.010

[18] Bruschetta G, Fazio E, Cravana C, 
Ferlazzo AM. Effects of partial versus 
complete separation after weaning 
on plasma serotonin, tryptophan and 
pituitary-adrenal pattern of Anglo-
Arabian foals. Livestock Science. 
2017;198:157-161. DOI: 10.1016/j.
livsci.2017.02.025

[19] Ayala I, Martos NF, Silvan G, 
Gutierrez-Panizo C, Clavel JG, Illera 
JC. Cortisol, adrenocorticotropic 
hormone, serotonin, adrenaline and 
noradrenaline serum concentrations 
in relation to disease and stress in the 
horse. Research in Veterinary Science. 
2012;93(1):103-107. DOI: 10.1016/j.
rvsc.2011.05.013

[20] Piccione G, Assenza A, Fazio F, 
Percipalle M, Caola G. Central fatigue 
and nycthemeral change of serum 

tryptophan and serotonin in the athletic 
horse. Journal of Circadian Rhythms. 
2005;3:6. DOI: 10.1186/1740-3391-3-6

[21] Bruschetta G, Di Pietro P, Miano 
M, Cravana C, Ferlazzo AM. Effect of 
altitude on plasma serotonin levels in 
horses. In: Boiti C, Ferlazzo A, Gaiti A, 
Pugliese A, editors. Trends in Veterinary 
Sciences. Berlin, Heidelberg: Springer; 
2013. pp. 9-13 ISBN: 978-3-642-36487-7

[22] Marcilla M, Muñoz A, Satué 
K. Longitudinal changes in serum 
catecholamines, dopamine, serotonin, 
ACTH and cortisol in pregnant 
Spanish mares. Research in Veterinary 
Science. 2017;115:29-33. DOI: 10.1016/j.
rvsc.2017.01.020

[23] Torfs SC, Maes AA, Delesalle CJ, 
Deprez P, Croubels SM. Comparative 
analysis of serotonin in equine plasma 
with liquid chromatography—tandem 
mass spectrometry and enzyme-linked 
immunosorbent assay. Journal of 
Veterinary Diagnostic Investigation. 
2012;24(6):1035-1042. DOI: 
10.1177/1040638712457928

[24] Torfs SC, Maes AA, Delesalle 
CJ, Pardon B, Croubels SM, Deprez 
P. Plasma serotonin in horses 
undergoing surgery for small intestinal 
colic. The Canadian Veterinary 
Journal. 2015;56(2):178-184 PMCID: 
PMC4298271

[25] Satué K, Gardon JC, Marcilla M. The 
physiopathological features of serotonin 
in horses. In: Munoz M, Mckinney 
M, editors. Serotonin and Dopamine 
Receptors: Functions, Synthesis and 
Health Effects. Novapublisher, NY; 
2018. pp. 1-43 ISBN: 978-1-53613-217-5

[26] Van Hoogmoed LM, Nieto JE, 
Snyder JR, Harmon FE. Survey 
of prokinetic use in horses with 
gastrointestinal injury. Veterinary 
Surgery. 2004;33:279-285. DOI: 
10.1111/j.1532-950X.2004.04041.x



13

Clinical Aspects Related to Plasma Serotonin in the Horse
DOI: http://dx.doi.org/10.5772/intechopen.77956

[27] Gershon MD, Tack J. The 
serotonin signaling system: From basic 
understanding to drug development 
for functional GI disorders. 
Gastroenterology. 2007;132(1):397-414. 
DOI: 10.1053/j.gastro.2006.11.002

[28] Delesalle C, Deprez P, Schuurkes 
JAJ, Lefebvre RA. Contractile 
effects of 5-hydroxytryptamine and 
5-carboxamidotryptamine in the equine 
jejunum. British Journal of Clinical 
Pharmacology. 2006;147(1):23-35. DOI: 
10.1038/sj.bjp.0706431

