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Abstract

Large black holes of millions of solar masses are known to be present in the centre of
galaxies. Their mass is negligible compared to the mass of the luminous matter, but their
entropy far exceeds the entropy of the latter by 10 orders of magnitude. Strong gravita-
tional fields make them ‘black’—but at the same time, they cause them to emit radiation—
so they are not ‘dark’. What is the meaning of their borders that may only be crossed once
and that leads to the information paradox and what are the properties of their interiors? In
discussing these and related questions (is it possible that the volume of a black hole might
be infinite?), we uncover the unexpected meaning of the term ‘strong gravity’.

Keywords: gravity, black holes, horizon, interior, information paradox

1. Introduction

Black holes (BHs) are sources of the strongest gravitational fields in the Universe. On the other

hand, they are also the outcomes of these strong gravitational fields. The first time they

appeared in science was as a result of speculation. At the end of the XVIIIC, the English

geologist (and astronomer) John Michell and the famous French mathematician Pierre-Simon

Laplace independently considered the consequences of the presence of a large, compact mas-

sive object producing gravitational fields so strong that even light could not escape from them.

For obvious reasons, discussions of this kind were limited in their nature at that time.

The next step came at the beginning of 1916, when Karl Schwarzschild, a mathematician and

an army officer, found a specific solution for the field equations of Einstein’s General Theory of

Relativity. He found the solution for the particular case of a static, spherically symmetric

spacetime. Schwarzschild sent the results of these studies to Albert Einstein in the form of
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two chapters. The second of these two chapters contained what was, to Einstein, a controver-

sial result. If the mass of the source of the gravitational field was both big enough and compact

enough, then the solution was singular: a particular element of the metric tensor, a tool for

describing the geometric properties of the spacetime, became infinite at some distance from the

centre. Einstein was concerned by this effect and consequently had been slow to respond; in

the meantime, Schwarzschild had died.

Schwarzschild’s solution [1] (see subsequent text) reveals a specific form of behaviour and

leads to the conclusion that in some circumstances, a so-called horizon (termed an event

horizon) is formed around the black hole. Such a horizon acts as a semi-permeable ‘membrane’

[2]: it may be crossed only once and in one direction only. The radius of the event horizon is

called the gravitational radius or the critical or Schwarzschild radius.

The term ‘Black Hole’, proposed in the 1960s by J.A. Wheeler, represents the reality of a strong

gravitational field in which neither massive nor massless objects (i.e. light in the form of

photons) could leave its interior. Black holes (BHs) had been regarded as hypothetical objects

even as late as the early 1970s; at that time, a famous bet between two prominent physicists,

Kip Thorn (Nobel Prize winner in Physics in 2017) and Stephen Hawking, was set. The subject

of the bet was the experimental confirmation of the presence of black holes (the annual

delivery of a journal from a building sector was the pledge for this bet).

Currently, it is assumed that there is a massive BH with a mass of millions of solar masses

M⊙ð Þ in the centre of each large galaxy [3]. The black hole closest to the Solar System is located

at a distance of 1700 light years from us. In the centre of Milky Way, there is a BH of mass

4:3∙106M⊙; one of the largest BHs with a mass of a billion solar masses has been found in the

centre of the Sombrero galaxy. This allows us to estimate that the matter confined within black

holes is many orders of magnitude smaller than the luminous matter (LM) in each galaxy,

rBH ≤ 10�3
rLM (1)

Hence contributes a negligible fraction of the total energy density. An interesting fact, how-

ever, is that the total entropy of black holes, SBH totð Þ is 10 s of orders of magnitude higher than

the entropy of radiation (CMB), estimated at a value of 1090. Indeed, the entropy of a BH of

mass 4:3∙106M⊙ is

SBH 4:3∙106M⊙

� �

ffi 1090 (2)

(see subsequent text), so

SBH totð Þ ≥ 10101, (3)

some 20 orders of magnitude smaller than the maximal entropy of our Universe.

The purpose of this exposition is to illuminate the properties of strong gravitational fields. This

will be achieved via a discussion of particular processes and phenomena in the vicinity of the

event horizon of black holes, on both sides of this horizon.
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2. The Schwarzschild solution and the event horizon

Let us consider the case of mass M as the source of a static and isotropic gravitational field.

Then, the geometric properties of the resulting spacetime are determined by the Schwarzschild

solution, a metric tensor ɡαβ. The line element, given in terms of Schwarzschild coordinates,

xαf g ¼ t, r,θ,φ, is (see [1])

ds2 ¼ ɡαβdx
αdxβ ¼ f rð Þc2dt2 �

1

f rð Þ
dr2 � r2dΩ2 (4)

where f rð Þ ¼ 1�
rɡ
r , rɡ ¼ 2GM

c2
denotes the gravitational radius and dΩ2 ¼ dθ2 þ sin 2θdφ2 is a

surface element of a unit sphere (we will utilize the system of units such that c ¼ G ¼ 1).

