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Abstract

Due to the present renewable fuels demand increase, reduction of second-generation bio-
ethanol production cost is pursued, since it is considered the most promising biofuel, but 
not yet economically viable. A proposed solution is its production through a simultaneous 
saccharification and fermentation process (SSF); however, it is necessary to apply tempera-
tures above 40°C, which reduce the viability of traditional ethanologenic yeasts. As conse-
quence, the use of thermotolerant ethanologenic yeast has been suggested, among which 
the yeast Kluyveromyces marxianus stands out. This chapter addresses the production of 
second-generation bioethanol through the SSF process, emphasizing the potential of K. 

marxianus to transform lignocellulosic biomass as agave bagasse. As result, it is proposed 
to direct the second-generation bioethanol production to the SSF process employing ther-
motolerant yeasts, to increase process productivity, and addressing the economic barriers.

Keywords: bioethanol, simultaneous saccharification and fermentation (SSF), 
thermotolerant yeasts, Kluyveromyces marxianus, agave bagasse

1. Introduction

The consumption of fossil fuels derived from petroleum is one of the main sources of pollu-

tion of the environment, in addition to its expensive and decreasing production, whereas its 

demand is increasing [1]. This is why countries around the world have directed their policies 
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toward the biofuels usage, which are sustainable, biodegradable, with high combustion effi-

ciency, and their development generates manufacturing and investment jobs, promoting the 

de agricultural sector development, as well reducing greenhouse gases [2, 3]. This way, the 

use of biofuels such as bioethanol is pursued to reduce dependence on fossil fuels and con-

tribute to meet the future demands of energy in the world, and at the same time meeting the 

carbon dioxide emissions reduction goals specified in the Kyoto Protocol [4]. Therefore, it is 

expected that by 2050 biofuels contribute 30% of the world’s fuel demand [5].

Economically viable bioethanol production still has to date challenges to overcome. This chapter 

addresses the lignocellulosic biomass utilization for second-generation bioethanol production 
through a simultaneous saccharification and fermentation process, utilizing thermotolerant 
yeasts such as K. marxianus.

2. Bioethanol

Bioethanol is one of the most used biofuels with a worldwide production of around 27 billion 

gallons per year [2, 6]. This biofuel, defined as ethanol produced from biomass has character-

istics such as low combustion temperature, high octane number, and lower evaporation loss 

compared to gasoline [7, 8]. Disadvantages of bioethanol compared to gasoline are its lower 

energy density and vapor pressure, as well as water miscibility and corrosive capacity [9].

Bioethanol can be mixed with gasoline in 10% (E10), 20% (E20), and 22% (E22) proportions, 
without the need to make mechanical modifications in combustion vehicles [9]. There are 

even current designs by some manufacturers that allow vehicles to use up to 85% ethanol [10] 

and in Brazil more than 20% of cars can use 100% ethanol as fuel [2]. The main purpose of bio-

ethanol, when mixed with gasoline is as an oxygenating agent. Mixed with gasoline, ethanol 

provides advantages such as increased gas volume change, better combustion, and reduced 
carbon dioxide emission [11]. It has also been shown that bioethanol can significantly reduce 
SO

2
 emissions when mixed with 95% gasoline. This is because the fuel added with bioethanol 

increases its oxygen content, causing a better oxidation of hydrocarbons and decreasing the 
emission of greenhouse gases [4].

The main bioethanol producing countries are currently the United States and Brazil, generat-
ing up to 70% of world production [12]. However, the bioethanol industry has expanded 

to other countries such as China, Argentina, and the European Union due to this product 

increased demand [13]. In the case of the United States, there has been a dramatic increase in 
bioethanol production from 175 million gallons in 1980 to 14,810 million gallons in 2015 [14].

2.1. First- and second-generation bioethanol

Bioethanol is currently obtained in commercial quantities mainly from the fermentation of 

simple sugars using food inputs such as corn, sugar cane, and sorghum as raw material. The 

bioethanol obtained from this class of substrates is called first generation bioethanol [15]. The 

viability of the production of first-generation biofuels is questionable, due to their associated 
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conflicts, such as ethical aspects and their high-cost since the raw materials are linked to the 
food market, which affects the final price of the product [16].

