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Abstract

Even today, despite the surgery, radiotherapy, and chemotherapy, gliomas prognosis is 
still poor. There is a great need to develop new therapies. The understanding of the struc-
tural and functional characteristics of mitochondrial network (MN) and mitochondria-
associated membranes (MAM) in gliomas is essential for the design of future therapeutic 
strategies. A huge range of ultrastructural findings is observed in MN and MAM in the 
human gliomas. These findings imply that a majority of glioma cells are incompetent 
to produce an adequate amount of energy by means of oxidative phosphorylation and 
compensatory increases in glycolytic ATP production. Regarding MAM, a “MAM-rich” 
cell (well-differentiated glioma cells) and “MAM-deficient” cells (glioma like-stem cells) 
exist. The quantity of MAM could be linked to the functional or metabolic state of the 
different glioma cells. MAM-resident mTORC2 is a major regulator tumor growth and 
drug resistance. If sufficient nutrients are present, glioblastoma cells maintain mTORC2 
signaling to drive cell proliferation and survival. Consequently, the replacement of 
fermentable fuels like glucose with non-fermentable fuels like ketone bodies becomes 
a logical approach. The vision must be targeting the cellular signaling pathways and 
metabolic reprogramming. Whatever the modality, a holistic and feasible approach must 
be developed.

Keywords: mitochondria, mitochondria-associated membranes, glioma, glioblastoma, 
metabolic reprogramming, mTORC2
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1. Introduction

In the next lines, we do a brief journey through some aspects of gliomas, included epide-

miological, clinical, neuroradiological, neuropathological, ultrastructural, therapeutics, and 

biologic behavior. An emphasis regarding the functional and therapeutics implications 

(metabolic therapy approach) of mitochondrial network (MN) and mitochondria-associated 

membranes (MAM) in astrocytomas is presented.

The MN has been implicated in the process of carcinogenesis, which includes alterations of 

cellular metabolism and cell death pathways. Defects in mitochondrial function have been 

suspected to play an important role in the development and progression of cancer [1].

Accumulating evidence indicates that MAMs are a subcellular “hot spot” for the intracellular 

signaling [2, 3]. Recent research has highlighted and broadened the functional roles of MAM 

in a variety of cellular processes from lipid synthesis/transport, Ca2+ signaling, and ER stress, 

to mitochondrial shape and autophagy/mitophagy and to inflammation and cell immunity 
[3, 4]. MAM dysfunction has been associated with several types of cancer [5]. Research 

from the past decade has identified the MAM as a potentially central regulator of tumor cell 
metabolism, as exemplified by the presence of critical tumor suppressors and oncoproteins on 
this structure [6]. The involvement of MAM in cancer has not been thoroughly investigated. 

Consequently, there is a huge open window for pathophysiological understanding and novel 
treatment modalities related to MN and MAM functions.

Recently, we provide evidence showing MN and MAM ultrastructural aspects in a range of 

human astrocytomas, including pilocytic astrocytoma diffuse astrocytoma, anaplastic astrocy-

toma, and glioblastoma [7–10]. Probably, this represents a contribution to the structural basis 

of functional roles of MN and MAM in astrocytic tumors as well as therapeutics implications.

2. Epidemiological and clinical aspects

Diffuse astrocytic tumors comprise approximately 60% of primary intracranial tumors. These 
tumors can arise at any age in children and the very elderly, although incidence increases 

substantially with advancing age. The median age is 30–40 for diffuse astrocytoma, 40–50 
for anaplastic astrocytoma, and 50–60 years for glioblastoma. Older patients are also more 
likely to have higher grade gliomas, especially glioblastoma. The last one is the most frequent 

neoplasm in this category, accounting for approximately 80% of the diffusely infiltrative 
astrocytomas [11, 12].

The clinical presentation of the diffuse astrocytomas varies according to the sites of involve-

ment and the rate of growth. The most common clinical symptoms are new-onset seizures, 

changes in behavior, motor deficits, and sing/symptoms of increased intracranial pressure 
(headache, nausea, vomiting, and papilledema). High-grade astrocytoma tend to have a short 

history with rapid progression, whereas low-grade astrocytoma are more indolent, often with 

insidious onset and a long, protracted clinical course [11, 12].
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3. Neuroimaging

Astrocytomas are most commonly seen on magnetic resonance imaging MRI as ill-defined, 
deep-seated, or predominantly subcortical cerebral hemispheric masses. MRI sequences, where 

signal hyperintensity reflects vasogenic edema generated in response to diffuse infiltration by 
individual tumor cells. Secondary signs of mass effect include midline shift, ventricular com-

pression, and sulcal effacement. Glioblastoma commonly show a rim-enhancing pattern with a 
central low-density region of necrosis surrounded by irregular, variable thickness rim of contrast 

enhancement. This rim-enhancing component is always surrounded by T2- or FLAIR signal 
hyperintensity that represents an associated diffusely infiltrating neoplasm [11, 12] (Figure 1).

