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Abstract

To explore offshore oil fields in deepwater, the use of a floating production storage and
offloading (FPSO) unit coupled to a shuttle tanker is economically and technically feasible.
Shuttle tankers like system for oil transportation are increasingly being accepted as a
preferred transportation method for remote and deepwater offshore developments. The
offloading operation is considered one of the riskiest operations in offshore environment.
The chapter presents a risk-based analysis method aiming at defining the risk profile
associated with an offloading operation. For offloading operations, the risk profile is
usually evaluated considering that the offloading operation has an approximate duration
of 24 hours. The method follows three basic steps: identification of hazard, definition of
failure scenarios and their probability of occurrence, and evaluation of failure conse-
quences. The decision-making theory is used to evaluate the possibility of emergency
disconnection during the operation. The method is applied to evaluate the risk profile of
an offloading operation in Campos Basin, Brazil, considering a FPSO moored with Differ-
entiated Complacent Anchoring System (DICAS). The method is used to model the risk
scenario associated with shuttle tanker main engine failure as initiating event. The
changes in environmental conditions have great influence in risk profile and increase the
probability of disconnection.

Keywords: probability risk assessment (PRA), risk profile, offloading operation,
Markovian process, Bayesian techniques

1. Introduction

The occurrence of accidents in complex systems, such as offshore and onshore oil and gas

processing plants, power plants, and chemical process industries, is financially expensive

because the accidents can cease plant operations and even can cause harm to people, property,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and environment. For this reason, to identify vulnerable factors that become unacceptable

operating scenarios is a challenge in the risk assessment of complex systems. The risk assess-

ment seeks to minimize undesirable event probability and their impact both for the environ-

ment and for the people involved in the operations. The impact in the operation can be

measured as economic consequences based on the extension of equipment damage and on

reduction of plant performance.

The search for oil fields no longer occurs exclusively onshore, but includes the oceans of the

world. This fact has contributed to the development of rigs for drilling and production offshore

in deepwater.

The current method for crude oil export in deepwater is using floating production storage and

offloading (FPSO). The FPSO is a floating vessel, in that it is equipped with internal or external

turret, and equipment to refine crude oil, and storage capacity. Therefore, FPSO have an

offloading system to transfer the crude oil to shuttle tankers. As you can see in [1, 2], the

shuttle tankers are increasingly being accepted as a preferred transportation method for

remote and deepwater offshore developments, for example, according to ONIP (Programa

Nacional de Mobilização da Indústria Nacional do Petróleo e Gás Natural) in 2002, Brazil had

46.0% of the total oil production of Petrobras located in deepwater (400–1000 m) and 29.9% in

ultra-deepwater, with water depth greater than 1000 m [3]. More recently, shuttle tankers have

become the main way to distribute the crude oil produced offshore on Brazilian fields [4]. The

options for methods of offloading from a FPSO and shuttle tanker include remote single point

mooring, tandem offloading, and alongside configuration.

The tandem offloading operation is frequently a complex and difficult marine operation. FPSO

may rotate due to waves and wind actions, and this rotates according to the weather that

generates linear motions of a ship (surge, sway, and yaw). To stay connected for loading and at

the same time maintain a safe separation distance, shuttle tanker must position itself aligned

with the FPSO position. As we show in [5], the situation is dramatically changed in the tandem

offloading operation in terms of positioning complexity and damage potential [5], due to the

significant amount of mass involved (e.g., a 150,000-dwt shuttle tanker) in close distance to an

installation (FPSO) for a long period of time.

To analyze the nature of the incidents in maritime operations, it is necessary to define a

complex relationship among design procedures, equipment, environmental conditions, and

operational procedures. To gain a full understanding and comprehensive awareness of safety

in each situation, it is necessary to use a systemic approach to consider all the aspects that may

lead to hazardous events and to consider different uncertainty sources [6]. In complex system

safety assessment, a systemic approach means to consider all functional entities that constitute

the system, exploring patterns and inter-relationships within subsystems and seeing undesired

events as the products of the working of the system.

In the 1980s and 1990s, the most risk analysts have been trained in the “classical” approach

to risk analysis, where probability exists as a quantity characterizing the failure of the system

being studied and independent of the analyst. This concept of probability is frequency based,

and the results of the risk analyses provide estimates of these “true” probabilities. For operations
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involving complex nonlinearities and multicomponent system, especially, new techniques for

risk analysis upon of abnormal event are needed. The quantification of risk cannot be handled

with traditional statistical methods since it requires the quantification of the probability of

accidental events that in most cases are rare [7].

The incidents in maritime operations often involve the analysis of low-probability events for

which few data are available. Classical statistical methods are inefficient in these cases. Bayes-

ian techniques are useful because of their ability to deal with sparse data and to incorporate a

wide variety of information gained based on expert judgment. A further practical advantage of

the subjective probability framework in risk assessment applications is that propagation of

uncertainties through complex models is relatively simple.