Solution (2.1) is determined in an empty space outside mass M. Usually, when one deals with

a weak gravitational field, the radius RM of mass M is much larger than its critical radius,

RM ≫ rɡ, then f rð Þ ffi 1. Actually, for the Earth, rɡ Eð Þ ≈ 6 mm, the strength of the gravitational

field is of the order of 10�9; the strength of the solar gravitational field is still very weak, 10�6;

but neutron stars yield strong gravitational fields, 10�1. Black holes are the sources of the

strongest fields, where an event horizon (defined by f rð Þ ¼ 0) is developed. In such a case, we

shall consider that the space outside and inside the horizon is empty—the mass of the black

hole is confined at r ¼ 0—a singularity. This case will be referred to as an eternal black hole.

We shall call the region outside the horizon as the exterior and that inside the horizon as the

interior of the black hole.

3. Exterior of the Schwarzschild BH

The meaning of a strong gravitational field is revealed via investigation of the properties of the

exterior and then the interior of a BH. It is natural to start from the former region. Let us

underline the first, nearly trivial fact that the (relativistic) definition of the gravitational radius

as the singularity of the metric (2.1) coincides with a purely classical physics definition of a

critical radius such that the escape velocity becomes equal to the speed of light in a vacuum, c

(see [4]). The generalization of this observation [4, 5] leads to the conclusion that the speed of a

freely falling test particle tends to c, independently of the initial conditions. This and the other

properties of the exterior of the event horizon may be described by means of geodesics of both

kinds, that is, for massive and massless particles (light rays). The geodesic equations may be

derived from the following Lagrangian (see Eq. (4)):

L ¼ f rð Þ _t2 �
1

f rð Þ
_r2 � r2 _θ2 � r2 sin 2θ _φ2 (5)

in a standard manner leading to the Euler–Lagrange equations; _xμ � dxμ

dσ and σ is an auxiliary

parameter. There are two conserved quantities resulting from the symmetry conditions:

energy, e (due to time independence of the Lagrangian), and angular momentum, l (due to the
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invariance of the Lagrangian with φ). The latter condition results in the planar character of

geodesic motions, so one may, without loss of generality, choose an equatorial plane, θ ¼ π
2 and

express these conservation laws as follows:

f rð Þ _t ¼ e, (6)

r2 _φ ¼ l: (7)

One can determine then arbitrary geodesics from the normalization condition

ɡμν _xμ _xν ¼ η (8)

where η ¼ 1 or 0 for time-like (massive object) geodesics or for light-like (massless object)

geodesics, respectively. Indeed, the radial component of the velocity vector, u (η ¼ 1), or the

wave vector, k (η ¼ 0), takes the form:

_r ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 � f rð Þ l2

r2
þ η

� �

s

(9)

Using Eqs. (6)–(9), one can characterize both types of geodesics and illustrate in this way

selected features of gravitational fields outside the BH horizon.

Apart from geodesic motions, we will also be employing systems of static observers, SO,

whose spatial coordinates are fixed. They are characterized by velocity four-vector,

uSO ¼ 1
ffiffiffiffiffiffiffiffi

f rð Þ
p ; 0; 0; 0

 !

(10)

3.1. Travel time towards BH horizon

Let us consider the situation of observer A (Alice) whose frame of reference is in a radial free

fall, l ¼ 0 towards the BH horizon (4). A’s frame (or “spaceship”) initially was at rest at a

Mother Station, MS, located at r0. The coordinate time to cover the radial coordinate range

r0; rð Þ in this case is found from Eqs. (6)–(9)

t ¼ �
ðr

r0

erdr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� rɡ
� �

rɡ � r e2 � 1ð Þ
� �

q (11)

It diverges, t ! ∞ as A’s spaceship approaches the horizon, r ! rɡ. The proper time, which is

the time measured by Alice herself,

τ ¼ �
ðr

r0

e
ffiffi

r
p

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rɡ � r e2 � 1ð Þ
� �

q < ∞ (12)

turns out to be finite. This illustrates a manifestation of the most dramatic time delay: for

distant observers (but actually for all observers exterior to the horizon), Alice’s frame of
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reference would need an infinite time to reach the event horizon, while a finite time elapses for

the co-moving observer, Alice herself. Another aspect of this outcome has already been men-

tioned. The speed, V , of the freely falling test particle as measured by a static observer, SO,

follows from the expression (see also [5]),

uSOU ¼ f _t
1
ffiffiffiffiffiffiffiffi

f rð Þ
p ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
p (13)

One finds then a general outcome: the speed of a test particle radially freely falling

V2 ¼ e2 � f rð Þ
e2

		!
f!0

1 (14)

approaching the event horizon tends to the value of the speed of light in the vacuum. And this

result is independent of the initial conditions. One may ask: how would that speed be chang-

ing inside the horizon? We discuss this question subsequently.