4. Neuropathological aspects of gliomas

4.1. Gross pathology

Diffuse astrocytomas are ill-defined and subtly discolored, with secondary mass effects. 
These tumors are most often centered in the subcortical white matter but have a tendency 
to infiltrate widely and include the cerebral cortex, deep gray structures, and even the con-

tralateral hemisphere. Glioblastoma are classically heterogeneous, with foci of necrosis, and 
hemorrhage [11, 12].

4.2. Histopathology

Gliomas constitute a heterogeneous group of primary central nervous system tumors. The term 
astrocytoma includes tumors with astrocytic differentiation. They may have a wide spectrum of 

Figure 1. Glioblastoma MRI. (A) Initial MRI from a 50-year-old male patient with seizures and a temporal lobe 
glioblastoma. (B) The same patient three months later. (C) A huge frontal lobe giant cell glioblastoma from a 65-years-old 
female patient with changes in behavior.

Functional and Therapeutic Implications of Mitochondrial Network and Mitochondria…
http://dx.doi.org/10.5772/intechopen.77224

15



cell types in pure or mixed form. The classical tumor cells may show elongated, irregular hyper-

chromatic nuclei, often with no discernible cytoplasm, and embedded in a dense fibrillary matrix, 
mixed with cells that display visible eosinophilic cytoplasmic processes. However,cellular diver-

sity, such as gemistocytic cell, protoplasmic cell, sarcomatous cell, epitheliod cell, granular cell, 

giant cell, or small cell is eventually observed. Glioblastoma display microvascular hyperplasia 
and tumor necrosis (pseudopalisading areas or infarct-like areas) [11, 12] (Figure 2).

The infiltrative or diffuse forms of astrocytoma are composed of individual tumor cells that 
infiltrate widely throughout the brain parenchyma with a cellular density and degree of 
anaplasia that increase with tumor grade. They are characterized by invasive growth such 

that nonneoplastic cells are often intermixed and may even predominate in some areas. The 

secondary structures of Scherer include subpial condensation, perineuronal satellitosis, and 

perivascular aggregation. The extreme end of the infiltrative spectrum, previously assigned 
as gliomatosis cerebri; it involves multiples lobes of the brain, often bilaterally and frequently 

extending into the brain stem, cerebellum, and even the spinal cord [11, 12].

Figure 2. Histopathology. (A) Diffuse astrocytoma. Tumor cells show elongated, irregular hyperchromatic nuclei, with 
no discernible cytoplasm and embedded in a dense fibrillary matrix, mixed with cells that display visible eosinophilic 
cytoplasmic processes. (B) Glioblastoma displays a hypercellular-solid neoplasm with fuzzy or ill-defined margins, with 
diffuse parenchymal infiltration. (C) Glioblastoma: a pseudopalisading necrosis area. (D) Glioblastoma: an epitheliod-like 
cell area. (E) Glioblastoma: hypercellularity, tumor cells show elongated, irregular hyperchromatic nuclei, with no discernible 
cytoplasm and embedded in a dense fibrillary matrix, mixed with cells that display visible eosinophilic cytoplasmic 
processes. (F and G) Glioblastoma: cooption blood vessels surrounded by tumor gemistocytic cells. (H) Glioblastoma 
displaying microvascular hyperplasia. (I) Giant-cell glioblastoma corresponding to Figure 1C.
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4.3. The 2016 World Health Organization classification of tumors of the central 
nervous system

According to the 2016 World Health Organization classification of tumors of the central 
nervous system [13], the diffuse gliomas include the WHO grade II and grade III astro-

cytic tumors, the grade II and III oligodendrogliomas, the grade IV glioblastomas, as 

well as the related diffuse gliomas of childhood. Then, all diffusely infiltrating gliomas 

(whether astrocytic or oligodendroglial) are grouped together: based not only on their 
growth pattern and behaviors but also more pointedly on the shared genetic driver 

mutations in the IDH1 and IDH2 genes. This approach leaves those astrocytomas that 

have a more circumscribed growth pattern, lack IDH gene family alterations, and fre-

quently have BRAF alterations (pilocytic astrocytoma, pleomorphic xanthoastrocytoma) 

or TSC1/TSC2 mutations (subependymal giant cell astrocytoma) distinct from the dif-

fuse gliomas.