In the last few decades, has been several studies examined trends about Bayesian techniques

in risk assessment [7–13], such as those presented by Avan and Kvaloy [7] discussing some

of the practical challenges of implementing Bayesian thinking and methods in risk analysis,

emphasizing the introduction of probability models and parameters and associated uncer-

tainty assessments. Siu and Kelly [8] present a tutorial on Bayesian parameter estimation

especially relevant to probability risk assessment. Jun et al. [9] divide the system failure

mode based on the criticality analysis using multistage event tree. They predict failure rates

and the time to failures and consequently can predict the system reliability. Eleye-Datubo

et al. [10] show in a marine evacuation scenario and that of authorized vessels to floating,

production, storage, and offloading collision, based on a commercial computer tool. Meel

and Seider [11] developed Bayesian model to predict the number of abnormal events in the

next time interval utilizing information from previous intervals and determine fuzzy mem-

berships to various critical zones to indicate the proximity of abnormal events to incipient

faults, near misses, incidents, and accidents. Kalantarnia et al. [12], for example, use Bayes-

ian theory to update the likelihood of the event occurrence and failure probability of the

safety system and hence develop a dynamic failure assessment for a process. Yun et al. [13]

use Bayesian estimation for insufficient LNG system failure data; the risk values estimated

with these insufficient data may not show statistical stability or represent specific conditions

of an LNG facility.

The quantification of risk requires the quantification of the likelihood of rare accidental

events, which normally cannot be done without employing engineering judgment. In this

paper the relationship between characteristics and causes of accidents and system compo-

nents involved in hazardous offloading is analyzed about one type of consequence associ-

ated with the incident. This chapter presents a quantitative risk analysis based on Bayesian

techniques; the relation between the probability of occurrence of each hazardous event and

its consequence could be found; we have developed these concepts in [14]. The objective

this approach is providing safety for offloading operations in deepwater oil fields. We

consider both FPSO and shuttle as one integrated system. We present the application of

risk-based analysis techniques to evaluate offloading operations between a FPSO and a

shuttle tanker that could be used to develop actions and procedures to minimize the cons-

equences of an accident for the operation. The methodology presented can provide a model

in which reasoning is justified, while it enables a powerful marine decision-support
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solution that is simple to use, flexible, and appropriate for the risk assessment task. The

methodology with Bayesian approach as for decision support is presented in Section 2; we

presented the initials theoretically developed in [14], but we include it here again, for the

sake of clarity. In Section 3, the application example is presented, and finally, in Section 4

the results and final comments are presented.

2. Dynamic risk assessment methodology

Risk can be represented by Eq. (1) which relates the undesired event’s occurrence probability

and the consequences:

Risk ¼ pi; ci
� �

Risk ¼ pi; ci
� �

(1)

where pi is the ith event occurrence probability and ci is the effect of the ith event occu-

rrence [14].

For complex systems, the possibility that an unexpected scenario shows up is related to an

initial event or failure which happens in a specific component. For each one of the system’s or

subsystems’ components, it is necessary to know the probabilities that the unexpected condi-

tion (failure) shows up, and its consequences and states must be evaluated.

In this context, another important decision-making aspect in complex systems is the need for

creating a model which can consider dynamic characteristics of system. In the case under

analysis, these characteristics are given by the transition between states corresponding to safe

operating zones [15].

Hence, let ST be a variable that represents a state of system, and let K be a scenario. The

probability that K be true given the system is in the state ST can be represented by Eq. (2) [5]:

P KjSTð Þ ¼
P STjKð Þ∙P Kð Þ

P STð Þ
(2)

where P(ST|K) is the probability that the system was in the ST state given a scenario K, P(K) is

the probability that a scenario K be true, and P(ST) is the probability that the system is in the

state ST.

The method is based on probability risk assessment and Markovian process to aid decision-

making (see Figure 1). To calculate the probability of accident scenario, the Bayesian approach

is presented in detail in [5]. It is used to estimate the probabilities that the system is in each

state stochastic model are applied. This methodology allows, quantitatively, to assess the

consequences of the events of broad impact and to see relationship between the environment

changes and those impacts. The methodology can be summarized in four steps: accident

modeling, failure probability assessment with Bayesian techniques, evaluation of conse-

quences, and Markovian process to aid decision-making.
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2.1. Accident modeling

The first step identifies the objective of the risk assessment and to identify and to select the

undesirable consequences of interest. These consequences may include items like degrees of

harm to environment or degrees of loss of operation. This step covers relevant design and

operational information including operating emergency procedures.

In this same step, the hazard identification is based on techniques that allow, qualitatively, to

assess the consequences of the events of broad impact and to see the effects on the environ-

ment, personnel, and facilities. It requires the identification of the hazard event that is one or

more physical conditions with the potential to cause damaged. Aiming this stage is to depict

the consequences and to determine their causes, because the procedure is based on the selec-

tion of hazard events [16].