3.2. Generalized Doppler shift: how to fix the instant of crossing of the Schwarzschild

BH horizon

It is a well-known fact that due to the equivalence principle, an observer confined within a

frame freely falling towards the horizon cannot identify the instant at which he/she crosses the

horizon and if a black hole is large enough, such an observer would harmlessly cross the

horizon without even noticing [6]. On the other hand, one can quite precisely determine that

instant. How is this seeming contradiction possible?

Before resolving this, let us recollect a well-known result, that of the gravitational frequency

shift. In order to do this, one considers radial signals of a fixed frequency, ω emitted at r0 (the

location of the Mother Station) and recorded by a static observer at r > rɡ. The wave vector k of

those radial light rays, k ¼ kt; ; kr; 0; 0
� �

is (see Eqs. (6), (7)):

kt ¼ ω

f
, (15)

kr ¼ �ω, (16)

where � corresponds to out- and ingoing rays, respectively. If MS emits such a signal with

frequency

ω
e
MS ¼ ω

ffiffiffiffiffiffiffiffiffiffi

f r0ð Þ
p � ω, (17)

SO records it at r and measures its frequency as

ωSO ¼ uSOk ¼
ω

ffiffiffiffiffiffiffiffi

f rð Þ
p (18)

so
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ω
r
SO

ω
e
MS

¼
ffiffiffiffiffiffiffiffiffiffi

f r0ð Þ
f rð Þ

s

		!
f!0

∞: (19)

The frequency recorded by SO is indefinitely blueshifted: when r tends to rɡ, f ! 0.

When such radial signals are recorded by Alice, ωA ¼ uAk, at her instantaneous position at r,

then she finds (see Eqs. (6)–(9) and (15, 16)

ω
r
A ¼

ωffiffiffiffiffiffiffi
f r0ð Þ

p

1þ V
(20)

where V is the speed of her spaceship as measured by SO (placed at r) (see Eq. (14)).

Exchanging such signals, one can observe a (generalized) Doppler shift of the following

form [7]:

ω
r
A

ω
e
MS

¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffi

e2�f rð Þ
e2

q ¼ 1

1þ V
(21)

and

ω
r
MS

ω
e
A

¼ 1� V (22)

The meaning of result (22) is as follows: signals coming from a frame infalling towards the

black hole horizon are indefinitely redshifted (and ultimately disappear from the screens/

sensors)—such a journey seems to take infinitely long for external observers. This confirms

our former conclusion. The result (21) on the other hand means that the Doppler shift of signals

coming from MS allows Alice to identify the horizon quite precisely—the Doppler shift

reaches a value of ½ on the horizon.

3.3. Image collision or the ‘touching ghosts’ anomaly

With the speed of free fall tending to the speed of light in a vacuum, the generalized Doppler

shift as characterized by Eqs. (21) and (22) and the dramatic form of the time delay in this case,

this leads to yet another anomaly—image collision [8] or touching ghosts [9]. Signals emitted by

Alice located within the infalling frame appear to get “frozen” in the proximity of the horizon

(see, however, [10, 11]).

Let us consider another observer, B (Bob), whose spaceship also starts from MS, following

Alice’s spaceship. Alice and Bob exchange electromagnetic signals; how (when) does Bob

perceive the instant of Alice’s crossing of the horizon? The answer has been referred to as

‘image collision’ or ‘touching ghosts’ and it is as follows [8, 9]. Alice sends an encoded

message: a signal that means ‘I am crossing the horizon’ (at the instant when her Doppler shift

is half); Bob receives that message at the instant when he himself crosses the horizon.
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An interesting fact is that this effect, originally illustrated by means of Kruskal-Szekeres

coordinates, may be interpreted in a general manner, without reference to any specific system

of coordinates. Indeed, if Bob received such a message before crossing the horizon, that

information would be transmitted to our part of the universe; this would contradict the fact

that the horizon crossing can never be observed.