The WHO grade II diffuse astrocytomas and WHO grade III anaplastic astrocytomas 
are now each divided into IDH-mutant, IDH-wildtype, and NOS categories. It is recom-

mended that WHO grading is retained for both IDH-mutant and IDH-wildtype astro-

cytomas, although the prognosis of the IDH-mutant cases appears more favorable in 

both grades.

Glioblastomas are divided into: (1) glioblastoma, IDH-wildtype (about 90% of cases), which 
corresponds most frequently with the clinically defined primary or de novo glioblastoma 
and predominates in patients over 55 years of age [14]; (2) glioblastoma, IDH-mutant (about 
10% of cases), which corresponds closely to so-called secondary glioblastoma with a history 
of prior lower grade diffuse glioma and preferentially arises in younger patients [14];and 

(3) glioblastoma, NOS, a diagnosis that is reserved for those tumors for which full IDH 
evaluation cannot be performed.

5. Biologic behavior

Today, gliomas still represent a serious and discouraging brain tumor; despite the diversity 

of treatment modalities, generally, the prognosis for patients is still poor (i.e., fatality and 

sequelae). Even with surgical resection and aggressive treatment with chemotherapy and 

radiotherapy, the prognosis for patients with astrocytomas remains very poor [15].

6. The mitochondrial network, mitochondria-associated membranes, 

glioma ultrastructural pathology, and their functional and 

therapeutic implications

Both the endoplasmic reticulum and mitochondria are highly dynamic organelles, forming 

networks that may undergo rapid changes in the size, length, and shape, depending on meta-

bolic and Ca2+ buffering needs, or in response to different cellular insults [16].
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6.1. Mitochondrial network

Ultrastructurally, mitochondrion is an organelle constituted by a peripheral and inner mem-

brane. The peripheral membrane encloses the entire contents of the mitochondrion, and 

internal membrane forms a series of folds, called cristae, which project inward toward the 
interior space of the organelle. The area between the peripheral and inner membranes is des-

ignated as intermembrane space, and the area enclosed by the internal membrane is labeled as 

a mitochondrial matrix. Functionally, the outer membrane includes the apoptosis antagonists 
and agonists and fission/fusion mitochondrial proteins. The inner membrane contains all the 
respiratory enzyme complexes and the three electron transporters, necessary for oxidative 

phosphorylation. In major mammalian tissues, 80–90% of ATP is generated by mitochondria 
in the process of oxidative phosphorylation [17, 18]. The mitochondrial matrix contains the 

enzymatic system of β-oxidation and tricarboxylic acid cycle. Mitochondria in living human 
cells display large, elongated and branched structures, actually entitled as mitochondrial 

network, extending throughout the cytosol and in close contact with the nucleus, the endo-

plasmic reticulum, the Golgi complex and the cytoskeleton, and is continually remodeled by 
both fusion and fission events [19].

In some cell types, mitochondria exist as single and randomly dispersed organelles; in other 

cells, mitochondria may also exit as dynamic networks that often changes shape and subcel-

lular distribution. Depending on the cell type, mitochondria localized in different site-specific 
regions of a cell may display dissimilar morphology and biochemical properties [20].

6.2. Mitochondria-associated membranes

MAM is a membranous and protein structure (inter-membranous structure) composed by 

three pieces: (1) endoplasmic reticulum membrane; (2) mitochondrial membrane (outer mito-

chondrial membrane); and (3) tethers (proteins). Consequently, it displays biological mem-

branous processes such as molecules trafficking and signaling events.

To date, MAM is considered as a fundamental cellular structure tightly regulated and with 

multifaceted roles that include Ca2+ signaling, lipid synthesis and exchange, metabolic con-

trol, and others. MAM formation might depend on several factors relating to differences in 
cell demands or microenvironment stimuli [2, 21].

6.3. Mitochondrial network and mitochondria-associated membranes abnormalities 

in human astrocytomas

Regards to the mitochondrial network, lucent-swelling mitochondria with disarrangement 

and distortion of cristae and partial or total cristolysis is predominant in the astrocytoma cells. 