To determine the hazard events, “brainstorming” technique is used involving experienced

personnel as well as the procedures used for the practice of routine operations using a

question-answer technique based on preliminary hazard analysis (PHA) concepts. Apart from

human factors, failures of components installed in complex system are systematically consid-

ered by applying the methodology of failure modes and effect analysis, which usually starts

from identifying failure modes of each item composing the whole system. Based on informa-

tion about the system, interviews, and expert opinions, many hazards affecting the system are

identified [15].

Figure 1. Probabilistic risk assessment methodology.
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The accident modeling is finished with scenario modeling based on the use of the event tree.

An event tree is used to identify the various paths that the system could take, starting with the

initiating event and studying the failure progress as a series of successes or failures of interme-

diate events called hazard events, until an end state is reached. That sequence of events is

named failure scenario for which the consequences are estimated.

2.2. Failure probability assessment

In this step the failure probability of occurrence of a failure scenario is calculated combining

two conventional reliability analysis methods: fault tree analysis (FTA) and event tree.

The probability of each failure scenario is determined by summing the probability of each set

of events which lead to this outcome. Each sequence probability is obtained by simply multi-

plying the probabilities of the events represented in each branch of the event tree in the case of

independence case; if there is dependence between events, the Bayesian methods are used. The

probabilities of the hazard event are obtained by solution of fault trees associated with each

hazard event. Fault tree analysis is a systematic, deductive, and probabilistic risk assessment

tool which clarifies the causal relations leading to a given undesired event. A fault tree is

quantified considering that its basic events tend to follow a probability distribution. The failure

probability of basic events is calculated using Bayesian methods.

2.2.1. Bayesian ideas and data analysis

The Bayesian techniques are appropriate for use in offshore offloading operation analysis

because the Bayesian statistical analysis involves the explicit use of subjective information

provided by the expert judgment, since initial uncertainty about unknown parameters of

failure distribution of basic events must be modeled from a priori expert opinion or based on

insufficient data and evidence collected. Bayes’ theorem has been proven to be a powerful

coherent method for probabilistically processing new data, as they become available over time,

so that the current posterior distribution can then be used as the prior distribution when the

next set of data becomes available.

The Bayesian method starts identifying the parameter to be estimated. This involves the

consideration of the form of the likelihood function appropriate to the evidence that will be

collected. The second step is development of prior probabilities to describe the system current

state of knowledge. The next step incorporates information through the collection of evidence

and construction of the likelihood function selected in the stage one. The final step results in

new probabilities using Bayes’ theorem, called posterior distribution, to describe your state of

knowledge after combining the prior probabilities with the evidence [17].

The selection of an appropriate likelihood function requires engineering knowledge specific to

the process being modeled, as well as the way the new data or evidences are generated. When

modeling the number of failures associated with a given piece of equipment, the Poisson distri-

bution is the proper likelihood function. While when modeling the number of failures on system

demands, the binomial distribution is the proper likelihood function. For data in form of expert

judgment, lognormal distribution is a proper likelihood function. For continuous data, for
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instance, time to failure, the exponential distribution is the proper likelihood [8]. However,

situations can arise where more complicated likelihood functions need to be constructed. Given

a process model, general approaches for developing functions of random variables can be used

to develop likelihood functions [18].

Prior distributions can be specified in different forms depending on the type and source of

information as well as the nature of the random variable of interest. The prior distributions can

be informative prior distributions when it is one that reflects the analyst’s beliefs concerning an

unknown parameter or noninformative prior distributions when large amounts of data are

available and when the analyst’s prior beliefs are relatively vague. This paper deals with

informative prior distributions deals. When it is assumed that the prior is a member of some

parametric family of distributions, the form can be parametric and numerical. Among the

parametric form are the gamma or lognormal for rates of events and beta for event probabil-

ities per demand. Bayesian statistics combines knowledge about the parameter, which is

reflected by the prior distribution, and information from the data, which is contained in the

likelihood function. Using Bayes’ theorem in its continuous form, the prior probability distri-

bution of a continuous unknown quantity, P0(x), can be updated to incorporate new evidence

E, as shown in Eq. (3):

P xjEð Þ ¼ L Ejxð Þ∙P0 xð Þ
Ð

L Ejxð Þ∙P0 xð Þ∙dx (3)

where P(x|E) is the posterior probability distribution of the unknown quantity x given evi-

dence E and L(E|x) is the likelihood function.

For some combinations of likelihood functions and prior distributions, Eq. (3) must be

evaluated numerically. For a given model, there is a family of distributions where if the

prior distribution is a member of this family, then the posterior distribution will be a

member of the same family. These families of distribution are called conjugate distribution

[19]. The conjugate likelihood and prior are most commonly used in probability risk assess-

ment as well as the form of the resulting posterior distributions. These combinations are

shown in Table 1.