[29] Delco ML, Nieto JE, 
Craigmill AL, Stanley SD, Snyder 
JR. Pharmacokinetics and in vitro 
effects of tegaserod, a serotonin 
5-hydroxytryptamine 4 (5-HT4) 
receptor agonist with prokinetic activity 
in horses. Veterinary Therapeutics. 
2007;8(1):77-87 PMID: 17447227

[30] Giancola F, Rambaldi AM, Bianco 
F, Iusco S, Romagnoli N, Tagliavia C, 
Bombardi C, Clavenzani P, De Giorgio 
R, Chiocchetti R. Localization of the 
5-hydroxytryptamine 4 receptor in 
equine enteric neurons and extrinsic 
sensory fibers. Neurogastroenterology 
and Motility. 2017;29(7). DOI: 10.1111/
nmo.13045

[31] Prause AS, Stoffel MH, Portier CJ, 
Mevissen M. Expression and function 
of 5-HT7 receptors in smooth muscle 
preparations from equine duodenum, 
ileum, and pelvic flexure. Research in 
Veterinary Science. 2009;87(2):292-299. 
DOI: 10.1016/j.rvsc.2009.03.009

[32] Manocha M, Khan WI. Serotonin 
and GI disorders: An update on clinical 
and experimental studies. Clinical 
and Translational Gastroenterology. 
2012;3:e13. DOI: 10.1038/ctg.2012.8

[33] Laus F, Fratini M, Paggi E, Faillace 
V, Spaterna A, Tesei B, Fettucciari 
K, Bassotti G. Effects of single-dose 
prucalopride on intestinal hypomotility 
in horses: Preliminary observations. 

Scientific Reports. 2017;7:41526. DOI: 
10.1038/srep41526

[34] Lippold BS, Hildebrand J, Straub 
R. Tegaserod (HTF 919) stimulates 
gut motility in normal horses. Equine 
Veterinary Journal. 2004;36(7):622-627 
PMID: 15581328

[35] Quigley EM. Cisapride: What 
can we learn from the rise and fall 
of a prokinetic? Journal of Digestive 
Diseases. 2011;12(3):147-156. DOI: 
10.1111/j.1751-2980.2011.00491.x

[36] Okamura K, Sasaki N, Yamada 
M, Yamada H, Inokuma H. Effects of 
mosapride citrate, metoclopramide 
hydrochloride, lidocaine hydrochloride, 
and cisapride citrate on equine gastric 
emptying, small intestinal and caecal 
motility. Research in Veterinary Science. 
2009;86:302-308. DOI: 10.1016/j.
rvsc.2008.07.008

[37] Nieto JE, Rakestraw PC, Vatistas 
NJ: In vitro effects of erythromycin, 
lidocaine, and metoclopramide on 
smooth muscle from the pyloric antrum, 
proximal portion of the duodenum, 
and middle portion of the jejunum of 
horses. American Journal of Veterinary 
Research. 2000;61:413-419. Indexed in 
Pubmed PMID: 10772106

[38] Matia I, Baláz P, Jackanin S, 
Rybárová E, Kron I, Pomfy M, Fronek 
J, Ryska M. Serotonin levels in the small 
bowel mucosa as a marker of ischemic 
injury during small bowel preservation. 
Annals of Transplantation. 
2004;9(3):48-51. Indexed in Pubmed 
PMID: 15759548

[39] Nakamura N, Hamada N, Murata R, 
Kobayashi A, Ishizaki N, Taira A, Sakata 
R. Contribution of serotonin to liver 
injury following canine small-intestinal 
ischemia and reperfusion. The Journal 
of Surgical Research. 2001;99(1):17-24. 
DOI: 10.1006/jsre.2001.6119

[40] Crowell MD. Role of serotonin in 
the pathophysiology of the irritable 



Serotonin

14

bowel syndrome. British Journal of 
Pharmacology. 2004;141(8):1285-1293. 
DOI: 10.1038/sj.bjp.0705762

