
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 1

Mitochondrial Cardiomyopathy

Ryosuke Tashiro, Noriko Onoue and
Tsuyoshi Shinozaki

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.77105

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Ryosuke Tashiro, Noriko Onoue and 
Tsuyoshi Shinozaki

Additional information is available at the end of the chapter

Abstract

Mitochondrial diseases are multisystem disorders, resulting from mitochondrial electron 
transport chain dysfunction and oxidative phosphorylation due to pathogenic variants 
in mitochondrial or nuclear DNA. The clinical presentations are variable in the age of 
onset, symptoms, and range and severity of organ involvement. Diagnosis requires a 
multidisciplinary approach and is based on clinical symptoms, laboratory tests, histo-
pathological findings, and genetic analysis. Due to the multi-organ involvement, the 
evaluation of mitochondrial diseases should include a systemic screening for all targeted 
organs, including neuroimaging, ophthalmology, and hearing examinations. Cardiac 
involvement should be evaluated at the time of diagnosis, as cardiac involvement is an 
independent predictor of morbidity and early mortality, even in asymptomatic cases. 
Hypertrophic cardiomyopathy is the most common cardiac manifestation; however, 
mitochondrial cardiomyopathy might also present as left ventricular non-compaction 
(LVNC) or as dilated, histiocytoid, or restrictive cardiomyopathy. The precise evaluation 
of cardiac involvement is of clinical use in predicting future cardiac events and prognosis. 
Despite advancements in molecular biology, no satisfactory treatments for mitochondrial 
diseases exist. Treatment remains largely symptomatic and does not significantly alter 
disease progression.

Keywords: mitochondrial disease, electron transport chain dysfunction, genetic 
variants, cardiomyopathy, multimodality imaging

1. Introduction

Disruption of the mitochondrial respiratory chain results in a diverse and variable group 

of multisystem disorders, known as mitochondrial diseases, which are progressive in 

nature. Since mitochondrial diseases comprise multi-organ system disorders, the clinical 
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manifestations are nonspecific. The varied and nonspecific nature of the early symptoms 
often renders the diagnosis of mitochondrial diseases difficult for physicians. Furthermore, 
the myocardium is one of the most affected tissues in mitochondrial cardiomyopathy because 
of its high energy demand. As cardiac involvement can be life-threatening and cause sudden 

death, cardiac assessment at diagnosis is necessary, even in asymptomatic cases.

Herein, we review the etiology and clinical manifestations of mitochondrial diseases, with 

a focus on cardiac symptoms. In addition, we review the evaluation modalities for cardiac 

involvement and treatment options.

2. Etiology

Mitochondria are rod-shaped organelles found in nearly all eukaryotic cells. Mitochondria 

play multiple roles in cellular processes, including calcium signaling, the generation of reac-

tive oxygen species (ROS), and apoptosis [1–3]. The principal function of mitochondria is 

adenosine triphosphate (ATP) synthesis via aerobic metabolism. Mitochondria are respon-

sible for the production of energy through the breakdown of carbohydrates and fatty acids 
via oxidative phosphorylation (OXPHOS). OXPHOS generates energy by coupling electron 

transport (complexes I, II, and IV) with ATP synthesis (complex V) through the electrochemi-

cal gradient [1–6]. Alterations in mitochondrial structure and function can impair OXPHOS, 

which in turn can reduce energy production, alter the cellular redox state, increase the ROS 

production, and dysregulate Ca2+ homeostasis, and apoptosis [1–6]. OXPHOS disturbance 

can destabilize the mitochondrial DNA (mtDNA), leading to a progressive accumulation of 

mtDNA mutations and deterioration of mitochondrial function [3, 6].

The transfer of electrons among respiratory chain enzyme complexes I–IV drives proton trans-

fer across the inner mitochondrial membrane, forming an electrochemical gradient utilized by 

complex V to generate ATP. The mitochondrial genome encodes all of the ribosomal RNAs 

(mt-rRNAs), and most of the transfer RNAs (mt-tRNAs), needed for the translation of these 

protein-coding sequences within the mitochondria. The majority of mitochondria proteins is 

encoded in the nuclear DNA (nDNA), thought to have been transferred to the nucleus from 

the ancestral mitochondrial genome. However, the mtDNA encodes 13 polypeptides that are 

critical components of the OXPHOS enzyme complexes, 2 rRNAs (16S and 12S), and 22 tRNAs, 

which are required for the translation of the proteins encoded by the organelle genome [3, 6].