Prior P0(x) Likelihood L(E|x) Posterior P(x|E)

Beta (α,β)
Γ αþβð Þ
Γ αð Þ∙Γ βð Þ ∙x

α�1
∙ 1� xð Þβ�1

Binomial (r, n)
n!

r! n�rð Þ! x
r 1� xð Þn�r

Beta (α,β)
Γ αþβð Þ
Γ αð Þ∙Γ αð Þ ∙x

α�1
∙ 1� xð Þβ�1

Gamma (α,β)
xα�1

Γ αð Þ e
�β∙x

Poisson (x)
x∙tð Þr
r!

e�x∙t

Gamma (α’ = α + r, β’ = β + t)
xα

0�1

Γ α0ð Þ e
�β0 ∙x

Lognormal (μ,σ)

1
ffiffiffiffiffi

2∙π
p

∙σ∙x
e
�1

2
lnx�μ

σð Þ
Poisson (x)
x∙tð Þr
r!

e�x∙t

Numerical

Table 1. Typical prior and likelihood functions [19].
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2.3. Evaluation of consequences and making decision

The effects on the system attributable to hazardous event are defined, and Markovian process is

used tomodel the probability of changes during offloading operation that could cause changes in

the risk profile developed in step 2. The decision-making theory is used to evaluate the possibility

of emergency disconnection during the operation given the result of Markovian process.

Consequences of hazardous events or abnormal incidents on the shuttle tanker and offloading

operation are described and explained. A severity numerical scale is defined for hazardous

event classification. This scale was defined for three sets—safety of personal, facilities, and

environment—the first is related to the damages or the lesions that can be caused to the

employees and others, the second refers to damages in equipment or installations in shuttle

tanker or FPSO, and the third is associated with the damages on fauna, flora, and ecosystem.

That classification is presented in Table 2.

The risk is the combination between the failure probability and the severity magnitudes [20].

The decision-making part is related with accepting a certain risk scenario. The decision-

making theory is used to evaluate the possibility of emergency disconnection during the

operation. The risk is associated with an uncertain event or condition that, if it occurs, has a

negative effect on system operational condition.

2.4. Markovian process

The state of a deterministic dynamical system is some variable which fixes the value of all

present and future observables. Consequently, the present state determines the state at all

future. However, strictly deterministic systems are rather thin on the ground, so a natural

generalization is to say that the present state determines the distribution of future states.

Description Set

Personal Facilities Environment

Insignificant I No significant harm to people,

without removal of staff in the

interior of the installation

No significant harm to

installation

No significant harm to installation,

contamination of environment in

minimum concentration

Minor II Slight harm to people in

installation, no significant harm

to people outside installation

Minor damage or

degradation of the

installation, with repair at

low cost

Contamination of environment

below maximum concentration,

though concentration between

minimum and medium

Major III Serious harm to people in

installation and/or slight harm to

people outside installation

Major damage or degradation

of the installation, with

possible repair

Contamination of environment

below maximum concentration,

though concentration between

medium and maximum

Catastrophic IV Single fatality or multiple severe

harm to people inside and

outside of installation

Damage or degradation

without possible repair or

repair take a long time to do

Contamination of environment

above maximum concentration

Table 2. Relative severity criteria for hazardous event classification [15].
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The probability of the system on “i state” is calculated as an approximate discrete model,

based on that for small steps (Δθ toward zero) with recurrent algorithm. Assumed two states,

the basic steps of the procedure are:

1. Declare initial variable counter k = 0, θk = 0, andθ end.

2. Declare probability distribution of the initial state. In this case it is assumed that

shuttle tank begins the offloading operation in operative zone: P1(θk = 0) = 1 and

P2(θk = 0) = 0.

3. Select time steps (Δθ).

4. Save tk, P1(θk), P2(θk), and increment counter: k = k + 1.

5. Calculate θk= θk-1+ Δθ.

6. Calculate state transition rates (pijk(θ)) for θ=(θk-1 + θk)/2.

7. Calculate transition matrix Mk for transition rates of step 4 using Eq. (5).

8. Calculate probability of the system state i at tk as:

9. P θkð Þ ¼ Mk∙P θk�1ð Þ

3. Return to step 4: The procedure continues until t = tend

The Markovian process shows the probability that the position of shuttle tanker will change

from operational zone to alert zone in each environmental condition. That change affects the

decision of continuing the offloading operation. The decision-making theory can be used to

evaluate the need for disconnection in the case of occurrence of an environmental change

coupled to a critical component failure in the shuttle tanker.