[41] Davis JL, Blikslager AT, Catto K, 
Jones SL. A retrospective analysis of 
hepatic injury in horses with proximal 
enteritis (1984-2002). Journal 
of Veterinary Internal Medicine. 
2003;17:896-901. DOI: 10.1111/j.1939-
1676.2003.tb02530.x

[42] Yano JM, Yu K, Donaldson GP, 
Shastri GG, Pe A, Ma L, Nagler CR, 
Ismagilov RF, Mazmanian SK, Hsiao 
EY. Indigenous bacteria from the gut 
microbiota regulate host serotonin 
biosynthesis. Cell. 2015;161(2):264-276. 
DOI: 10.1016/j.cell.2015.02.047

[43] Cryan JF, Dinan TG. Mind-altering 
microorganisms: The impact of the gut 
microbiota on brain and behaviour. 
Nature Reviews. Neuroscience. 
2012;13:701-712. DOI: 10.1038/nrn3346

[44] Bailey SR, Rycroft A, Elliott 
J. Production of amines in equine 
cecal contents in an in vitro model 
of carbohydrate overload. Journal of 
Animal Science. 2002;80:2656-2662. 
DOI: 10.1093/ansci/80.10.2656

[45] Belknap JK, Black SJ. Sepsis-
related laminitis. Equine Veterinary 
Journal. 2012;44(6):738-740. DOI: 
10.1111/j.2042-3306.2012.00668.x

[46] Bailey SR, Cunningham FM, Elliott 
J. Endotoxin and dietary amines may 
increase plasma 5-hydroxytryptamine 
in the horse. Equine Veterinary 
Journal. 2000;32(6):497-504. DOI: 
10.2746/042516400777584730

[47] Bailey SR, Baillon ML, Rycroft AN, 
Harris PA, Elliott J. Identification of 
equine cecal bacteria producing amines 
in an in vitro model of carbohydrate 
overload. Applied and Environmental 
Microbiology. 2003b;69:2087-2093. 
DOI: 10.1128/AEM.69.4.2087-2093.2003

[48] Bailey SR, Wheeler-Jones C, Elliott 
J. Uptake of 5-hydroxytryptamine by 
equine digital vein endothelial cells: 
Inhibition by amines found in the 
equine caecum. Equine Veterinary 
Journal. 2003c;35:164-169. DOI: 
10.2746/042516403776114171

[49] Elliott J, Berhane Y, Bailey 
SR. Effects of monoamines formed in 
the cecum of horses on equine digital 
blood vessels and platelets. American 
Journal of Veterinary Research. 
2003;64:1124-1131. DOI: 10.2460/
ajvr.2003.64.1124

[50] Elliott J, Bailey SR. Gastrointestinal 
derived factors are potential triggers 
for the development of acute equine 
laminitis. The Journal of Nutrition. 
2006;136(7):2103S-2107S. DOI: 10.1093/
jn/136.7.2103S

[51] Berhane Y, Elliott J, Bailey 
SR. Assessment of endothelium-
dependent vasodilation in equine 
digital resistance vessels. Journal 
of Veterinary Pharmacology and 
Therapeutics. 2006;29(5):387-395. DOI: 
10.1111/j.1365-2885.2006.00779.x

[52] Bailey SR, Elliott J. Evidence 
for different 5–HT1B/1D receptors 
mediating vasoconstriction of 
equine digital arteries and veins. 
European Journal of Pharmacology. 
1998a;355:175-187. DOI: 10.1016/
S0014-2999(98)00520-2

[53] Bailey SR, Elliott J. Plasma 
5-hydroxytryptamine constricts 
equine digital blood vessels in vitro: 
Implications for pathogenesis of acute 
laminitis. Equine Veterinary Journal. 
1998b;30:124-130. DOI: 10.1111/j.2042-
3306.1998.tb04471.x

[54] McFarlane D. Advantages and 
limitations of the equine disease, 
pituitary pars intermedia dysfunction as 
a model of spontaneous dopaminergic 
neurodegenerative disease. Ageing 



15

Clinical Aspects Related to Plasma Serotonin in the Horse
DOI: http://dx.doi.org/10.5772/intechopen.77956