Mitochondria have their own genetic system, as mitochondria are thought to have evolved 

from bacteria. Mitochondrial genomes are usually circular DNA molecules, like those of bac-

teria, which are present in multiple copies per organelle. Since almost all of the mtDNA in 

fertilized eggs are contributed by the oocyte rather than by the sperm, germline mutations 

in the mtDNA are transmitted to the next generation in the maternal line [3, 6]. Although 

mtDNA mutations are exclusively maternally inherited, nuclear mutations may be transmit-

ted as autosomal dominant, autosomal recessive, or X-linked traits [3, 6]. Approximately, 

15% of mitochondrial diseases are caused by a mutation in the mtDNA; most mitochondrial 

diseases are caused by mutations in the nDNA.
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The multi-copy nature of mtDNA gives rise to heteroplasmy, a unique aspect of mtDNA-

associated genetics, which occurs when there is coexistence of mutant and wild-type mtDNA 

molecules. The mtDNA in cells can be identical (homoplasmy) or a mixture of variable copies 

(heteroplasmy) [3]. Heteroplasmic mutations often engender variable mutation thresholds 

(i.e., the level to which the cell can tolerate defective mtDNA mutations). Furthermore, the 
threshold level varies among different organs and tissues, depending on their energy require-

ments. Quality control can occur by fission/fusion, allowing the segregation of damaged mito-

chondria, mitophagy for the removal of damaged mitochondria, and, ultimately, cell death 

when the damage is too severe [7]. Thus, phenotypic variability is, at least in part, due to 

heteroplasmy, with varying proportions of mutant and wild-type mtDNA in different tissues. 
In addition, the tissue-specific mtDNA mutation load and threshold may affect the onset and 
extent of the clinical manifestations. Moreover, some nuclear genetic mutations can result in 

clinical phenotypes that are similar to those due to mtDNA variants.

3. Mitochondrial diseases associated with cardiomyopathy

Mitochondrial diseases comprise a clinically heterogeneous group of disorders that arise as a 

result of mitochondrial respiratory chain dysfunction. The clinical presentations are variable 

in terms of the age of onset, symptoms, and range and severity of organ involvement. While 

some mitochondrial disorders only affect a single organ, multiple organ systems are generally 
involved. High-energy-demanding tissues, such as the cardiac muscles, kidneys, liver, and cen-

tral nervous system, are the most commonly affected tissues. Cardiomyopathies associated with 
defects in the electron transport chain (ETC) complex subunits and their assembly factors, mt-

tRNAs, mt-rRNAs, ribosomal proteins, translation factors, mtDNA maintenance factors, and 

CoQ10 synthesis frequently manifest in mitochondrial diseases, as reviewed below (Table 1).

3.1. Deficiencies in the ETC complexes

ETC complex I deficiency accounts for approximately 30% of all cases of childhood-onset 
mitochondrial diseases and is clinically and genetically heterogeneous [8]. ETC complex I 

deficiency can present with hypertrophic cardiomyopathy, which might be isolated or associ-
ated with multi-organ disease [8]. ETC complex II is entirely nuclear-encoded and functions 

within the OXPHOS chain [9]. Hypertrophic and dilated cardiomyopathies, and left ventricu-

lar non-compaction, have been reported in patients with ETC complex II deficiency [9]. ETC 

complex III deficiency is one of the least common respiratory chain defects and is generally 
caused by mutations in the nDNA encoding the BCS1L, UQCRB, and UQCRQ genes and the 

mtDNA encoding the MTCYB gene, which encodes cytochrome b [9, 10]. Mutations in cyto-

chrome b are associated with histiocytoid cardiomyopathy [10]. Mitochondrial complex III 

deficiency can be fatal in childhood; however, individuals with mild signs and symptoms can 
survive into adulthood [10]. ETC complex IV, or cytochrome c oxidase (COX), is the terminal 

enzyme of the respiratory chain and catalyzes the transfer of the reducing equivalents from 

cytochrome c to molecular oxygen. COX deficiency often leads to early-onset severe neuro-

muscular disease, and hypertrophic cardiomyopathy is the most common cardiomyopathy. 
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Mitochondrial mutations in the MT-CO
2
 and MT-CO

3
 genes, which encode complex IV, 

have been reported in dilated cardiomyopathy [11]. In addition, multiple OXPHOS complex 

deficiencies can result in mitochondrial dysfunction. Mutations in mt-tRNAs, mitochondrial 
ribosomes, and posttranscriptional modifications of mt-tRNAs may result in mitochondrial 
translation defects and multiple OXPHOS deficiencies [2, 4].

3.2. Mt-tRNA genes

Mutations in several mt-tRNA genes (e.g., MTCK and MTTL1) have been reported to cause 

mitochondrial diseases or isolated cardiomyopathies [12–17]. Cardiomyopathies associated 

with variants in genes encoding mt-tRNAs are usually hypertrophic but can also be dilated 

or histiocytoid [12–17].