4. Application of the methodology

The method is applied on the analysis of the offloading operation, when the crude oil is

transported to shore by shuttle tankers through an offloading arrangement with the use of

a shuttle tanker with dynamic positioning systems (DP). From the point of view of the

shuttle tanker, tandem offloading operation can in principle be summarized into the

following five operational stages [15]: (1) approach, tanker approaches FPSO and stops at

a predefined distance; (2) connection, messenger line, hawser, and loading hose are con-

nected; (3) loading, oil is transferred from FPSO to tanker; (4) disconnection, manifold is

flushed, and loading hose and hawser are disconnected; and (5) departure, tanker reverses

away from FPSO while sending back hawser messenger line and finally sails away from

oil field. In the first stage, the shuttle tanker approaches FPSO, at a maximum speed of 1.5
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knots, and this stage finishes when shuttle tanker stood 50–100 m behind the FPSO;

distance is considered appropriate to begin the connection stage. In the second stage, to

physically connect shuttle tanker and FPSO, some activities are executed, for example, the

messenger line crosses from one ship to the other allowing the mooring hawser and hose

to be connected. The tanker may position itself by its own dynamic positioning system so

that the hawser is not tensioned. As for safety reasons, a tug boat is also connected to the

ship stern acting as a redundant component to control hawser tension. In the third stage,

tests are realized, and the valves in vessels are open, and oil is transferred from FPSO to

tanker. During this stage, transfer rates are slow initially as the integrity of both vessel

systems are checked and gradually increased to a maximum transfer flow. When loading

is completed and stopped, the hose is flushed, and the valves are closed. Finally, the hose

is dropped and sends to FPSO the hose messenger line and the hawser. The shuttle tanker

moves off away FPSO (MCGA [21]).

Patino Rodriguez et al. [15] found 56 hazardous events for shuttle tank. The connection

stage is the phase with the highest number of hazardous event. In fact, this stage involves

more activities associated with mooring hawser and hose connection, besides the smallest

distance between shuttle tanker and FPSO. For all hazardous events, their causes were

identified, as well as the activities executed aiming at minimizing the occurrence of these

causes (mitigating scenarios). In a similar way, the consequences resulting from the haz-

ardous event are identified. Some of these are characterized as catastrophic. Most of them

are related to dynamic positioning system (DPS) failures. Considering that one of the most

important aspects in the offloading operation is to keep the position between FPSO and

shuttle tanker, the initiating event selected as for risk assessment is “DPS failure.” The

considered accident sequence is shown in Figure 2 modeled as an accident progression of

four hazard events: (1) auxiliary engine failure, (2) main engine failure, (3) tug failure, and

(4) towing cable failure.

The fault tree for the four hazard events that appears in the event tree was developed. For all

basic events of the four fault trees, the parameter to be estimated is failure rate, and the Poisson

distribution is selected as likelihood function. Poisson distribution is considered as appropriate

function given information available in database is the number of failures, r, in each time

interval, t, [22, 23]. Analyzing the type and source of information (expert judgment and

literature data) as well as the nature of the time to failure that is the random variable of

interest, gamma distribution is selected as appropriate “prior distribution.” The conjugate

family with respect to the risk model is shown in Table 1. Using Bayes’ theorem (Eq. 2) the

posteriori distribution is obtained:

Figure 2. Event sequence diagram of the accident progression for offloading operation.
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P λjEð Þ ¼

λ∙tð Þr

r!
∙e�λ∙t

h i

∙
βα ∙λα�1

Γ αð Þ ∙e�β∙λ
h i

Ð

∞

0
λ∙tð Þr

r!
∙e�λ∙t

h i

∙
βα ∙λα�1

Γ αð Þ ∙e�β∙λ
h i

∙dλ
)

P λjEð Þ ¼
βþ t
� �αþr

∙λαþr�1

Γ αþ rð Þ

" #

∙e
� βþtð Þ∙λ (4)

As an example, the posterior distribution is calculating for fuel system failure (see Figure 3)

one component of main engine.

Aiming to obtain the probability that K be true given the system is in the state ST represented

by Eq. (2), it is necessary to estimate the posterior mean value of failure rate. To calculate the

failure probability of hazard events, we use fault tree analysis. Then for all basic events of the

fault trees, the failure probability was determined using Bayesian inference. The posterior

distribution is calculated, using the conjugate distribution. By analyzing the type of informa-

tion availability, the Gamma distribution is selected as appropriate prior distribution, and

Poisson distribution is selected as likelihood function. We calculate substituting in Eq. (4) the

failure rates for fuel system failure (see Table 3). The prior distribution was estimated using

databases that recorded the rate failure to equipment used in offshore industry.

The calculated probabilities for the basic events are used as input to a fault tree to determine

the probability of the event hazard: “no fuel flow.”Using probability theory and assuming that

the fuel system is operated for t = 43,800 h (time between maintenance), the probability of “no

Figure 3. Fault tree for fuel system failure.
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fuel flow” is 8.390E-04. The prior and posterior density of basic event that has more influence

on system failure is shown in Figure 4, associated with the failure of the centrifugal pump. A

90% interval estimate for failure rate is found by computing the 5th and 95th percentiles of

gamma distribution, and the interval is between 2,96E-04 and 5,08E-04.

