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Abstract

The oxygen reduction reaction (ORR) is a key cathode reaction in fuel cells. Due to the 
sluggish kinetics of the ORR, various kinds of catalysts have been developed to compen-
sate for the shortcomings of the cathode reaction. Carbon materials are considered ideal 
cathode catalysts. In particular, heteroatom doping is essential to achieve an excellent 
ORR activity. Interestingly, doping trace amounts of metals in carbon materials plays 
an important role in enhancing the electrocatalytic activities. This chapter describes the 
recent advancements with regard to heteroatom-doped carbons and discusses the active 
sites decorated in the carbon matrix in terms of their configurations and contents, as 
well as their effectiveness in boosting the ORR performance. Furthermore, trace metal 
residues and metal-free catalysts for the ORR are clarified.

Keywords: oxygen reduction reaction, trace metal residues, active sites,  
heteroatom doping

1. Introduction

Owing to the limited supply of fossil fuels and increasing number of environmental crises, 

sustainable energy conversion and storage devices such as fuel cells and metal-air batteries 
have attracted significant attention [1]. The oxygen reduction reaction (ORR) is a key cathode 

reaction in such systems [2–4]. The sluggish kinetics of the ORR at the cathode owing to a 

higher overpotential than in the anode limits the wide commercialization of these devices. 

Currently, only the state-of-the-art platinum/carbon black catalyst (Pt/C) has been widely used 

in practical applications of proton exchange membrane (PEM) fuel cells [5]. Unfortunately, 

the scarcity and high cost of Pt and the poor durability limits the wide commercialization of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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these devices. Therefore, the development of low-cost and highly efficient catalysts for the 
ORR has become a “hot topic”.

Earlier studies have focused on tuning the surface structure [6–8] and electronic structure [9] 

of Pt as well as the electrocatalyst supports [10, 11] to achieve optimum ORR activity by using 

the least amount of Pt. In addition, various kinds of catalysts, including transition metals and 

their alloys, transition metal oxides/nitrides/sulfides, as well as mixed-valence metal oxides 
[12, 13], carbon-based metal-free catalysts [14], and others have been developed to promote 

the sluggish kinetics of the ORR at the cathode. Among the catalysts studied, heteroatom-

doped carbon materials are considered ideal cathode catalysts due to the high surface area, 

good electrical conductivity, and densely distributed active sites. Presently, carbon black (CB) 

[15], graphene [16, 17], carbon nanotubes (CNTs) [17, 18], and porous carbon [19] are used as 

support materials in carbon-based electrocatalysts. Although topological defects contribute to 

the intrinsic activity of nanocarbon catalysts, various kinds of active sites have been created in 

nanocarbon catalysts to further enhance their activity [20, 21]. For example, transition metals 
such as Fe, Co, Ni, Cu, Zn, and Mn display fairly strong adsorption toward oxygen in the 
ORR, which can enhance the ORR efficiency and performance [22, 23]. Furthermore, metal-
free catalysts have also become an intriguing research area. Non-metal heteroatoms, such as 

N, S, B, and P, in carbon materials can serve as active sites for the ORR. The heteroatoms can 

alter the electronic distribution of the carbon framework and effectively increase the defects in 
the carbon structure, contributing to O

2
 adsorption and O─O bond breaking during the ORR 

catalytic reaction and concurrently promoting the catalytic performance of the carbon materi-

als. Although the individual roles of different atoms and their synergistic effects in facilitating 
the ORR activity are still under debate, numerous achievements have been made toward the 

rational design and synthesis of carbon materials with a high surface area, high electrical 

conductivity, and multiple heteroatom doping to achieve extraordinary ORR activities.

In fact, the ORR activity and durability of heteroatom-doped carbon even outperform those 

of commercially available Pt-based catalysts. Here, we aim to assemble a review of the sig-

nificant scientific progress in the design and synthesis of carbon-based electrocatalysts. We 
discuss the activity of different doping sites to provide an understanding of the mode of het-
eroatom doping and the role of heteroatoms in ORR, especially their content effects in ORR.