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) is a multi-

system syndrome that is often devastating. The syndrome is genetically heterogeneous; how-

ever, approximately 80% of patients with MELAS syndrome harbor a heteroplasmic A-to-G 

transition in the tRNALeu-encoding gene at base pair 3243 in the mtDNA (3243A > G) [12, 13]. 

The signs and symptoms of MELAS most often appear during childhood, and early symp-

toms may include muscle weakness and pain, recurrent headaches, loss of appetite, vomiting, 

and seizures. [18–20]. Most affected individuals experience stroke-like episodes before the age 
of 40 years [18–20]. These episodes often involve temporary muscle weakness on one side of 

the body, altered consciousness, vision abnormalities, seizures, and severe headaches, resem-

bling migraines. Repeated stroke-like episodes can progressively damage the brain, leading 

to vision loss, movement problems, and loss of intellectual function [18–20]. Most patients 

with MELAS have a buildup of lactic acid in their bodies, known as lactic acidosis. Increased 

Table 1. Mitochondrial diseases associated with cardiomyopathy.
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acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness, muscle weak-

ness, and difficulty breathing [14, 15].

Myoclonic epilepsy and ragged-red fibers (MERRF) is a multisystem disorder characterized 
by myoclonus (often the first symptom), followed by generalized epilepsy, ataxia, weakness, 
and dementia [16, 17]. Common findings include hearing loss, short stature, optic atrophy, 
and cardiomyopathy with Wolff-Parkinson-White (WPW) syndrome. Pigmentary retinopa-

thy and lipomatosis are occasionally observed. The mtDNA gene, MT-TK, which encodes 

tRNALys, is the gene most commonly associated with MERRF. The most common pathogenic 
variant (present in 80% of affected individuals) is an A-to-G transition at nucleotide 8344 
(m.8344A > G). Pathogenic variants in MT-TF, MT-TL1, MT-TI, and MT-TP genes have also 

been described in a subset of patients with MERRF [3, 6].

3.3. CoQ10 deficiency

Coenzyme Q10 (CoQ10) shuttles electrons from complexes I and II to complex III. CoQ10 is also 
an antioxidant and is involved in the regulation of apoptosis and pyrimidine synthesis [21–26]. 

Defects in CoQ10 biosynthesis result in primary CoQ10 deficiency, which is a phenotypically and 
genetically heterogeneous condition with various clinical presentations, including encephalo-

myopathy, isolated myopathy, cerebellar ataxia, nephrotic syndrome, and infantile multisystem 

mitochondrial disease [21–26]. Hypertrophic cardiomyopathy has been reported with muta-

tions in genes involved in CoQ10 biosynthesis (COQ2, COQ4, and COQ9) [21–26]. Although the 

response is variable, primary CoQ10 deficiency is treatable with CoQ10 supplementation.

3.4. Kearns-Sayre syndrome (KSS)

KSS is most commonly due to a 1.1–10 kb mtDNA deletion [26–28]. The KSS triad comprises 

external ophthalmoplegia, pigmentary retinopathy, and cardiac conduction defects [26–28]. KSS 

usually presents before the age of 20 years. Approximately 60% of patients with KSS have cardiac 

involvement, including recurrent syncope, bundle branch block, and fascicular block [26–28].

3.5. Friedreich ataxia

Friedreich ataxia is an autosomal recessively inherited disease caused by triplet expansion 
in FXN gene which encodes frataxin [29–31]. Exact function of frataxin has not been deter-

mined; however, previous studies showed frataxin is involved in the biosynthesis of Fe-S 
clusters [29–31]. Patients typically develop progressive ataxia at childhood [29–31]. Cardiac 

involvement is also frequently seen in patients with Friedreich ataxia and hypertrophic type 
of cardiomyopathy is most frequently observed [29–31].

3.6. Barth syndrome

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, with skeletal 

myopathy, growth retardation, neutropenia, and urinary excretion of 3-methylglutaconic 

acid [32–34]. Barth syndrome is caused by mutations in the TAZ gene at Xq28, which encodes 

tafazzin, a phospholipid transacylase in the mitochondrial membrane [32–34]. Cardiac 
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manifestation is most common [35, 36]. Left ventricular non-compaction (LVNC) and dilated 

cardiomyopathies are common, while hypertrophic cardiomyopathy is rarely observed [35, 36].  

Other cardiac manifestations of Barth syndrome include ventricular tachycardia and sud-

den death [35, 36]. Barth should be considered for male patients with severe cardiac failure. 

However, the prognosis after 5 years of age is favorable because cardiac function gradually 

recovers during infancy.