Given the problems of first-generation fuels, an alternative would be second-generation fuels, 
where fermentable sugars are derived from lignocellulosic biomass, which are present in 

agro-industrial wastes. By using industrial wastes as a raw material, pollution is reduced by 

the elimination of these potentially polluting wastes, as well the materials being of low-cost 

and its handling and conservation is efficient and economical [17]. Biofuel production such as 

second-generation bioethanol is considered one of the most promising strategies to replace non-

renewable fossil fuels because it does not interfere with the materials available for human or 

animal consumption, at the same time as collaborating with sustainable development [18, 19].

As a disadvantage, a technological investment is necessary for the treatment of lignocellulosic 

biomass, and currently, its production is not economically sustainable [20, 21].

Currently, second-generation bioethanol is produced mainly in pilot plants and most com-

mercial plants have been built in the last decade in Denmark, Finland, Spain and Italy, and 
the United States [22] and due to the challenges that its commercialization still represents the 
design and optimization of different processes for second-generation bioethanol production 
has been promoted to reduce production costs.

3. Process configuration for second-generation bioethanol 
production

There are different process configurations for bioethanol production, but all of them include 
the steps of raw material pretreatment to achieve biomass components solubilization and sep-

aration (cellulose, hemicellulose, and lignin); lignocellulosic material hydrolysis to degrade 
its components and obtain simple sugars; and the fermentation of the substrate to transform 
the sugars into bioethanol. Reported processes vary mainly in the number of stages and biore-

actors needed, which present different pH conditions, oxygenation, sugar concentration, and 
temperature. Figure 1 shows the main process configurations and their stages, while Table 1 

lists the main characteristics of each one of these configurations [23].

The CBP proposes cellulase enzyme production by microorganisms integrated into the 
fermentation, reducing the enzyme cost in the bioethanol production. However, currently, 
this process is in its early stages of development since a limited number of microorgan-

isms capable of generating economically viable enzymes are reported. Furthermore, there 
is no microorganism or microorganism consortium that generates cost-effective bioethanol 
through CBP at the industry level [29]. In consideration to this situation, the development of 

genetically modified microorganisms able to produce these enzymes with an economically 
viable concentration and activity is one of the most promising options. Within the genetically 

modified microorganisms, yeasts have been one of the most used. Hasunuma and Kondo [30] 

presented a review of the development of yeast cells for second-generation bioethanol pro-

duction through CBP. Within their study, they conclude that the combination of cell surface 
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engineering and metabolome are an efficient proposal for the development of CBP yeasts 
strains. Favaro et al., Mattam et al., Liao et al., and Van et al. [31–34] review the possibilities 

of recombinant yeasts generation for second-generation bioethanol production through CBP.

In the rest of the mentioned processes in Figure 1, the cellulases are added beforehand SHF or 
during the fermentation process SSF. These enzymes can be purchased commercially through 
different companies responsible for selecting enzymes with the best characteristics to perform 
these processes. The current commercial cellulases are produced mainly by fungi, bacteria, 

and yeasts, although they can also be produced by plants and ruminants [35].

Figure 1. Processes for second-generation bioethanol production. Each box refers to a bioreactor. The pretreatment 
consists of a chemical hydrolysis. Sequential hydrolysis and fermentation (SHF); sequential hydrolysis and cofermentation 
(SHCF); simultaneous saccharification-fermentation (SSF); SSCF: Simultaneous saccharification-cofermentation (SSCF); 
consolidated bioprocess (CBP).
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3.1. Sequential hydrolysis and fermentation (SHF)

This process is carried out in two stages, where hydrolysis and fermentation operate in dif-

ferent procedures. First, the enzymatic cocktail is used to hydrolyze the pretreated lignocel-
lulosic biomass to obtain sugar monomers. The resulting hydrolyzate is subsequently used 
as a substrate for the fermentation process of sugars to ethanol [36]. The cellulose hydrolysis 

process through cellulases is the most feasible method for the liberation of sugars since in 

optimum conditions yields greater than 90% can be obtained. Chandel et al. [37] reviewed the 

techniques developed in molecular biology and cellulase engineering, as well as the applica-

tion of cellulases for cellulose hydrolysis.