3.4. Photon sphere

In the case of null geodesics in the equatorial plane, the wave vector components are as

follows:

kt ¼
ω

f
, kφ ¼

l

r2
(23)

kr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � f
l2

r2

s

� �l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

b2
� Veff rð Þ

r

(24)

where b is a so-called impact parameter. The function Veff rð Þ ¼ f
r2
ɡ

r2 is regarded as an ‘effective

potential’ for null geodesics (see Figure 1). The shape of null geodesics depends on the value of

b. The deflection angle

ð

dφ ¼ �

ð

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
b2
� Veff rð Þ

q

Figure 1. Effective potential Veff rð Þ ¼ f
r2
ɡ

r2
in the case of Schwarzschild spacetime (horizontal axis—r expressed in units,

rS � rɡ ¼ 2M).
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is small for large values of b—light rays are only slightly deflected. It grows indefinitely as the

impact parameter value tends to its critical value, b�1
cr ¼ Veff rphs

� �

. The impact parameter bcr

corresponds to the so-called ‘photon sphere’ composed of circular trajectories, r ¼ rphs,

rphs ¼
3

2
rɡ � 3M (25)

which are (unstable) null geodesics:

kt; 0; 0; ; kφ
� �

¼
ω

f rphs
� � ; 0; 0;

l

r2phs

 !

(26)

3.5. The shape of light cones

It should be noted that in approaching an event horizon, the shape of a light cone evolves in a

characteristic manner. Indeed, observing radial in- and outgoing signals

ds2 ¼ f dt2 �
1

f
dr2 ¼ 0 (27)

one finds,

dr

dt
¼ �f 		!

r!rɡ
0 (28)

which may be illustrated as a sequence of vanishingly narrow cones.

4. Interior of Schwarzschild BH

In order to describe the interior of the horizon of the Schwarzschild spacetime, one can follow

an approach proposed by Doran et al. [12]. These authors showed that discussing the problem

of an empty, but dynamically changing spacetime, one finds, using specific boundary condi-

tions, the metric (4) of the interior of the Schwarzschild spacetime, that is,

ds2 ¼ 1�
2M

r

� �

dt2 �
1

1� 2M
r

� � dr2 � r2dΩ2 (29)

for r < rɡ ¼ 2M (see also [13]). This means that formally one can use Schwarzschild coordi-

nates also for the interior of the horizon, but then one must remember about the exchange of

the roles of the t and r coordinates. Inside the horizon, r plays the role of a temporal coordinate:

it changes from rɡ to 0 and dr < 0; t plays the role of a spatial coordinate, changing between

�∞ and þ∞ with dt taking both positive and negative values. The important consequence is a
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change of the symmetry of the system: instead of a static, spherically symmetric spacetime, one

encounters a homogeneous, spherically symmetric and dynamically changing spacetime;

energy is no longer conserved but (due to the homogeneity along the t-axis), appropriately,

the t-momentum component is conserved.

Therefore, one can consider spacetime (29) as representing the interior of a Schwarzschild

black hole. Accordingly, analogues of the phenomena described above outside the horizon will

be analyzed.

First, one introduces a class of resting observers, RO, that is, those, whose spatial coordinates,

t,θ,φ are fixed. Then, the velocity uRO four vector’s only nonvanishing component is a tempo-

ral one,

uRO ¼ �
ffiffiffiffiffiffi

�f
p

∂r: (30)

The class of infalling test particles located in Alice’s frame of reference is described in the same

way as given outside the horizon (Eqs. (6)–(9))—in this case, however, r < rɡ ¼ 2M, so f < 0. In

this region, ingoing (�) and outgoing (+) null geodesics (that are planar) described as

f
dt

dσ
¼ �ω r2

dφ

dσ
¼ l

dr

dσ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � f
l2

r2
þ η

� �

s

(31)

differ from their counterparts outside the horizon by a small but important feature—the � sign

is designated to a spatial coordinate, namely the r-coordinate outside the horizon and the

t-coordinate inside the horizon. Having said this, one may now discuss specific effects (see

[14, 15]).

4.1. The speed of an infalling test particle

A test particle located in A’s framework (Eqs. (6)–(9)), l ¼ 0, is freely falling FF. Then, a resting

observer (30) measures its (squared) speed ~V 2 as follows:

uROUFF ¼ �
1

f

ffiffiffiffiffiffi

�f
p

ffiffiffiffiffiffiffiffiffiffiffiffi

e2 � f
q

¼
1

1� ~V 2
: (32)

One finds then that (c.f. Eq. (14))

~V 2
¼

e2

e2 � f
: (33)

This is, at first sight, a rather unexpected outcome: the speed is given by a formula inverse to

the one obtained outside the horizon, Eq. (14). Another aspect of this result is revealed when

one illustrates the speed outside and inside the horizon as measured by observers that are

static, SO, and resting, RO (30), respectively (see Figure 2).
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4.2. The Doppler shift

Let us consider an analogy of the generalized Doppler effect inside the horizon.