The same procedure is used for other subsystems, and the probability of hazard event “main

engine failure” is found by solving the fault tree associated with that failure. In the same way,

that procedure is applied to find the probability of all hazard events as shown in Table 4.

Connected to the hazard event, the operation involves risks related to collisions during the

offshore operation as presented in Figure 2. The event tree in Figure 5 is the failure scenario

development associated with the failure in DPS, considering the probabilities presented in

Table 4.

The proposed method for risk assessment seems to be suitable for complex systems analysis,

since it not only allows for the identification of critical consequences, but it is also a tool to

make decisions, because it enables a quantitative evaluation of accident progression in systems

that change their operational condition throughout time.

The sequence of abnormal events is determined, and the consequences are estimated using the

event tree. The initiating event selected is the shuttle tanker change from operational zone to

alert zone. The accident sequence considered is modeled as an accident progression of five

hazard events, and we have four consequence categories. The fault tree for the five hazard

events was developed as shown in Figure 5. The shuttle tanker is loss of position in powered

condition, and its subsequent collision with the FPSO is the most significant risk.

Equipment E[P0(λ)]

[failure/h]

ST[P0(λ)]

[failure/h]

P(λ|E)

[failure/h]

Equipment E[P0(λ)]

[failure/h]

ST[P0(λ)]

[failure/h]

P[λ|E]

[failure/h]

Booster pump 1.10E-03 1.10E-03 2.24E-05 Fuel pumps 1.43E-03 1.13E-03 3.55E-05

Bypass valve 2.28E-05 1.50E-05 1.59E-05 Heater 4.54E-05 3.74E-05 1.93E-05

Centrifugal pump 7.36E-04 1.20E-04 3.95E-04 Main tank 2.13E-04 2.13E-04 2.06E-05

Centrifuge 1.69E-05 5.94E-06 1.55E-05 Mixing tank 9.50E-06 9.11E-06 6.87E-06

Check valve 3.60E-07 5.10E-07 3.49E-07 Piping: blockage 3.70E-07 6.18E-07 3.54E-07

Daily service tank 9.50E-06 9.11E-06 6.87E-06 Piping: breakage 4.40E-07 9.57E-07 4.03E-07

Fuel pump control shaft 3.00E-05 3.00E-05 1.30E-05 Pressure regul.

Valve

8.81E-06 1.25E-05 4.98E-06

Engine centrif. Pump 1.13E-04 2.81E-05 8.62E-05 Settling 4.37E-04 6.26E-04 1.08E-05

Filter heated 2.00E-06 2.00E-06 1.84E-06 Settling tank 6.26E-05 1.12E-04 6.43E-06

Flow meter 1.32E-05 3.26E-06 1.27E-05 Three-way valve 2.28E-05 1.50E-05 1.59E-05

Fuel injector: blockage 7.24E-06 1.02E-05 4.43E-06 Transfer pump 7.36E-04 1.20E-04 3.95E-04

Fuel injector: breakage 2.00E-07 2.00E-07 1.98E-07 Viscosity regulator 6.39E-06 8.96E-06 4.12E-06

Fuel Pumps 1.43E-03 1.13E-03 3.55E-05 VIT system 2.06E-07 2.06E-07 2.04E-07

Table 3. Failure rates and standard deviations of the basic events of fault tree for fuel system failure.
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The failure scenario presented in Figure 5 can occur at any time during offloading operation. The

position of the tanker in relation to FPSO during offloading is controlled. In case it reaches the

alert zone, as shown in Figure 6, the tanker can be disconnected and the offloading is aborted. So

the consequence of the failures considered in the study can be more severe depending of the

relative position of the tanker.

It is essential to consider the probability of the change of the shuttle tanker position from

operational zone to alert zone, as shown in Figure 6, during offloading. The distribution

parameters are estimated using a simulator that reproduces ship motions in a specific opera-

tion condition and environmental condition. We used these conditions of waves, wind, and

currents.

After finding the failure probability of all hazard events, the failure probability for scenar-

ios is calculated by multiplying hazard events. The probability of each consequence

Figure 4. The prior density and posterior density for centrifugal pump failure rate.

Hazard event P(λ|E) [failure/h] 90% interval estimate for rate failure

5% 95%

Dynamic positioning system (DPS) failure 1.58E-05 3.18E-07 5.29E-05

Auxiliary engine failure 1.97E-04 1.01E-04 3.18E-04

Main engine 4.95E-05 9.70E-06 1.14E-04

Tug failure 2.28E-05 1.17E-06 6.82E-05

Towing cable failure 2.18E-03 0.001837 0.002555

Table 4. Posterior probabilities for hazard events involved in the offloading operation and a 90% interval estimate for

failure rate.
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category is calculated by adding the probabilities of the scenarios with the same conse-

quence category. The random variable that corresponds to the angle between the FPSO

and shuttle tanker during offloading operation is modeled as Weibull distribution. Accor-

ding to the standards of the offloading operation in Brazil, the angle in the operational

zone should not be greater than 45 degrees; as a result of these conditions, the parameter

of four consequence categories was estimated, and the equation for transition rate is

determined. Let us consider the two states established before: operational zone and alarm

zone.