4. Diagnosis

Mitochondrial diseases constitute a broad spectrum of disorders that affect multiple organs. 
A maternal inheritance pattern or the presence of extra-cardiac features may raise suspicions 
regarding the diagnosis. Although extra-cardiac manifestations include common or nonspe-

cific features, the particular pattern of organ involvement should alert the physician to the 
possibility of mitochondrial disease. Due to the multi-organ involvement, the evaluation of 

mitochondrial diseases should include a systemic screening of all targeted organs, including 

neuroimaging, hearing and ophthalmologic examinations, laboratory tests, histopathological 

analysis, and genetic testing (Table 2) [37, 38].

4.1. Laboratory tests

Laboratory tests should include serum creatine kinase (CK), serum fasting glucose, and hemo-

globin A1c. Serum CK may be normal or mildly elevated in mitochondrial diseases. Patients 

with very high values in the thousands should first be evaluated for other types of myopathies 
like polymyositis. Diabetes mellitus is common in patients with mitochondrial diseases.

Lactic acidosis is the most recognized laboratory abnormality. The measurement of plasma 

or cerebrospinal fluid (CSF) lactate concentration is indicated in individuals with features 
of myopathy or central nervous system involvement. Markedly, elevated levels of lactate 

(>3 mm/L in blood or > 1.5 mm/L in cerebrospinal fluid) support a diagnosis of mitochondrial 
disease [39]. It is important to note that the elevated lactate level in plasma and/or CSF is 
neither specific nor sensitive [40, 41]. Thus, it is important to exclude other causes of lactic 

acidosis, such as ischemic stroke and seizures.

4.2. Neuroimaging

The brain is one of the most affected organs in mitochondrial diseases. In mitochondrial enceph-

alopathy, central nervous system structures are affected differentially in their distribution 
and severity [42, 43]. Gray matter lesions are prevalent in MERFF and MELAS (Figure 1A, B ),  

while white matter involvement is typically observed in KSS. Computed tomography may 
show basal ganglia calcification and diffuse atrophy of the cortex or cerebellum. Magnetic res-

onance (MR) imaging may show focal atrophy of the cortex or cerebellum, or high-intensity 
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Table 2. Clinical symptoms and examination to diagnose mitochondrial diseases.
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signals on T2-weighted scans, particularly in the occipital cortex. Cerebellar atrophy is also a 

prominent feature. MR spectroscopy may also be of use for the detection of an elevated lactate 

level (Figure 1C) [44]. Elevated central nervous system signals on MR spectroscopy may be 

detected, which is associated with a shorter survival duration [45].

4.3. Visual and hearing assessments

Various eye signs may accompany mitochondrial disease, including bilateral optic atro-

phy, chronic progressive ophthalmoplegia, pigmentary retinopathy, and loss of vision [46]. 

Bilateral optic atrophy is typically seen in Leber’s hereditary optic neuropathy (LHON) [47]. 

Chronic progressive external ophthalmoplegia (CPEO) is the most common ocular manifesta-

tion in mitochondrial diseases. Acute or subacute vision loss typically occurs in early adult 

life. Pigmentary retinopathy occurs in MELAS, Leigh syndrome, and CPEO. Retrochiasmal 

visual pathway and visual cortex impairments can cause homonymous hemianopia and corti-

cal blindness. Visual loss due to retrochiasmal visual pathway impairment is most frequently 

seen in MELAS.

Hearing impairment is common in patients with mitochondrial disorders, affecting half of 
the cases over the course of the disease [38]. Hearing assessments using audiograms or brain-

stem auditory-evoked potentials are necessary when hearing symptoms are present. Hearing 

impairment is usually peripheral, with cochlear or auditory nerve dysfunction; however, the 

central auditory system, including the brainstem and auditory cortex, can also be affected. 
Peripheral hearing loss typically affects high frequencies first, followed by intermediate fre-

quencies. The preferential involvement of high frequencies may be related to the high-energy 

requirements of the basal cochlea.

4.4. Muscle biopsy

As discussed above, the laboratory investigation of suspected mitochondrial disease is com-

plex. Although mitochondrial disorders are characterized by a wide spectrum of clinical pre-

sentations, skeletal muscles are one of the frequently affected tissues. Whenever possible, the 
presence of mitochondrial disease should be assessed in the affected tissues, such as the liver, 
heart, or skeletal muscle. However, in vivo access to these tissues is often not possible, and 

muscle biopsies must serve as an alternative, even when there is no evidence of myopathy.