4.2.1. Frequency shift of signals coming from MS

4.2.1.1. Resting observers

One can start from an analogy of the gravitational frequency shift: a resting observer (30)

records radially incoming signals coming from the Mother Station. Then, according to

Eq. (18), the frequency shift is

ω
r
RO

ω
s
MS

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

f r0ð Þ

�f rð Þ

s

!
∞ r ! rɡ

0 r ! 0




(34)

One finds then that the gravitational frequency shift of the signals coming from MS and

recorded by static, SO, and resting, RO, observers, outside and inside the horizon, respectively,

as having a symmetric form with respect to the horizon itself (see Eqs. (19) and (34)).

4.2.1.2. Freely falling observers

The frequency shift of signals coming from MS and recorded by Alice, who is radially freely

falling, is

ω
r
A

ω
s
MS

¼
1

1þ
ffiffiffiffiffiffiffi

e2�f
e2

q !

1

2
r ! rɡ

0 r ! 0
:

8

<

:

(35)

Expression (35) is the same as its counterpart outside the horizon (21): it turns out that the

frequency shift is a continuous and decreasing function from 1 to 0 during the trip through the

horizon; as emphasized earlier, with the factor 1
2 marking the horizon (see Figure 3)

Figure 2. Values of ‘velocity’ V2 measured by SO (outside horizon) and ~V 2 by RO (inside horizon) of different test

particles in the Schwarzschild spacetime. The red curve corresponds to e ¼ 1, ~V 2 ¼ r
rg
, the green curve to, e ¼ 0:5 and the

blue one to e ¼ 0:2. The vertical line represents the horizon located at rg ¼ 2 (horizontal axis—r expressed in units M).
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4.2.2. Frequency shift of signals inside the horizon of BH

One can consider the exchange of signals by observers at rest inside the horizon. One can

distinguish two types of signals: going along the direction of homogeneity, that is, the t-axis,

and signals propagating perpendicularly to this axis.

4.2.2.1. Signals propagating along the t-axis

The frequency shift of signals exchanged by two observers at rest at t1 and t2 depends on the

emission instant, r1 (recording instant r2 is fixed by the distant t1, t2):

ωr t2ð Þ

ωe t1ð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�f r1ð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�f r2ð Þ
p 		!

r2!0
0: (36)

One finds that in this case, the frequency redshift tends to zero at the ultimate singularity (see

Figure 4).

4.2.2.2. Signals propagating perpendicularly to the t-axis

The wave vector of signals propagating perpendicularly to the t-axis has two non-vanishing

components k ¼ kr∂r þ kφ∂φ (because of the planar character of the trajectory, one can choose

θ ¼ π
2, i.e. the equatorial plane). Then, the frequency shift, for two static observers placed

within this plane perpendicular to the t-axis, is given by

ωr φ2

� �

ωe φ1

� � ¼
r1
r2
		!
r2!0

∞: (37)

One finds an indefinite blueshift at the ultimate singularity (see Figure 5).

Figure 3. Monotonic and continuous change of the frequency ratio
ωr
A

ωs
MS

(redshift—Vertical axis) outside and inside the

horizon (horizontal axis—r expressed in units M, rɡ ¼ 2).
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4.3. Photon sphere analogue

Null geodesics propagating perpendicularly to the t-axis resemble trajectories belonging to the

photon sphere. Indeed, they are determined by the wave vector,

Figure 4. Frequency redshift (vertical axis) for the signal propagating along homogeneity direction between instants,

rB ¼ 0:9rɡ ¼ 1:8 and rA ¼ 0:2rɡ ¼ 0:4 as a function of r (horizontal axis—In M units, rɡ ¼ 2).

Figure 5. Frequency blueshift (vertical axis) for the signal propagating perpendicularly to the homogeneity direction,

between instants, rB ¼ 0:9rɡ ¼ 1:8 and rA ¼ 0:3rɡ ¼ 0:6 as a function of r (horizontal axis—In units M, rɡ ¼ 2).
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0; kr; 0; ; kφð Þ � 0;�

ffiffiffiffiffiffiffi

�1

f

s

l2

r2
; 0;

l

r2

 !

(38)

having only one spatial component, the angular component, kφ corresponding to a circular-like

motion. There is one significant feature distinguishing these null geodesics from the circular

trajectories of radius r ¼ rphs outside the horizon: they circulate over a sphere of an ever-

decreasing radius. One can see from the null condition:

�
1

f
dr2 � r2dφ2 ¼ 0 (39)

that the rate of change of the radius of such a sphere is proportional to r, which is a temporal-

like (decreasing) coordinate. Therefore, one finds inside a black hole an interesting phenome-

non: a photon sphere analogue. Outside the horizon, a light ray belonging to the photon

sphere can (in principle, as it is a circular trajectory of unstable equilibrium) unwind infinitely

many times. One can ask then: inside a black hole, how many times can a light ray orbit along

a photon sphere analogue before reaching the ultimate singularity?

The answer to this question is quite unexpected: it is exactly a single half rotation.