Research Reviews. 2007;6(1):54-63. 
DOI: 10.1016/j.arr.2007.02.001

[55] Donaldson MT, McDonnell 
SM, Schanbacher BJ, Lamb SV, 
McFarlane D, Beech J. Variation in 
plasma adrenocorticotropic hormone 
concentration and dexamethasone 
suppression test results with season, 
age, and sex in healthy ponies and 
horses. Journal of Veterinary Internal 
Medicine. 2005;19(2):217-222. DOI: 
10.1111/j.1939-1676.2005.tb02685.x

[56] Perkins G, Lamb S, Erb H, 
Scanbacher B, Nydam D, Divers 
T. Plasma adrenocorticotropin 
(ACTH) concentrations and clinical 
response in horses treated for equine 
Cushing’s disease with cyproheptadine 
or pergolide. Equine Veterinary 
Journal. 2002;34(7):679-685. DOI: 
10.2746/042516402776250333

[57] Schott HC II. Equine Cushing’s 
disease: Management. In: Proceedings 
of the 12th International Congress of the 
World Equine Veterinary Association 
WEVA, Hyderabad, India; 2011. pp. 2-3

[58] Normando S, Meers L, Samuels 
WE, Faustini M, Odberg FO. Variables 
affecting the prevalence of behavioural 
problems in horses. Can riding style 
and other management factors be 
significant? Applied Animal Behaviour 
Science. 2011;133:186-198. DOI: 
10.1016/j.applanim.2011.06.012

[59] McBride SD, Hemmings A. A 
neurologic perspective of equine 
stereotypy. Journal of Equine Veterinary 
Science. 2009;29:10-16. DOI: 10.1016/j.
jevs.2008.11.008

[60] Wickens CL, Heleski CR. Crib-
biting behavior in horses: A review. 
Applied Animal Behaviour Science. 
2010;128:1-9. DOI: 10.1016/j.
applanim.2010.07.002

[61] Lebelt D, Zanella AJ, Unshelm 
J. Physiological correlates associated 

with cribbing behaviour in horses: 
Changes in thermal threshold, heart 
rate, plasma beta-endorphin and 
serotonin. Equine Veterinary Journal. 
Supplement. 1998;27:21-27. DOI: 
10.1111/j.2042-3306.1998.tb05140.x

[62] Hemmann K, Raekallio MK, 
Hanninen L, Pastel M, Palviainen 
M, Vainio O. Circadian variation in 
ghrelin and certain stress hormones in 
crib-biting horses. Veterinary Journal. 
2012;193:97-102. DOI: 10.1016/j.
tvjl.2011.09.027

[63] Binev R: Weaving horses. 
Etiological, clinical and paraclinical 
investigation. International Journal of 
Advanced Research 2015;3(3):629-636 
http://www.journalijar.com

[64] Sarrafchi A, Blokhuis HJ. Equine 
stereotypic behaviors: Causation, 
occurrence, and prevention. 
Journal of Veterinary Behavior 
Clinical Applications and Research. 
2013;8(5):386-394. DOI: 10.1016/j.
jveb.2013.04.068

[65] Davis BP, Englea TE, Ransomb JI, 
Grandina T. Preliminary evaluation on 
the effectiveness of varying doses of 
supplemental tryptophan as a calmative 
in horses. Applied Animal Behaviour 
Science. 2017;88:34-41. DOI: 10.1016/j.
applanim.2016.12.006

[66] Noble GK, Li X, Zhang D, Sillence 
MN. Randomised clinical trial on the 
effect of a single oral administration 
of l-tryptophan, at three dose rates, on 
reaction speed, plasma concentration 
and haemolysis in horses. Veterinary 
Journal. 2016;213:84-86. DOI: 10.1016/j.
tvjl.2016.05.003

[67] Wilson AD, Badnell-Waters AJ, Bice 
R, Kelland A, Harris PA, Nicol CJ. The 
effects of diet on blood glucose, insulin, 
gastrin and the serum tryptophan: 
Large neutral amino acid ratio in foals. 
Veterinary Journal. 2007;174:139-146. 
DOI: 10.1016/j.tvjl.2006.05.024