The transition rates between states are not constant; then the stochastic process can be modeled

as semi-Markov process which shows the probability of the position of the shuttle tanker

changing from operational zone to alert zone in a given environmental condition.

By applying the results obtained from the simulation, Markovian analysis, and event tree, the

probability that a K scenario is true is obtained, given the system is in the ST state.

In Eq. (5) we define a K � K state transition probability matrix Mk.

Figure 5. Event tree for the offloading operation.

Figure 6. Markov state transition diagram.
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Mk ¼
1� p12k∙∆θ p21k∙∆θ

p12k∙∆θ 1� p21k∙∆θ

� �

(5)

where pij(θ)Δθ is the probability of the system, which is operational zone at position θ, will

come alert zone in the interval (θ, θ+Δθ).

The state transition rates correspond to the following event rates: the shuttle tanker gets out of

the operational zone, and the shuttle tank gets into the operational zone. In each state (ST)

there are a number of possible events that can cause a transition. A ship dynamics simulator

that determines ship maneuvering characteristics was used to calculate the transition. The

simulator can accurately reproduce ship motion in the presence of waves, wind, and currents.

Table 5 shows typical environmental conditions in the fall and in the spring for Campos Basin

(Brazil). Hence, with the program outputs, it was possible to calculate the angle between FPSO

and shuttle tanker at any moment during the offloading operation.

According to the standards of the offloading operation in Brazil, this angle within the opera-

tional zone should not be greater than 45 degrees. Weibull probability functions were found as

proper distributions to represent the angle between FPSO and shuttle tanker during the

offloading operation both inside and outside the operational zone. The parameters and transi-

tion rate equation are shown in Table 6.

Then, using the recurrent algorithm shown in the section of Markovian process, the probability

(P(ST)) that the shuttle tanker is inside the operational zone, without any failure, is 0.7918. In

the same way, inducing the hazard events in ship dynamics simulator is possible to simulate

the consequence categories and to determine the probability that the system was in the ST state

given a scenario K as shown in Table 7.

Applying Eq. (2) the probability that a scenario K is true given the system is in the state ST is

obtained. For instance, the probability that shuttle tanker is without main propulsion, making

Current [m/s] Wind [m/s] Wave [m]

0.71 S 11.16 SE 2.9 SE

Table 5. Environmental conditions.

State Parameter Weibull distribution Transition

rate equation
Consequence category

0 C B A

Inside the operational zone β = 1.641;

η = 12.97

β = 1.596;

η = 13.05

β = 1.473;

η = 12.01

β = 1.691;

η = 14.34
β
η ∙

θk

η

� �β�1

Outside the operational zone β = 10.99;

η = 30.07

β = 8.604;

η = 60.51

β = 8.499;

η = 60.40

β = 7.259;

η = 63.21

Table 6. Parameters and transition rate for offloading operation.
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possible the collision between the shuttle tanker and the FPSO, given that shuttle tanker is in

the inside the operational zone is

P K ¼ CjST ¼ 1ð Þ ¼
0:1954ð Þ∙ 0:43ð Þ

0:7918
¼ 0:1059

5. Conclusion

The tandem offloading operation is a complex and difficult marine operation. It may range

from once every 3 to 5 days, depending on the production rate, storage capacity of FPSO, and

shuttle tanker size. The duration of the operation takes about 24 hours based on FPSO storage

capacity and oil transfer rate. Meanwhile, a suitable environmental condition is required.

Shuttle tanker loss of position in powered condition and subsequently collision with FPSO is

the most significant risk.

The proposed method for risk assessment seems to be suitable for complex systems since it

allows not only the identification of critical consequences to analyze this kind system but also

is a tool to make decision because it allows a quantitative evaluation of accident progression in

system that change its operational condition during the time.

The development of the fault tree and event tree is important for the understanding of the

functional relation between system components and the relationship with accident progres-

sion. Based on the modeling of each accident scenario, the Bayesian analysis is performed

considering the evidence of database and knowledge of offloading operation. The objective of

Bayesian estimation was to develop a posterior distribution for a set of uncertain parameters

allowing estimating a probability for several consequence categories as an integral part of

current theories on decision-making under uncertainty.

Based on results of a ship dynamics simulator, the method allows to carry out the probability

that the shuttle tanker was in a given position, indicating the variation of the position of the

tanker in relation to the FPSO due to environmental conditions.

For the case under analysis, which considered the position between FPSO and shuttle tanker

during offloading operation, defined by two operational states, the probability that a failure

scenario is true given the system is in a specific operational state is obtained. Both states have

the distribution of positions represented by a Weibull probability function.