Indeed, by using Eq. (39), one obtains

Δφ ¼

ð

dr

r
ffiffiffiffiffi

�f
r2

q ¼

ð2M

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2M� rð Þ
p ¼ π (40)

This means that the angle traversed by a light ray is equal in this case to π. A general property

is that the deflection angle for a light ray within the BH horizon cannot exceed π.

5. The horizon of a Schwarzschild BH

Among various interesting properties of the Schwarzschild BHs horizon, there are at least two

that are relevant to our discussion.

The first relates to the speed of an object crossing the horizon. As described earlier, the value of

the speed of Alice’s spaceship tends to the value of the speed of light c as it approaches the

horizon. Does that speed take the value c on the horizon? There are no observers residing on

the horizon, but other observers, crossing the horizon, would in principle be able to perform

such a measurement. Performing this kind of thought experiment, one obtains the following:

the speed of Alice’s spaceship crossing the BH horizon is less than the speed of light. The value

of that speed depends on the initial conditions.

The second is linked to any outgoing light ray trapped at the horizon. It may be a signal

emitted by Alice at the instant she was crossing the horizon with the encoded message: ‘I am
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crossing the horizon now’. If it was a signal of some specific frequency, what would be its

frequency as recorded by Bob, when he crossed the horizon? It turns out that such a signal

‘ages’: it is redshifted and the value of the redshift becomes greater as the original distance

between Alice and Bob increases [15].

6. The meaning of a strong gravitational field

Let us underline the rather unexpected and counterintuitive observations that accompany the

presence of the event horizon of a Schwarzschild BH. The strange intimate symmetry of the

outer versus inner region: static observers outside the horizon and observers at rest inside

the horizon measuring the Doppler shift of signals incoming from MS would record basically

the same outcomes. The speed of a test particle falling towards the BH appears to be impeded

after crossing the horizon. As described elsewhere, the speed of a test particle uniformly

accelerated inside the horizon after reaching its maximal value starts to diminish. A null

geodesic follows exactly half a circular orbit within the horizon. Signals exchanged within the

horizon seem to mimic the cosmological model expanding along one specific direction and

contracting perpendicularly to this direction. All of these are manifestations of the presence of

such a strong gravitational field that the event horizon of the BH is developed.

Inside the horizon of a Schwarzschild BH, one comes across a unique phenomenon: an inter-

change of the roles of the r and t coordinates. Outside the horizon r > rS, the radial coordinate

is an ordinary spatial coordinate, which may change from rS to ∞ in both directions, dr ¼ � drj j

and the time coordinate t is a temporal one, that is, such that, dt > 0. Inside the horizon r < rS,

and coordinate r becomes a temporal one: r changes from rS to 0 and dr < 0; coordinate t then

plays the role of a spatial coordinate: �∞ < t < ∞ and dt ¼ � dtj j.

Such an interchange results in a dramatic difference of the symmetry properties of the

spacetime. As mentioned earlier, the Schwarzschild spacetime outside the horizon is static,

independent of time and isotropic; this results in the conservation of energy and angular

momentum, respectively. Inside the horizon, the spacetime is still independent of t but this is

now a spatial coordinate in that spacetime, leading to t-component momentum conservation; it

is no longer static but instead dynamically changing, being r-dependent. Inside the horizon of

the Schwarzschild BH, spacetime is cylindrical-like, homogeneous along the t-axis and

spherical-like, of radius r perpendicularly to this axis (see also [2, 16]).

All of this presents the above-seemingly unexpected or counterintuitive phenomena in a new

perspective. The speed of the infalling test particle is measured as ‘distance’/‘time’ so the

interchange of the roles of ‘distance’ and ‘time’ leads to the inverse expressions to those

exterior to the horizon, V and interior, ~V ; hence, the speed turns out to decrease inside the

horizon. The cylindrical-shape BH interior is a dynamically changing spacetime: expanding

along the t-axis and contracting perpendicularly to this axis. This results in both red- and

blueshifts, respectively [12, 17]. Hence, it actually is a realization of a specific cosmology. The

fact that light rays propagating perpendicularly to the cylinder axis occupy a semicircular

photon sphere analogue is found to have a deeper significance [18]. The same value π is found
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for other kinds of black holes, and this appears to be a fundamental discovery; it may be a

symmetry property linked to a ‘new physics’ of black holes [19]. Also, other observations may

need deeper analysis but, whatever the interpretation, they are caused by the strong gravita-

tional fields that form the BH horizon.

Let us emphasize that the common sense property of the BH, namely. ‘nothing, not even light

can leave their interior’ takes on a new sense now: crossing the event horizon, a test object can

never reach it again as this would mean travelling backwards in time.