2. Active sites in the ORR

The ORR proceeds through two pathways—partial reduction and full reduction—and 

involves a two-electron pathway and a four-electron pathway, respectively. The four-electron 

route is highly preferred due to its high efficiency in fuel cell technology. The transformation 
of O

2
 to OOH* is the first step in this route and is also a rate-determining step. The highly 

active catalytic centers must be favorable to enhance the binding energy between the oxy-

gen intermediates and the catalyst surface but weak enough that the oxygen intermediates 

dissociate from the catalyst surface to prevent poisoning the catalyst. Therefore, goals for 

designing an ORR catalyst with high efficiency are to tune the adsorption energies of the 
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oxygen intermediates and modify the charge/spin distribution of the catalyst. Although, there 

is strong controversy about the role of active sites and mechanisms, the heteroatoms, even the 

edges and defects that can function as active sites for the ORR.

2.1. Pt-based active sites

Decreasing the loading amount of Pt and Pt-based materials to enhance the performances of 

fuel cells is a wise choice. A series of Pt-based catalysts were prepared. For example, Xia et al. 
reported the synthesis of Pt─Ag alloy nanocages (Figure 1) [6]. Due to the ligand effects from 
the electronegative Ag atoms, the O

2
 transition state can be stabilized, demonstrating a high 

specific activity toward oxygen reduction compared with that of the state-of-the-art commer-

cial Pt/C catalyst. Furthermore, hollow Pt─M (M = Ni, Co) nanoparticle-decorated graphene 

was designed as an electrocatalyst for the ORR. Due to the hollow interior, the amount of bur-

ied nonfunctional precious metal atoms decreased and hence enhanced the electrocatalytic 

activity and durability toward the ORR [7]. Based on the same mechanism, a hollow structure 

of a Pt catalyst was also reported by Li and co-workers. The obtained icosahedral Pt-enriched 

nanocages demonstrated a superior ORR activity [24]. In addition, Pt nanoparticles stabilized 

by a graphitic step-edge and combined with the effect of nanoscale confinement showed high 
electrochemical stability outperforming that of a commercial Pt/C [25]. Interestingly, Adzic 

and co-workers used titanium nickel binary nitride as a support and then several layers of 

Pt atoms were deposited on the robust support. The obtained catalyst exhibited high mass 

activity and specific activity compared with the commercial Pt/C catalyst; this result was 
mainly due to the synergistic effect of Ni doping and the strong interaction between the Pt 
layer and the support [10]. Mukerjee and co-workers designed a Pt/NbO

x
/C system as an 

ORR catalyst and demonstrated that the Pt─O interactions improved the ORR activity [26]. 

Ultrathin Rh-doped Pt nanowires synthesized by Zeng and co-workers achieved remarkable 
activity and durability toward the ORR due to the doping of the Rh atoms and high utiliza-

tion efficiency of the Pt atoms [27]. Furthermore, Pt
3
Ni nanowires also showed extraordinary 

activity and stability toward the ORR [8].

All in all, despite numerous progresses made in exploring novel type of ORR catalyst, the 

state-of-the-art Pt/C catalysts still dominate. Pt-based multimetallic catalysts with various 

Figure 1. Schematic illustration depicting the major steps involved in the formation of Pt─Ag nanocages with high ORR 

activity: (a, b) alloying of Ag with Pt to generate Pt─Ag nanocages during the galvanic replacement reaction between Ag 

and a Pt(II) precursor and (c) dealloying of Ag from Pt during the accelerated durability test [6].
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finely tuned morphologies will represent a promising research area of ORR catalyst, due to 
the scarcity of Pt and the unsatisfactory long-term stability.