State Consequence category

P(ST) P(K = C) P(K = B) P(K = A)

Inside the operational zone 0.7918 0.19546 0.039312 0.03528

Outside the operational zone 0.2082 0.80454 0.96069 0.96472

Table 7. Probabilities that the tanker is inside a given location each for each consequence category.
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The method is a proactive methodology to prevent accidents through risk assessment aiming
at identifying and depicting a system, to reduce failures and to minimize consequences of the
hazardous events. The results of the analysis support the development of mitigating scenarios
for the causes of hazardous events and contingency scenarios for the consequences of hazard-
ous events.

Author details

C. E. Patiño Rodriguez

Address all correspondence to: elena.patino@udea.edu.co

Department of Industrial Engineering, Engineering College, University of Antioquia,
Medellín, Colombia

References

[1] Hujer K. Trends in Oil Spills from Tanker Ships 1995–2004. London: International Tanker
Owners Pollution Federation; 2005

[2] Tanker Operator. Shuttles forged in the crucible. Tanker Operator, April 2003

[3] ONIP. Programa Nacional de Mobilização da Indústria Nacional do Petróleo e Gás Natu-
ral, 01 11 2002. [En línea]. Available from: www.onip.org.br. [Último acceso: 25 05 2008]

[4] Reis SP. Transporte marítimo de petróleo e derivados na costa brasileira: Estrutura e
implicações ambientais. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 2004

[5] Patino-Rodriguez C. Análise de risco em operações de “offloading” – um modelo de
avaliação probabilística dinâmica para a tomada de decisão. Sao Paulo: Universidade de
Sao Paulo; 2012

[6] Nilson F. Risk-based approach to plant life management. Nuclear Engineering and Design.
2003:293-300

[7] Aven y T, Kvaloy JT. Implementing the Bayesian paradigm in risk analysis. Reliability Engin-
eering and System Safety. 2002;78:195-201

[8] Siu NO, Kelly DL. Bayesian parameter estimation in probabilistic risk assessment. Reli-
ability Engineering and System Safety. 1998;62:89-115

[9] Jun C-H, Chang SY, Hong Y, Yang H. A Bayesian approach to prediction of system failure
rates by criticalities under event trees. International Journal Production Economics. 1999;
60:623-628

Decision-Making Model for Offshore Offloading Operations Based on Probabilistic Risk Assessment
http://dx.doi.org/10.5772/intechopen.75833

121



[10] Eleye-Datubo AG, Wall A, Saajedi A, Wang J. Enabling a powerful marine and offshore
decision-support solution through Bayesian network technique. Risk Analysis. 2006;26(3):
695-721

[11] Meel y A, Seider WD. Plant-specific dynamic failure assessment using Bayesian theory.
Chemical Engineering Science. 2006;61:7036-7056

[12] Kalantarnia M, Khan F, Hawboldt K. Dynamic risk assessment using failure asssessment
and Bayesian theory. Journal of Loss Prevention in the Process Industries. 2009;22:600-606

[13] Yun GW, Rogers WJ, Mannan MS. Risk assessment of LNG importation terminals using
the Bayesian-LOPA methodoloy. Journal of Loss Prevention in the Process Industries.
2009;22:91-96

[14] Patino-Rodriguez C, Souza G. Decision-making model for offshore offloading operations
based on probabilistic risk assessment. Vulnerability Uncertainty and Risk: Analysis,
Modeling, and Management. 2011:382-393

[15] Patino-Rodriguez CE, Souza GFM, Martins MR. Risk-based analysis of offloading opera-
tions with FPSO production units. In: Proceedings of 20th International Congress of
Mechanical Engineering. Gramado; 2009

[16] Millan J, O'Young S. Hybrid systemmodeling of tandem dynamically-positoned vessels. In:
Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia; 2000

[17] Singpurwalla ND. Reliability and Risk: A Bayesian Perspective. London: John Wiley &
Son Ltd; 2006

[18] Papoulis y A, Unnikrishna S. Probability, Random Variables, and Stochastic Processes,
Boston: McGraw-Hill, 2002

[19] Lindley DV. Introduction to Probability and Statistics : From a Bayesian Viewpoint. Cam-
bridge: Cambridge University Press; 1965

[20] Kumamoto y H, Henley E. Probabilistic Risk Assessment and Management for Engineers
and Scientists, New York: IEEE Press, 1996

[21] MCGA. Ship and Cargoes. [En línea]. Available from: http://www.mcga.gov.uk/c4mca/
stscontingencyplan291105.pdf. [Último acceso: 2008] 2005

[22] Lee FP. Loss Prevention in the Process Industries. Vol. 3. Oxford: Butterworth Heinemann;
1996

[23] OREDA. Offshore Reliability Data Handbook, Norway: OREDA Participants; 2002

Probabilistic Modeling in System Engineering122