There is a more formal interpretation of the interchange of the role of radial and temporal

coordinates in the theory of relativity. The Killing vector representing time independence

symmetry, being time-like outside the horizon becomes space-like inside the horizon—this

actually means that the time-like component of the momentum four vector is converted into a

space-like momentum component, respectively. This opens the door for radiation emitted by

black holes—Hawking radiation.

7. Astrophysical black holes

Generations of thermonuclear reactions support stars against gravitational collapse [3, 20]. The

first stage is a process of hydrogen burning to make helium. When a substantial amount of

hydrogen is exhausted, gravitational contraction raises the temperature until helium burning,

the so-called triple alpha process, can start. This evolution eventually leads, for massive stars,

to the last stage where an element with the largest binding energy per nucleon, 56
26Fe, is

produced. What happens then?

One can consider the state of a star of mass M and radius R, which exhausted its thermonu-

clear fuel, T ¼ 0. It is supported by a nonthermal pressure, due to the fermionic nature of

electrons, protons and neutrons. There are two competing contributions to the energy of such

an object. A negative one arises from a gravitational origin

Eɡ ∝ �
M2

R
(41)

and a positive one, the kinetic energy of the electronic gas:

Ek ∝nR3 Eh i (42)

where n denotes the density of electrons and Eh i is the electronic mean energy. Taking the

following relation between the characteristic electron momentum, pF, and the corresponding

wavelength, λ∝ n�1=3,

pF ∝λ
�1
∝ n1=3 (43)

one obtains for a nonrelativistic range of energies, Eh i∝ p2F
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Ek ∝
M5=3

R2
: (44)

It appears that the kinetic energy term dominates in the range of decreasing values of R,

preventing further contraction. However, for more massive stars, higher energies are available

and the electrons would be regarded as relativistic, Eh i∝ pF and then,

Ek ∝
M4=3

R
(45)

In such a case for a mass M larger than the Chandrasekhar limit, MWD ≈ 1:4M⊙ (for white

dwarfs), the pressure of the electron gas could not support a star against its gravitational

contraction.

For even more massive stars, one comes across inverse beta decay leading to the formation of a

neutron star core. In such a case, the Pauli exclusion principle, this time for neutrons, prevents

gravitational collapse, up to some specific limit, Mcr ∝ 2� 3M⊙. For masses larger than this

limiting case, nothing can stop the ongoing gravitational collapse eventually leading to a

singular state of matter—a black hole.

8. Entropy and Hawking radiation

In early 1970s, it was indicated by Bekenstein [21] and Hawking [22] that BH entropy is

proportional to their surface area:

S ¼ kB
4πr2S
4l2P

¼ kB
4πM2

l2P
(46)

where lP denotes the Planck length and kB Boltzmann’s constant. It was also recognized that

BHs may be regarded as simple thermodynamic systems (the black hole ‘no hair’ theorem)

characterized by three parameters, mass M, angular momentum J and charge Q. Accordingly,

one can identify four different kinds of black hole: Schwarzschild (nonrotating and uncharged,

characterized by their mass M), Reissner-Nordstrom (charged but nonrotating, characterized

by M and Q), Kerr (rotating, characterized by M and J) and Kerr-Newman (rotating and

charged, characterized by M, J and Q). In the case of Schwarzschild spacetime, one can apply

a simple thermodynamic formula [21, 22].

dU ¼ TdS (47)

and identifying U ¼ M to determine the BH temperature TBH as being proportional to its

inverse mass,

TBH ¼
ℏc3

8πMkBG
(48)
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where we use standard notation. It was Hawking’s idea that black holes should lead to a new

kind of uncertainty [23], other than the one having a quantum mechanical origin. When matter

or radiation falling in towards a black hole crosses its horizon, the information it carries is

inevitably lost. This led to two controversies. Firstly, information itself is lost. Secondly, one can

consider black hole formation due to the gravitational collapse of matter (or radiation) as the

unitary evolution of a pure quantum state. After the formation of the horizon, further evolu-

tion has to be regarded in terms of mixed states due to the loss of information. This means the

breakdown of quantum mechanical predictability. Both elements of such an information prob-

lem, loss of information and breakdown of unitary quantum evolution, were objected to from

the very beginning.

Hawking himself [24] formulated the idea of black hole decay. Due to the existence of an event

horizon and the conversion of one of the Killing vectors from a temporal to a spatial one, a pair

of entangled particles, one of positive and one of negative energy, would be created in the

proximity of the horizon. Two scenarios are then possible when one (the one with negative

energy) or both of the particles fall behind the horizon. The point is that the particle with

negative energy could not ‘survive’ in our part of the Universe for fundamental reasons, but it

could exist within the horizon. This is so because the energy, the t-component of the particle

momentum vector within the horizon, takes on a spatial character, so it might then be either

positive or negative. Hence, one of the particles, the one with positive energy, departs to

infinity, being recorded as Hawking radiation and the other member of the pair, with negative

energy, falls behind, ‘tunnelling through’ [25] the horizon and reducing the BH mass. This is

the meaning of BH evaporation. Hawking evaporation is the radiation of a black body of

temperature, TBH (8.2).