The histology of the affected muscles typically shows ragged-red fibers (Figure 2A, B), which 

can be demonstrated using modified Gomori trichrome stains, and contains a peripheral and 
intermyofibrillar accumulation of abnormal mitochondria. Electron microscopy can some-

times reveal subsarcolemmal and enlarged, swollen mitochondria, with irregular cristae 

and paracrystalline inclusions (Figure 2C). The histochemical analysis of COX and succinate 

dehydrogenase is standard for assessing mitochondrial respiratory chain function in muscle 

samples [48, 49].

Establishing a biochemical phenotype is not only important for candidate gene selection but 

also provides important information required to interpret the genetic test results. The bio-

chemical examination of a muscle biopsy to evaluate the functional state of the mitochondria 
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is still regarded as a critical examination for patients with mitochondrial diseases. Activity 

measurements of oxidative phosphorylation enzymes and analyses of mitochondrial respira-

tion, substrate oxidation, and ATP production can unveil an aberrant mitochondrial energy-

generating system [50].

Figure 1. Neuroimaging: Brain computed tomography (A) and T1-weighted magnetic resonance imaging (B) show 

calcification in the bilateral basal ganglia and cerebellar atrophy. There is no lactate peak on magnetic resonance 
spectroscopy in this case (C).

Mitochondrial Cardiomyopathy
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4.5. Molecular genetic analysis

A three-generation family history can suggest the mode of transmission, aid in the diagnosis, and 

direct the molecular genetic testing. Many individuals with mtDNA mutations display a clus-

ter of clinical features that fall into a specific clinical syndrome, such as MELAS or MERRF [12].  

When the presentation is classic for a maternally inherited mitochondrial syndrome, such 

as MELAS and MERRF, mtDNA studies should be obtained first. However, there is often 
considerable clinical variability, and many affected individuals do not fit into one particu-

lar category. Genotype-phenotype correlations are often obscure, and genetic analyses are 

frequently required for a definite diagnosis. Molecular genetic testing may be carried out on 
genomic DNA extracted from the blood or muscle. The ordering of molecular genetic tests 

and the interpretation of results require the support of an experienced clinical geneticist.

Figure 2. Histopathological findings: A myocardial biopsy from the endometrium of the right ventricles was performed. 
Hematoxylin-eosin staining shows a loss of cardiomyocytes and the enlargement of the remaining cardiomyocytes, with 

vacuoles (A). Elastica-Masson staining shows interstitial fibrosis (B). Electron microscope shows an increased number of 
mitochondria, with variable size and shape (C).
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5. Cardiac manifestations

Because cardiac muscles are a high-energy-demanding tissue, cardiac involvement occurs in 

a large proportion of cases of mitochondrial diseases. Natural history studies have demon-

strated that cardiac involvement is an independent predictor of morbidity and early mortal-

ity in mitochondrial diseases [2, 4, 51]. When mitochondrial disease is known or suspected, 

the cardiac examination should be directed toward eliciting signs of heart failure, including 

cardiac enlargement, elevated jugular venous pressure, auscultation of gallop, bilateral lung 

crackles, pitting edema, and hepatomegaly. Mitochondrial cardiomyopathies can vary in 
severity, from asymptomatic to severe manifestations, including heart failure, arrhythmias, 

and sudden cardiac death.

Patients with MELAS are particularly prone to cardiomyopathy [4, 52–54]. Hypertrophic car-

diomyopathy is the most common cardiac manifestation, occurring in approximately 40% 

of cases [4]. However, mitochondrial cardiomyopathies might also present as LVNC or as 

dilated, histiocytoid, or restrictive cardiomyopathy [2, 4, 51]. In addition, the conduction sys-

tem can be affected.

5.1. Hypertrophic remodeling

Hypertrophic remodeling is the most common form of cardiomyopathy and can mimic hyper-

trophic cardiomyopathy (HCM) [2, 4, 51]. Patients diagnosed as HCM may include those 

with mitochondrial abnormalities, especially in cases of atypical HCM. There are some dif-

ferences between HCM and hypertrophic remodeling in mitochondrial cardiomyopathy. Left 

ventricular outflow tract obstruction is rarely observed in mitochondrial cardiomyopathy, 
while a progression to ventricular dilation and heart failure is more frequent than HCM [2].  

A longitudinal study demonstrated that the degree of left ventricular hypertrophy (LVH) is 

correlated positively with left ventricular end-diastolic volume and negatively with ejection 

fraction in patients with MELAS [53]. These findings are unique in mitochondrial cardiomy-

opathy, not seen in hypertrophic cardiomyopathy due to mutations in sarcomeric proteins.

5.2. Dilated remodeling

Dilated remodeling, leading to heart failure, has also been occasionally reported in patients 

with mitochondrial diseases; however, it is less common [54]. Dilated remodeling is reported 

in KSS, MELAS, MERRF, and Light encephalomyopathy [54–56]; however, most of the dilated 

remodeling in mitochondrial diseases represents the progression from hypertrophic remodel-

ing accompanying chamber dilation and systolic dysfunction.