2.2. Non-noble metal-based active sites

The search for Pt-free alternative catalysts with excellent ORR performance has attracted much 
attention. Accordingly, extensive efforts have been directed toward the design and synthesis 
of nonprecious metal-based catalysts for potential applications in fuel cells. Particularly, the 

co-doping of transition metals and non-metal heteroatoms have also been extensively studied 

due to their combined advantages. Fe─N─C catalysts have been broadly studied. Atomically 

dispersed Fe [28], Fe─N
x
 [29, 30], Fe

3
C [31, 32], and Fe

3
O

4
 [33] are all considered ORR active 

sites. Dong and co-workers demonstrated that atomically dispersed Fe (1–2 wt%) played a 
pivotal role in promoting the ORR performance [28]. Joo et al. prepared a catalyst consist-

ing of Fe─N
x
 and Fe─Fe

3
C@C species (Fe content of 6.3 wt%) [31]. The experimental results 

indicated that the Fe─N
x
 sites played a dominant role in promoting the ORR via a 4-electron 

pathway, whereas the Fe─Fe
3
C@C sites played an auxiliary role. The authors also prepared a 

CNT/porphyrinic carbon (PC) catalyst with densely distributed active Fe─N
x
 sites (Figure 2). 

The Fe contents of the CNT/PC were 2.9 wt%. This catalyst showed very high ORR activ-

ity in both alkaline and acidic media [32]. Xia and co-workers prepared Fe
3
O

4
 nanoparticles 

encapsulated in hollow core-shell structured N-doped carbon spheres. The obtained catalyst 

exhibited an excellent catalytic performance toward the ORR [33].

In addition to Fe─N─C catalysts, S-doped Fe─N─C catalysts have also been systematically 

studied. For example, Wang and co-workers found that iron sulfides/nitrogen and sulfur 
dual-doped mesoporous graphitic carbon spheres demonstrated excellent electrocatalytic 

activities toward the ORR in alkaline and acidic media. The remarkable catalytic performance 

was ascribed to the iron sulfide nanocrystals with an iron content of 5.9 wt% [34]. Similarly, 

multi-source-derived S─Fe/N/C with the atom contents of Fe 1.38% has been reported by 
Wang and co-workers. Five types of Fe were detected: Fe, FeS, FeN, FeC, and Fe

3
O

4
. Although 

the nature of the active sites was uncertain for the Fe/N/C, the S─Fe/N/C catalyst showed a 
highly efficient ORR activity [35, 36].

Figure 2. Synthetic scheme for the preparation of CNT/PC catalysts [32].
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Other earth-abundant non-noble metal-based electrocatalysts are also emerging as a new 

generation of low-cost and high-performance alternatives [37–44]. For example, the ORR elec-

trocatalyst properties of Cu, N-co-doped hierarchical porous carbon with a copper content of 

2.67 wt% were almost equal to those of a commercial Pt/C catalyst [37]. CoO
x
 nanoparticles@B, 

an N-decorated graphene hybrid material, was prepared by Wu and co-workers. Abundant 
Co─N─C active sites and high electron transfer capacity made this hybrid active in the ORR in 

an alkaline medium [39]. Recently, Deng and co-workers prepared Co
3
O

4
/Co-decorated porous 

graphene derived from waste paper (Figure 3) [40]. In this work, the cobalt(II)acetate-1,10-phen-

anthroline complex was selected as a precursor of both the catalyst and etcher; the control of 
the feed ratio of the complex, as well as the pyrolysis temperature and chemical compositions 

(Co
3
O

4
/Co) of the active sites could be finely tuned. This cost-efficient and green catalyst exhib-

ited an efficient ORR activity with a performance comparable to that of a Pt/C catalyst due to 
the synergistic catalytic effects between Co

3
O

4
 and graphene combined with the hierarchical 

porous structure of the matrix. Lee and co-workers designed a nickel-containing nanoreactor 

(Ni@N-CNCs) [42]. Ni particles were encapsulated in N-decorated carbon nanocapsules. X-ray 
photoelectron spectroscopy (XPS) analysis showed the formation of N─C and Ni─N bonds in 

the nanoreactor and these two types of active sites significantly improved the catalytic activity. 
In addition, a nanoconfined effect improved the reaction rate. The electron transfer number of 
Ni@N-CNCs reached nearly 4.0 comparable to that of Pt/C. Successively, a manganese corrole 

complex [43] and ZnN
x
/C catalysts [44] were explored as efficient ORR catalysts.