The main disadvantage of the SHF process is that both stages operate in their respective opti-
mal conditions, thus more processing time is necessary. In addition, the hydrolytic enzymes 
employed can suffer from product inhibition. These characteristics impact on the productiv-

ity of the process [25]. The enzyme cost contributes significantly to the second-generation 
bioethanol final price, which is why more research is needed in order to reduce saccharifica-

tion costs through the use of cellulases [36, 37]. In order to make second-generation bioetha-

nol production affordable, cellulase cost must be decreased, and one solution is to increase 
its activity, which can be achieved through SSF processes at optimum temperatures of the 
enzymes employed [38].

Table 1. Main characteristics of the second-generation bioethanol production processes accompanied by an example of 

its implementation in the literature [23–28].
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3.2. Simultaneous saccharification-fermentation (SSF)

The main characteristic of the SSF process is that the stages of enzymatic hydrolysis and fer-

mentation are carried out simultaneously. This reduces the energy investment, and therefore, 

the operating costs, in addition to optimizing the process by reducing the time needed for 
each of them. These stages favor a greater enzymatic activity of the cellulases eliminating 
product inhibition since the sugars are metabolized by the yeasts simultaneously as they are 
released in the hydrolysis. In general, through the SSF process, higher ethanol yields have 
been obtained compared to SHF, with increases from 13 to 30% [39]. The main disadvantage 

of the SSF process is the cellulase activity optimal temperature (45–60°C), which is higher than 
that required for the yeast growth and fermentation (30–35°C) [40, 41]. Besides, fermentation 

is an exothermic process, so as the fermentation progresses the temperature increases [42]. 

Therefore, the temperature is one of the main factors that must be considered when establish-

ing a SSF system.

3.3. Effect of temperature in SSF process

Fermentation at high temperatures presents advantages such as bioreactor cooling costs 
reduction and ethanol extraction promotion, reducing its toxic effects on yeasts. Moreover, it 
is possible to do this process in warm climate countries [43]. In a study conducted by Abdel-

Banat et al., an increase of 5°C in the fermentation process, a reduction of enzyme cost up to 
50% was observed. However, high temperatures generate yeast growth inhibition, decrease 

in the cell cycle, increase in fluidity and reduction of the plasma membrane permeability, 
intracellular pH reduction, breakage of cytoskeleton filaments and microtubules, proteins 
synthesis repression, mutation frequency increment, and inefficient damaged DNA repair. 
All the above effects reduce the yeast viability and decrease the bioethanol production yield. 
Therefore, the use of thermotolerant yeasts in the SSF process for second-generation bioetha-

nol production is proposed as a promising option [23].

4. Yeasts in SSF processes

Although traditionally S. cerevisiae yeasts have been the most used in fermentation processes, 

the production of second-generation bioethanol confronts these microorganisms to condi-

tions not found in traditional fermentation processes [44, 45].

In a SSF process, the selected yeast must be a thermotolerant strain. Thermotolerant yeasts 
are those that have an optimal growth at temperatures equal to or greater than 40°C [46]. 

During the last years, potential industrial applications of thermotolerant yeasts have been 

developing, such as prebiotic and probiotic agents, biomass, and recombinant protein pro-

duction, as well as bioethanol production [47]. Bioethanol production through SSF process 
using thermotolerant yeasts generates a reduction in investment costs, such as the industrial 

equipment needed, lower contamination degree, and decreased process time [17].

The most known non-Saccharomyces yeast species used in SSF processes are K. marxianus, although 

there are also reports of other species such as K. fragilis, H. polymorpha, and P. pastoris [47].
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4.1. Kluyveromyces marxianus

K. marxianus strains are phenotypically very diverse due to the great variety of habitats in 

which they have been isolated, resulting in a great metabolic diversity [48].