Serotonin

16

[68] Alberghina D, Panzera M, Giannetto 
C, Piccione G. Developmental changes 
during the first year of life in plasma 
tryptophan concentration of the foal. 
Journal of Equine Veterinary Science. 
2014;34:387-390. DOI: 10.1016/j.
jevs.2013.07.015

[69] McDonnell SM. Practical 
review of self-mutilation in horses. 
Animal Reproduction Science. 
2008;107(3-4):219-228. DOI: 10.1016/j.
anireprosci.2008.04.012

[70] Crowell-Davis SL, Murray 
T. Selective serotonin reuptake 
inhibitors. In: Crowell-Davis SL, 
Murray T, editors. Veterinary 
Psychopharmacology. Ames, Iowa: 
Blackwell Publishing; 2006. pp. 80-110 
ISBN: 978-0-813-80829-1

[71] Hori Y, Tozaki T, Nambo Y, Sato 
F, Ishimaru M, Inoue-Murayama M, 
Fujita K. Evidence for the effect of 
serotonin receptor 1A gene (HTR1A) 
polymorphism on tractability in 
thoroughbred horses. Animal Genetics. 
2016;47(1):62-67. DOI: 10.1111/
age.12384

[72] Barton AK, Wabnitz S, 
Kietzmann M, Ohnesorge B. Study 
on bronchoconstriction induced by 
histamine or serotonin in “Precision 
Cut Lung Slices” of the horse. 
Pferdeheilkunde. 2013;29(3):312-317. 
DOI: 10.21836/PEM20130304

[73] Chaouloff F. Physical exercise 
and brain monoamines: A review. 
Acta Physiologica Scandinavica. 
1989;137(1):1-13. DOI: 10.1111/j.1748-
1716.1989.tb08715.x

[74] Davis JM, Alderson NL, 
Welsh RS. Serotonin and central 
nervous system fatigue: Nutritional 
considerations. The American Journal 
of Clinical Nutrition. 2000;72(2 
Suppl):573S-578S. DOI: 10.1093/
ajcn/72.2.573S

[75] Fernstrom MH, Fernstrom JD. Brain 
tryptophan concentration and serotonin 
synthesis remain responsive to food 
consumption after the ingestion of 
sequential meals. The American Journal 
of Clinical Nutrition. 1995;61:312-319. 
DOI: 10.1093/ajcn/61.2.312

[76] Farris JW, Hincheliff KW, McKeever 
KH Lamb BR, Thompson DL. Effect of 
tryptophan and of glucose on exercise 
capacity of horses. Journal of Applied 
Physiology. 1998;85:807-816. DOI: 
10.1152/jappl.1998.85.3.807

[77] Newsholme EA, Acworth IN, 
Blomstrad E. Amino acids, brain 
neurotransmitters and a functional 
link between muscle and brain that 
is important in sustained exercise. 
In: Benzi G, editor. Advances in 
Myochemistry. London: John Libby 
Eurotex; 1987. pp. 127-138 ISBN: 
0861961323

[78] Richt JA, Grabner A, Herzog 
S. Borna disease in horses. The 
Veterinary Clinics of North America. 
Equine Practice. 2000;16(3):579-595. 
DOI: 10.1016/S0749-0739(17)30097-4

[79] Sharkey LC, DeWitt S, 
Stockman C. Neurologic signs 
and hyperammonemia in a horse 
with colic. Veterinary Clinical 
Pathology. 2006;35(2):254-258. DOI: 
10.1111/j.1939-165X.2006.tb00126.x

[80] Mair TS, Divers TJ. Diseases of the 
liver and liver failure. In: Blikslager AT, 
White NA, Moore JM, Mair TS, editors. 
The Equine Acute Abdomen. NY, USA: 
John Wiley & Sons, Inc.; 2017. DOI: 
10.1002/9781119063254.ch51