Additionally, bimetallic catalysts are promising candidates for the ORR. You and co-workers 

synthesized Fe
3
C/tungsten carbide/graphitic carbon in which the Fe

3
C acted as the active 

Figure 3. Schematic procedure for the preparation of functional porous graphene (Co
3
O

4
/Co@PG) from waste paper 

(MCM stands for microporous carbonaceous material and PG stands for porous graphene) [40].
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sites. Meanwhile, graphitic layers and tungsten carbide nanoparticles can improve the sur-

face chemical stability of the Fe
3
C phase. The nanocomposite demonstrated high ORR effi-

ciency via a four-electron pathway in a pH-neutral electrolyte [45]. Xu and co-workers used 
transition-metal spinels as a descriptor to identify the active sites in MnCo

2
O

4
 for catalyzing 

the ORR. Mn cations played an important role in the ORR because of the Mn valence in the 

octahedral sites [46]. Moreover, PdCo bimetallic nanoparticle (∼8 wt%)-decorated N-doped 
porous carbon was fabricated by Yamauchi and co-workers. Due to the existence of the PdCo 

nanoparticles, the O─O bonds can be easily broken. More importantly, the three-dimensional 

ordered porous structure disperses the PdCo nanoparticles uniformly in the matrix. Therefore, 

this composite exhibited similar electrocatalytic activity to that of commercial Pt/C in alkaline 

media [47]. One step beyond is to further dope metal into the bimetallic catalysts. A cathode 

catalyst composed of a conformal film of the PrNi
0.5

Mn
0.5

O
3
 and exsoluted PrO

x
 nanoparticles 

was designed by Liu and co-workers. Oxygen-vacancy-rich surfaces of the catalyst facilitated 

the electron transfer and hence dramatically enhanced the ORR kinetics and durability [48].

Now, the non-noble metal-based ORR catalysts have received more concern, due to their low 

cost and earth abundance. Although the deep insights of the active sites are not clear, non-

noble metal-based ORR catalyst can outperform the catalytic performance of Pt/C. However, 

most synthetic strategies involved the random mixing of carbon precursors and dopants, fol-

lowed by pyrolysis. Therefore, it is hard to tune the porous structures and the distribution of 

active sites. Future research should focus on the control of the morphology, composition, and 
active sites of the non-noble metal-based catalysts in high precision.

2.3. N-, S-, B-, and P-based active sites

Along with great progress made in metal-based catalysts, metal-free catalysts have attracted 
significant attention. Due to their high catalytic performance, long-term stability, and durabil-
ity, electronegative N-doped carbon materials have been broadly studied. Pyridinic-N and 

graphitic-N were found to be the most highly active sites for the ORR. It is still under debate 

which configuration contributes more to the ORR. In fact, it is difficult to determine the role of 
a single N-type because high-temperature pyrolysis tends to introduce a mixture of N types. 

Surprisingly, synthetic strategies favorable for obtaining specific types of C─N bonding have 

been developed [49, 50]. Specifically, Zhang and co-workers prepared pyridinic-N dominated 
graphene aerogels by the etching effect of NH

3
. The authors found that a long annealing time 

at 900°C was favorable for obtaining pyridinic-N. An N content of up to 12.2 at% with 90.4% 
pyridinic nitrogen has been achieved [51]. Furthermore, g-C

3
N

4
 is an ideal nitrogen dopant 

with an N content of 57.1 at%. A series of studies have been reported using g-C
3
N

4
 as both the 

template and nitrogen source [52–54]. Yan and co-workers reported a facile strategy for the 

synthesis of nitrogen-doped porous carbon with an N content of 10.49 at% [53]. Polypyrrole 

was used as the carbon and heteroatom sources and g-C
3
N

4
 acted as a sacrificial template and 

nitrogen sources. The XPS spectra of N 1 s indicated the existence of pyridinic-N, pyrrolic-N, 
graphitic-N, and oxidized-N. Due to the high specific surface area and N content as well 
as massive edges and defects, the obtained porous carbon exhibited excellent ORR activity. 