In general, they are considered GRAS (Generally recognized as safe), they are the eukaryotic 
cells that have presented the highest growth rate [49], they have an efficient ethanol produc-

tion capacity up to 45°C, with thermotolerance up to 52°C, besides the genomes of some 

strains have been described [50–56]. Recently, studies have been carried out on the optimiza-

tion of the metabolic engineering pathways in these yeasts [57], and genetic engineering has 

been used to obtain strains capable of producing heterologous proteins or metabolites such 

as lactate and xylitol [58, 59].

One necessary characteristic in sustainable bioethanol production is the fermentation of dif-
ferent sugars [60], innate in most of K. marxianus yeasts. These yeasts can ferment xylose, 

xylitol, cellobiose, lactose, and arabinose, both in liquid and solid medium, considered a great 

advantage compared with S. cerevisiae [61].

Whereas strains of S. cerevisiae have been obtained by genetic engineering with pentose metab-

olism [62], these strains still present different problems that must be solved [63], besides that 

they are not thermotolerant. Nitiyon et al. [64] reported that the yeast K. marxianus BUNL-21 
presents a xylose to ethanol efficient conversion capacity, as well as thermotolerance. López-
Alvarez et al. [65] obtained higher ethanol yields with K. marxianus UMPe-1 yeast compared 
with S. cerevisiae Pan-1. Lyubomirov et al. [66] and Kuloyo et al. [67] compared the ethanol 

production at temperatures of 35 and 40°C by the strains K. marxianus UOFS Y-2791 and 
S. cerevisiae UOFS Y-0528, concluding K. marxianus presents potential as an alternative to  

S. cerevisiae for the bioethanol production, as well as other metabolites such as 2-phenyl ethanol.

Due to the aforementioned characteristics, K. marxianus have been considered as one of the 

yeast with the highest potential for the second-generation bioethanol production, and a viable 

alternative compared with S. cerevisiae [68, 30].

4.2. K. marxianus in the bioethanol production through SSF

As a thermotolerant yeast and due to its ability to use various sugars as a carbon source, 

K. marxianus yeasts have been used widely for second-generation bioethanol production 

through SSF and SSCF processes (Table 2).

Kádár et al. [80] compared the yield in the second-generation bioethanol production by K. 

marxianus and S. cerevisiae yeasts, in an SSF process at 40°C. Having found no significant dif-
ferences in the ethanol production with respect to SHF processes, it is suggested to carry out 
the fermentation processes with K. marxianus thermotolerant yeasts at temperatures above 

40°C. Tomás-Pejó et al. [79] performed SSF processes with a K. marxianus thermotolerant yeast 

CECT 10,875 at 50°C. By using a feed back process they increased ethanol production by 20%. 

Hyun-Woo et al. [75] carried out an SSF process with a temperature change from 45 to 35°C at 
24 h of the process using the thermotolerant yeast K. marxianus CHY 1612. This change gener-

ated an increase of 12 g/L of ethanol, compared to a SSF process carried out at a constant tem-

perature of 45°C. Yu-Sheng et al. [73] studied the bioethanol production using a K. marxianus 
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thermotolerant yeast, through the SSF process in a rotating reactor, which allowed a constant 
exchange of biomass that was in contact with the yeast, concluding that through this process 

bioethanol production has commercial potential. Wu et al. [84] implemented a SSF process 
with a high solid load of taro waste using K. marxianus, reaching 94% of theoretical yields in 

20 h of fermentation, which was reflected in high process productivity (Wu et al. [84]).

With the previous reports, we observed that modifications to the SSF process using K. marxianus 

thermotolerant yeasts can increase ethanol production to economically viable levels.

5. Substrate selection for second-generation bioethanol production 
through SSF: agave bagasse case

Lignocellulosic biomass is a source of renewable energy, available in most of the world. 
However, its treatment is one of the main factors that increase the cost of second-generation 

bioethanol production. The biomass selection for this process is directly correlated with its 

availability in the production area, characteristics that depend on geographical variables [85]. 