5.3. Rare types of remodeling

LVNC is a rare finding in mitochondrial cardiomyopathy. However, among patients with 
LVNC, mitochondrial diseases are highly prevalent [57, 58]. Research using next-generation 

sequencing has revealed that mtDNA mutations, with subsequent mitochondrial dysfunction, 

may be key players in the etiology of LVNC. Furthermore, recent research has demonstrated 
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that a loss of mitochondrial intermediate presequence proteases results in LVNC [59]. LVNC 

is generally more frequent in male patients and tends to develop during pregnancy in female 

patients. Occasionally, it may disappear during the disease time course in some patients with 

mitochondrial diseases.

Histiocytoid remodeling is histologically characterized by morphological and functional 

abnormalities of the cardiomyocytes and Purkinje cells, with a cytoplasm similar to that in 

histiocytoid foam cells, containing glycogen and lipids [60]. This type of remodeling has been 

reported exclusively in mitochondrial diseases.

5.4. Conduction system abnormalities

Conduction system dysfunction commonly occurs in patients with mitochondrial diseases. The 

diagnostic criteria for KSS include atrioventricular block, given its high prevalence rate in KSS 

[61–64]. Conduction system disease occurs, albeit less commonly, in 5–10% of patients with 

other forms of mtDNA disease, with atrioventricular or intraventricular conduction distur-

bances reported in association with m.3243A > G and m.8344A > G mutations [2, 4, 51–53, 65].

In patients with mitochondrial diseases, progression to lethal atrioventricular block is often 

unpredictable, which requires the recognition of any conduction system abnormalities and 

consideration of intervention at early phase. Early deaths in patients with KSS may be attrib-

utable to infranodal heart block. Furthermore, WPW syndrome and conduction block are 
common in patients with mitochondrial diseases [66].

5.5. Rare manifestations

Pulmonary artery syndrome has been observed in patients with MELAS syndrome, as well as 

in patients with hyperuricemia, pulmonary hypertension, renal failure in infancy, and alka-

losis (HUPRA) syndrome. HUPRA syndrome is associated with mutations in SARS, which 

encodes mitochondrial seryl-tRNA synthetase [66]. Furthermore, congenital cardiac abnor-

malities are observed in microphthalmia with linear skin lesions, which is associated with 

holocytochrome-c-type synthetase and COX7B mutations [67].

6. Evaluation of the cardiac manifestation severity

Multiple imaging modalities exist for differentiating viable myocardium from scar tissue in terri-
tories with contractile dysfunction [67]. Cardiac involvement should be evaluated at the diagnosis 

in all patients with mitochondrial diseases, irrespective of their symptoms, as the cardiomyopa-

thy can remain asymptomatic until reaching an advanced stage. Because of the heterogeneous 

and variable manifestation of mitochondrial cardiomyopathies, the evaluation of the extent and 

severity of the cardiac damage is rather difficult. However, the evaluation and follow-up of car-

diac involvement are quite important, as cardiac involvement is the major cause of death in mito-

chondrial diseases. Below, we review here the current status of each relevant imaging modality 

for the assessment of mitochondrial cardiomyopathy.

Current Perspectives on Cardiomyopathies12



6.1. Cardiac MR (CMR) imaging

With tissue characterization using late gadolinium enhancement (LGE) and T1 and T2 

mapping, the underlying etiology of the heart failure can be readily established [68, 69]. 

Gadolinium is extracellular and resides in the interstitial space. LGE refers to the discrimi-

nation of regions of scar tissue, necrosis, and/or inflammation from normal tissue by the 
prolonged retention of gadolinium-based contrast agents (Figure 3A, B) [69, 70]. CMR is a 

noninvasive tool that accurately identifies and quantifies myocardial fibrosis. Nonischemic 
cardiomyopathy can be distinguished from ischemic cardiomyopathy, as a subendocardial or 

transmural LGE pattern concordant with the coronary artery supply is indicative of ischemic 
cardiomyopathy (necrosis begins in the subendocardium and progresses toward the epicar-

dial area). However, nonischemic cardiomyopathies, including sarcoidosis, amyloidosis, and 

Fabry’s disease, show various LGE patterns [71–74]. Extensive amounts of LGE can be predic-

tive of subsequent remodeling and an evolution toward the end stage [75, 76]. In addition, the 

presence and extent of LGE in cardiomyopathies are associated with adverse cardiovascular 

outcomes and a poor response to standard medical and interventional therapies [75, 76]. 