In addition, nitrogen-doped carbon nanoparticle−carbon nanofiber composites prepared by 
Ishizaki and co-workers demonstrated long-term durability and high tolerance to metha-

nol. This can be attributed to the high conductivity of the carbon nanofibers and the largely 
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exposed active sites [55]. Task-specific tubular nanoporous polycarbazole-derived N-doped 
carbon nanotubes [56] and highly pyridinic nitrogen (up to 14.9 wt%)-doped ultra-hollow 
carbon frameworks [57] have also been reported. The design of carbon structures with multi-

component active centers can in principle enhance the ORR activity. Two-dimensional N- and 

S-co-doped graphitic sheets with abundant interfacial active sites showed catalytic activity 

comparable to that of the commercial Pt/C [58]. In addition, N- and P-co-doped porous carbon 

networks showed high activities and excellent durability for ORR [59]. More interestingly, 

an N- and S-doped carbon nanofiber network coated with N- and P-doped carbon nanopar-

ticles showed superior ORR performance due to the integration of N, S, and P in the carbon 

hybrid [60]. Zhi and co-workers studied the ORR activity of B-, P-, and S-doped g-C
3
N

4
. The 

XPS results suggested the formation of B─N, P─N, and S─C bonds. The experimental results 

indicated that S- and P-doping enhanced the electrocatalytic performance of ORR, whereas 

B-doping deactivated the ORR process. The authors proposed that B, S, and P atoms are active 

sites in the ORR with the catalytic activity trend of S-doped > P-doped > g-C
3
N

4
 > B-doped 

g-C
3
N

4
 [61].

Now, metal-free catalysts, commonly decorated with N, B, P, or S, have emerged as promis-

ing catalysts in ORR, due to the high methanol tolerance and excellent long-term stability. 

In fact, design and synthesis of metal-free catalysts with satisfactory ORR performance in 

pH-universal electrolyte is still a challenge.

2.4. Trace metal-based active sites

It has been reported that metallic impurities within sp2 carbon nanomaterials may dominate 

the electrochemistry of the materials [62, 63]. Jiang and co-workers prepared sulfur, trace 

nitrogen, and iron co-doped porous carbon foams with an Fe content of 0.27 at%. They pro-

posed that C─S moieties and the synergistic effect of sulfur, the trace amount of nitrogen, and 
iron contributed to the efficient electrocatalytic properties [64]. Wang and co-workers deco-

rated Pd
3
V bimetallic alloy nanoparticles with Pt (Pt to Pd nominal atomic ratio at 1:30). With 

the exposure of more active sites of the Pt, the obtained catalyst showed high catalytic activity 

and stability in the ORR with a 30-mV positive half-wave potential (E
1/2

) comparable to that 

of commercial Pt/C [65]. Surprisingly, the presence of trace Au (Au/Pt atomic ratio = 0.0005) 

can significantly enhance the ORR durability of a PtCu alloy [66]. Similarly, incorporating 

trace amounts of gold (Au:Pd = 1:100) in Pd
6
CoCu nanocatalysts can markedly improve the 

durability of the ORR (Figure 4). Synchrotron X-ray absorption spectroscopy showed that 
gold replaced cobalt and copper on the surface and in the interior of the nanoparticles. This 

study developed a new strategy for enhancing the stability of fuel-cell catalysts [67].

Impressively, Schuhmann and co-workers systematically investigated the influence of trace 
metal residues on the ORR activity. They prepared a metal-free catalyst and then deliberately 

incorporated metal precursors into the catalyst. The experimental results indicated that the 

addition of Fe with 0.05 wt% to the metal-free catalyst significantly improved its ORR activity 
[68]. Pumera and co-workers found that a Mn content of 0.0018 wt% in graphene was suf-
ficient to enhance the electrocatalytic properties toward the ORR. In addition, they claimed 
that the elemental analysis of the metal contents should be provided to prove that the catalyst 

is“metal-free” [69]. Recently, we prepared a catalyst for the ORR derived from Gentiana scabra 
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Bunge (natural biomass) (Figure 5). Notably, the obtained catalyst showed an enhanced ORR 

activity compared with other biomass-derived carbon materials [70]. This could be partly due 

to the presence of intrinsic Fe species (about 744 mg kg−1). Fe not only facilitates the forma-

tion of catalytically active N─C sites but also increases the graphitization degree of carbon. 