Therefore, BHs turn out to be evaporating nonequilibrium systems with a decay time

tBH ffi 1074
M

M⊙

� �3

(49)

fifty seven orders of magnitude larger than the age of the Universe for moderate BH massesM.

According to the generalized second law of thermodynamics, the entropy during evaporation

is an increasing function of time. Indeed, during evaporation, the BH entropy decreases,

dSBH ¼ �
dU

TBH

(50)

yet the entropy of the respective BH radiation is larger by one-third [26].

dSr ¼
4

3

dU

TBH

: (51)

One may suspect that information lost due to the presence of the horizon may be retrieved due

to evaporation, thus restoring this fundamental aspect of quantum mechanical unitary evolu-

tion [27–29]. A closer scrutiny shows that this is not so obvious: at the initial stages of the BH
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decay, both BH and radiation are close to their maximally mixed states, thus no information is

retrieved. Although the process of releasing information might be of a non-perturbative char-

acter, the information problem (referred to as the information paradox) still remains unsolved.

It was indicated that smooth quantum mechanical unitary evolution should lead to the break-

down of the smoothness of the proximity of the event horizon, leading to a ‘firewall’ [30]. This

concept was objected to in more recent papers [31–33]; nevertheless, the information paradox

is still far from being removed. It may currently be formulated in many different ways and one

of those ways can be expressed as follows:

Hawking radiation consists of particles born as entangled pairs; those recorded far away are

then entangled with a diminishing BH. Finally, the BH disappears. What, then, are those

particles recorded at distant locations still entangled with [34]?

9. Final remarks

The purpose of this presentation was to illustrate selected features of strong gravitational

fields. Black holes are the sources of the strongest gravitational field in the sense that an event

horizon has developed. Let us briefly consider the point ‘black but not dark’. The presence of

black holes may be recognized primarily due to gravitational interactions: the dynamics of

their environment. In this sense they may be regarded as a component of a dark matter sector.

Accepting such an oversimplified or naïve point of view for a while, one may ask about the

character of this component. Partly, the answer is obvious: this is baryonic matter, as massive

stars collapsing into black holes are composed of baryonic matter. But due to instability, there

are no extremely massive stars, so BHs of millions of solar masses have a different origin

(eternal black holes), so they might not necessarily be composed of baryonic matter. In princi-

ple, as they evaporate, they emit radiation; also, they could be charged so they could therefore

affect their environment not only gravitationally. Hence, although they are black they are

hardly ‘dark’. As mentioned at the beginning of this exposition, BHs constitute a small fraction

of the density of baryonic matter, so they are interesting objects in the Universe rather for the

local properties imposed by their gravitational field, than for other reasons (at least so it seems

to us at the moment).

The outcome of the presence of the horizon of the BH is a dramatic difference in the symmetry

properties of the exterior and interior of the BH. Energy conservation related to the time-like

Killing vector is changed into a corresponding momentum component conservation as the

Killing vector is converted into a space-like one. That is a consequence of the static spacetime

outside the horizon being transformed into a homogeneous one, along the t-direction, but it

also becomes a dynamically changing spacetime inside the horizon: expanding along the

homogeneity direction and contracting perpendicularly to that direction. On the one hand,

this leads to the information paradox. On the other hand, the presence of the BH’s event

horizon may be interpreted as an interchange of the roles of the time and radial coordinates.

And this leads to unexpected scenarios, with some surprising processes and phenomena

taking place outside the horizon yet with even more striking properties of the interior of the
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horizon. It should be underlined that the discussion presented here has dealt mostly with

eternal BHs, which have not been created due to gravitational collapse but rather have existed

forever (since the Big Bang). However different these may seem, they have a lot in common.

They both decay due to Hawking radiation [2]; as suggested by various authors [16], the

interior of gravitationally collapsing black holes is also of a cylindrical shape, and both eternal

and collapsing BHs share one more common but bizarre property, their volume is infinite [16,

35]. Hence, though it is not guaranteed that the interiors are the same their properties might

turn out to be quite similar. But there is a still a deeper problem of a much more fundamental

character: could the interior of black holes be described by the approach presented here? Or

more specifically, could a very strong gravitational field, inside the BH horizon, be described in

terms of the theory of relativity? Or is a new physical approach necessary, as emphasized by G.

t’Hooft [19] (see also [36]) involving quantum mechanical aspects also? As usual, the answer

will come in time, but even if the answer is satisfactory, in this case, it will probably never be

the final word.
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