In Mexico, agave bagasse is one of the most generated lignocellulosic materials, since it is an 

agro-industrial waste resulting from tequila and mezcal production. The blue agave (Agave 

tequilana) used for tequila production is cultivated mainly in the western region of Mexico. In 
general, the process of tequila production considers the use of blue agave plant cores, which 

are cooked in ovens or systems such as the diffuser. Afterward, they are pressed for their 
juice extraction, and the fructans present in the juice are then hydrolyzed to monosaccharides. 
The residue of this process is agave bagasse. It is estimated that 859,000 tons of agave are 

Table 2. Second-generation bioethanol production using K. marxianus thermotolerant yeasts in SSF processes [26, 50, 

68–84].
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processed per year to produce tequila, and approximately 343,600 tons of agave bagasse are 

generated. Agave bagasse can be used as livestock food, construction material, and for recy-

cled paper elaboration [86], as well as a substrate for edible fungi growth [87]. However, most 

of it is incinerated, which generates large amounts of ash that can contaminate rivers, bodies 

of water and damage flora and fauna [88]. Table 3 shows that agave bagasse has a higher cel-

lulose proportion, compared to main lignocellulosic biomass used for bioethanol production.

Hernández-Salas et al. [90] obtained a sugar yield of 12–58% by hydrolysis of agave bagasse 

using an alkaline-enzymatic treatment, while under the same conditions with sugarcane 
bagasse the yield was lower, with values of 11–20% [90]. Therefore, according to its production 

and composition, agave bagasse can be considered a promising source of fermentable sugars for 

bioethanol production. Table 4 shows studies for bioethanol production using agave bagasse.

Caspeta et al. [92] released 91% of agave bagasse sugars during saccharification and produced 
64 g/L of ethanol after 9 h of fermentation with S. cerevisiae SuperStart yeast, this being the 
highest yield obtained with agave bagasse.

Table 3. The lignocellulosic composition of agroindustrial wastes used in second-generation bioethanol production [89].

Table 4. Bioethanol production from agave bagasse [90–94].
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Rios González et al. [94] managed to implement a process of autohydrolysis pretreatment 

which allowed preserving the glycan content in agave bagasse, achieving a high digest-

ibility in the hydrolysis process for its subsequent fermentation to ethanol with a strain of  

S. cerevisiae.

Through a simulation program analysis, Barrera et al. [95] carried out the technical and economic 

evaluation of bioethanol production, considering sugarcane bagasse, and agave bagasse as ligno-

cellulosic biomass substrates. The results showed a lower production cost using agave bagasse 

(1.34 USD/gallon), compared to sugarcane bagasse (1.46 USD/gallon), suggesting that this result 
is due to the lower processing cost required for agave bagasse and its low lignin content [95].

Agave bagasse, besides being a good source of sugars for bioethanol production, is consid-

ered one of the best agro-industrial residues generated in the Mexico region, to be used in 

solid state fermentation processes [3], as well as for succinic acid production [96].

It is worth highlighting the scarce reports of bioethanol production from agave bagasse using 

non-Saccharomyces strains, as well as there are only reported SHF processes with this material, 
which represents a study opportunity to use this substrate in more efficient processes such as SSF.

6. Conclusion

Dependence on fossil fuels has led to a high degree of pollution on the planet, as well as low 

availability and an increase in its price, which forces the pursuit of new sources of energy. The use 

of second-generation bioethanol is a promising option to face this problem. However, currently, 

its production is not affordable, which has prevented its commercialization. Although metabolic 
engineering in conjunction with bioprocess optimization is recommended techniques for bioetha-

nol cost-effective production, these are still in development, which contrasts with the widely used 
and perfected yeast selection techniques. These approaches can be used to find thermotolerant 
yeasts such as K. marxianus for their application in the second-generation bioethanol production 

through SSF processes to overcome the economic challenges in the production of this biofuel.
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