Another possible reason is that trace levels of Fe residues (0.07 wt%) in carbon can dramati-
cally enhance the ORR properties.

In fact, controversy still exists over whether metal ions can function as active sites or just 

facilitate the formation of active sites. An understanding of active sites has been gained 

from experimental data and theoretical calculations [71]. An in situ poisoning experiment 

confirmed the existence of a metal-centered active site. For example, in the presence of CN−, 

the redox couple of Co(III)/Co(II) dramatically changed because CN− coordinated with the 

transition metal in the axial position. The blocking effect prevented the interaction of O
2
 with 

the transition metal and hence reduced the electrocatalytic activity [72]. Similarly, H
2
S has 

also been used in an in situ poisoning experiment. A significant deactivation of Fe─N─C 

catalysts for ORR was observed after the H
2
S treatment due to the formation of Fe─S bonds. In 

addition, the XPS characterization indicated the existence of Fe─S type bonds. These results 

showed that Fe was indeed active sites in catalyzing ORR [73].

The experimental results indeed proved that trace metal residues enhanced the ORR activity. 

Here comes the question: “How metal-free are metal-free catalysts?” [68]. Pumera and co-

workers investigate the electrochemical response of carbon nanotubes with different metallic 
impurities. They found that 100 ppm of Fe impurities (close to the detection limit) still domi-
nated the electrochemical behavior of a CNT sample [74]. Therefore, definitive proof of metal-
free catalysts is necessary. In addition, we highly suggest that there is no need to argue whether 

trace metal residue promotes the ORR activity. The abovementioned results clarify this.

Figure 4. Schematic illustration of the formation of Pd
6
CoCu/C (a) and Au-Pd

6
CoCu/C (b) [67].
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Trace metal as active sites in ORR depending more on the nanostructure of carbon matrix. It 

is time to take the step forward toward exploration of ORR electrocatalyst with uniform open 

cavities and ordering distribution of the trace metal.

3. Conclusion(s)

Cathode catalysts meet the criteria of promising ORR performance, high stability, high dura-

bility, and low cost and are highly desirable for automotive applications. The development 

of novel strategies for the rational design and synthesis of catalysts for meeting these perfor-

mance goals is very important. Furthermore, it is significantly important to develop a theo-

retical and experiment-based in-depth understanding of the nature of active sites together 

with the underlying mechanism of the ORR. Close attention should be paid to catalysts with 
high ORR activities under alkaline, acidic, and neutral conditions.

Metal atoms, metal alloys, metal oxide/nitride/sulfide nanoparticles, non-metal heteroatoms 
(e.g., N, S, B, and P), and even topological defects and edges of the carbon support can serve 

as potential active sites. Assisted by theoretical calculations, the catalytic mechanism of the 

ORR can be easily predicted; thus, the rational design and synthesis of catalysts become more 
efficient. In addition, the composition, size, dispersion, morphology, and structure of the 
nanoparticles, the contents of the heteroatoms, as well as the nanostructure of the carbon 

support are probably influential in the ORR. Therefore, the precise control of the structure, 
electronic state, and density of the active sites at the atomistic level are favorable for achieving 

an optimum ORR performance. Probing the role of trace metals in the ORR further guides 

future research activities, thereby reducing the cost and dramatically improving the ORR 

performance.

Figure 5. Schematic procedure for the synthesis of heteroatom doped porous carbon materials derived from Gentiana 

scabra Bunge [70].
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For practical applications, the reduction in the cost of electrocatalyst is an important factor. 
Future studies should focus on the design and synthesis of platinum group metal (PGM)-free 
cathode catalysts achieving high efficiency and durability along with low costs. The 2020 tar-

get for PGM-free catalyst activity proposed by the Department of Energy (DOE) is to achieve 

0.044 A/cm2 @ 0.9 V
IR-free

 and a durability of 5000 h [75]. Overall, a bright future awaits for 

cathode catalysts.
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