Furthermore, abnormal myocardial perfusion reserve and fibrosis occur before cardiac dam-

age becomes symptomatic in patients with Friedreich ataxia [77]. Thus, CMR may be useful in 

detecting trivial myocardial damage in the early stages of mitochondrial cardiomyopathy and 

in evaluating the extent of cardiac damage and assessing the prognosis in cardiomyopathies.

6.2. 99mTc-MIBI cardiac scintigraphy

99mTc-sestamibi (MIBI) is a lipophilic cation. Myocardial uptake and the retention of 99mTc-MIBI 

involve passive diffusion across the plasma and mitochondrial membranes. Cellular influx of 
the tracer is driven by the inside negative plasma and mitochondrial inner membrane poten-

tials, which concentrate the tracer within the cytosol and mitochondria [78, 79]. The retention of 
99mTc-MIBI in the mitochondria is related to mitochondrial function (Figure 3C). The washout 

rate of 99mTc-MIBI is calculated from the segmental counts in the early and delayed images. 

Recent human studies on patients with congestive heart failure have shown that the myo-

cardial washout rate of 99mTc-MIBI is a novel marker for the diagnosis of myocardial damage 

or dysfunction, providing prognostic information [80, 81]. 99mTc-MIBI is commonly used as a 

myocardial perfusion imaging tracer for the detection of significant coronary artery disease. 
Furthermore, an impaired 99mTc-MIBI washout may predict mitochondrial dysfunction, and 

the impairment of myocardial contractile and relaxation reserves during dobutamine stress in 

patients with HCM or dilated cardiomyopathy [81]. In patients with MELAS, decreased 99mTc-

MIBI uptake and increased MIBI washout are observed, which correlate inversely with the 

left ventricular ejection fraction [82–88]. Thus, the 99mTc-MIBI washout rate and a disturbed 

uptake of 99mTc-MIBI are indicators of the severity of mitochondrial damage in mitochondrial 

cardiomyopathy.

6.3. 123I-BMIPP scintigraphy

As free fatty acids are the main energy source of the heart under aerobic conditions, the evalu-

ation of myocardial fatty acid metabolism is useful in understanding the pathophysiological 
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conditions of various heart diseases [85]. 123I-labeled 15-(p-iodophenyl)-3-R,S-methylpen-

tadecanoic acid (BMIPP) is a radiolabeled fatty acid tracer that can be used with single pho-

ton emission tomography (SPECT) to evaluate fatty acid metabolism [86–88]. Areas of the 

myocardium with reduced BMIPP uptake, relative to that for myocardial perfusion follow-

ing revascularization for acute myocardial infarctions, suggest the presence of metabolically 

dysfunctional myocardium, which may indicate a lower likelihood of functional recovery 

[89–92].

Figure 3. Multimodality imaging: Cardiac magnetic resonance reveals regional wall motion abnormalities, with 

thickening of both the left and right ventricular walls (A). Late gadolinium enhancement is observed in the middle layers 

of the anterior and interventricular septum and inferior walls, partially extending into the epicardium (B). Decreased 

uptake of 123I-labeled 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (123I-BMIPP) is observed in the anterior and 

interventricular septum and inferior walls (C). Preserved uptake of 99mTc-sestamibi (MIBI) in the early phase is shown 

(D). Global 99mTc-MIBI washout rate is increased, which is one of characteristic features of mitochondrial cardiomyopathy 

(24.74% vs. control 11 ± 5%).
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Myocardial metabolism abnormalities on 123I-BMIPP scintigraphy are related to the severity 

of heart failure. 123I-BMIPP scintigraphy can detect minor metabolic abnormalities, even when 

echocardiography fails to show any abnormality (Figure 3D) [93]. Many previous case reports 

have demonstrated that increased uptake of 123I-BMIPP in mitochondrial cardiomyopathy is a 

consequence of suppressed fatty acid metabolism due to enhanced glucose utilization.

6.4. Multimodality evaluations

Current imaging methods focus on the evaluation of myocardial anatomy and function. 

However, the detection of perfusion and metabolic abnormalities using SPECT may aid in 

understanding the extent and severity of the myocardial damage.

Although previous case reports suggest that a decreased uptake of 99mTc-MIBI and increased 

uptake of 123I-BMIPP are characteristic patterns in mitochondrial cardiomyopathies [82, 83], 

our group reported a unique case demonstrating a non-decreased 99mTc-MIBI/123I-BMIPP mis-

match pattern [84]. In this previous report, we also compared the findings on scintigraphy, 
CMR imaging, and histopathology. Inhomogeneous LGE intensity reflects scattered viable 
myocytes and surrounding fibrosis, while preserved uptake of 99mTc-MIBI may reflect pre-

served blood flow and a volume effect of the left ventricular wall from the histopathological 
investigation. Although the 99mTc-MIBI/123I-BMIPP mismatch pattern in our case may reflect 
a nonspecific phenomenon in patients with dilated cardiomyopathy, the diverse patterns of 
myocardial damage may reflect different stages or diverse manifestations of mitochondrial 
cardiomyopathies.

Multimodality studies with cardiac scintigraphy, CMR imaging, and histopathology may 

unveil the current status of metabolic and perfusion abnormalities, myocyte damage, and the 

severity and future progression of mitochondrial cardiomyopathies. Comparisons between 

imaging modalities and histopathological findings may also aid in the understanding of the 
underlying etiology; however, further studies and an accumulation of data are required. 

Furthermore, molecular imaging might provide a perspective on the investigation of mito-

chondrial function of the myocardium in vivo, noninvasively and quantitatively, in the near 

future. Moreover, the response to therapeutic interventions could be monitored using these 

methods.

7. Treatments

Currently, there are no satisfactory therapies available for mitochondrial diseases. Treatment 

remains largely symptomatic and does not significantly alter the progression of the disease 
[94–96].

Exercise can be helpful for patients with mitochondrial disease. In healthy individuals, a 

lack of exercise leads to an overall reduction in mitochondrial ETC activity, whereas endur-

ance training can improve ETC activity, and resistance training can stimulate the incorpo-

ration of satellite cells into existing muscle fibers. Resistance training might also improve 
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mitochondrial function. Although no specific dietary manipulation has shown a consistent 
benefit for individuals with mitochondrial diseases, pharmacologic strategies include the use 
of various dietary supplements. Therapeutic strategies for mitochondrial diseases include the 

use of agents that enhance ETC function and mitochondrial biogenesis, agents that act as an 

energy buffer, antioxidants, and gene therapy [78, 79, 97]. However, most attempted strategies 
have turned out to be failures [98–100]. CoQ10 and its synthetic analogues are the only agents 

which have shown therapeutic benefits for mitochondrial diseases with CoQ10 deficiency 
[101–103]. Oral CoQ10 supplementation may alleviate the progression of encephalopathy.

Gene therapy has shown promising results in treating LHON. Approximately, 70% of indi-

viduals with LHON have pathogenic variants in the mtDNA gene encoding subunit 4 of 

complex IV (MT-ND4). The adeno-associated virus (AAV) can carry the mitochondrial and 

mitochondrial targeting genes, and the viral capsid, VP2, can be fused with an AAV mito-

chondrial-targeting sequence to the mitochondria, achieving ND4 expression. Wild-type ND4 

expression in cells with an ND4 mutation leads to the restoration of defective ATP synthe-

sis [104]. In addition, clinical studies have shown an improvement in the average acuity for 

patients with LHON and bilateral vision loss with the use of this therapy [105].

It is usually difficult to improve cardiac function once deterioration in cardiac function occurs. 
In patients with cardiomyopathy, early intervention with beta-blockers and an angiotensin-

converting enzyme (ACE) inhibitor is thought to delay cardiomyopathy progression, as it 

does in other causes of heart failure. Recommendations for the management of hypertrophic 

remodeling in mtDNA diseases are reliant on clinical studies in HCM and LVH. Calcium 

channel antagonists and beta-blockers are recommended in symptomatic patients or in those 

with symptomatic LVH and HCM. Beta-blockers, ACE inhibitors, and angiotensin receptor 

blockers have been demonstrated to reduce LVH in the general population [106]. Given the 

progressive nature of hypertrophic remodeling in mitochondrial diseases, these drugs are 

often started with the first appreciation of LVH in mitochondrial cardiomyopathy.

American and European guidelines recommend permanent pacemaker implantation at an 

early stage of conduction system dysfunction in patients with mitochondrial diseases, due to 

its unpredictable progression. Rarely, heart transplantations have been performed in patients 

with mitochondrial cardiomyopathy when the clinical manifestation was limited to the myo-

cardium and extra-cardiac manifestations were relatively mild and nonprogressive [107–119].

8. Conclusion

Myocardium is one of the most frequently affected tissues in mitochondrial diseases because 
of its high energy demand. The clinical presentations are variable in terms of the age of onset, 

symptoms, and range and severity of organ involvement. Since cardiac involvement is an inde-

pendent predictor of morbidity and early mortality, careful and accurate examination of cardiac 

damage is required. Current imaging methods focus on the evaluation of myocardial anatomy 

and function; however, the detection of perfusion and metabolic abnormalities using SPECT 

may aid in understanding the extent and severity of the myocardial damage in each patient.
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