In a minor proportion of astrocytoma cells, the presence of mitochondria with dense matrix 

displayed in closed groups exists [7–10].

Considerable variations in MAM ultrastructure is observed in the glioma tissue with 
respect to density, length, and width of the interfacing ER and mitochondrial membranes 

(Figure 3). In some astrocytoma cells, the MAM displayed a network or “work station” 
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(an area with high density of MAM and predicted the functional activity). Close or direct 
association (mitochondria-endoplasmic reticulum interface <30 nm) and detached or dis-

rupted (>30 nm) associations is present. The shortest span of MAM was 96 nm, and the 
longest was 652 nm [10].

In the ultrastructural perspective, we identified two remarkable cell types: (1) poorly differen-

tiated glioma stem cells and (2) well-differentiated glioma cells. The first one exhibits a poorly 
developed mitochondrial network and scarce MAM (named by us “MAM-deficient cells”). 
The second contains a well-developed MN and numerous MAM (named by us “MAM-

enriched cells”). MAM displayed a network or “work station” in some well-differentiated 
glioma cells [10] (Figure 4).

Previously, we suggest that the MAM could be involved in the invasive properties of glioma 

cells. Human glioma cell invadopodia show mitochondria with a dense matrix condensed 

configuration, indicating an active state. The mitochondria were frequently in close contact 
with an extended smooth endoplasmic reticulum displaying an endoplasmic reticulum sub-

fraction associated with mitochondria MAM. Fluorescent microscopy confirmed that D54 and 
U251 glioma cells growing in vitro also contained filopodia with mitochondria (Figure 5). 

The U251 glioma cells’ filopodia that penetrated through 1.2-μm pores of transwell chambers 
also contained mitochondria, suggesting that the mitochondria are actively involved in the 

invasion process [9].

In the vascular microenvironment components of gliomas, the mitochondrial network exhibit 

similar changes to describe in tumoral cells. The mitochondria display mainly two patterns: 
(1) swelling associated with disarrangement of cristae and partial or total cristolysis and (2) 
condensed configuration [8].

Figure 3. (A–C) Glioblastoma cells displays variable organization of endoplasmic reticulum membrane associated with 
mitochondria (circles, ellipses, and arrows). M/m denotes mitochondria; er: endoplasmic reticulum profiles. N: cellular 
nucleus. Lucent-swelling mitochondria with disarrangement and distortion of cristae, and partial or total cristolysis, 
are seen.

Functional and Therapeutic Implications of Mitochondrial Network and Mitochondria…
http://dx.doi.org/10.5772/intechopen.77224

19



6.4. Functional and therapeutics implications

In the case of astrocytomas, the dense mitochondria could be capable of producing energy 

by oxidative phosphorylation, and lucent-swelling mitochondria with disarrangement and 

distortion of cristae and partial or total cristolysis are incapable of generating energy by oxida-

tive phosphorylation. Possibly, the astrocytoma cells that hold dense mitochondria are able to 

generate sufficient ATP concentration by oxidative phosphorylation. In contrast, the astrocy-

toma cells that contain lucent swelling mitochondria with disarrangement and distortion of 

cristae and partial or total cristolysis are incompetent to produce an adequate amount of ATP 

by mitochondrial respiration. These findings suggest that the majority of astrocytoma cells are 
incompetent to produce an adequate amount of energy by means of oxidative phosphorylation 

[7–9]. The glycolytic inhibition and inhibition or down-regulation of mitochondrial respiration 

would be a potential tool for future therapeutic strategies in cases of human astrocytic tumors.

Mitochondria are present at the invadopodia and their apparent function appears linked 

with the ROS generation and subsequent activation of several pathways essentials for glioma 
invasiveness. Mitochondria are a major source of ROS, which occurs mainly at complexes I 
and III of the respiratory chain. In cancer cells, mitochondria can generate ROS and redox 
signals, specifically via an increase in the NAD+/NADH ratio [22]. H2O2 induces Akt (protein 

kinase B) activation, and their pathway is redox regulated. Akt activation correlated with the 

Figure 4. (A) Glioma like-stem cell exhibited, adjacent to nuclei, an endoplasmic reticulum an endoplasmic reticulum  

profile, and a small amount of electron-dense mitochondrion displayed a “MAM network” (black rectangle) with six 
direct interorganellar close associations with small span (white rectangles). (B) Well-differentiated tumor cell displays 
electron-lucent mitochondrion (m) in close association with multiple endoplasmic reticulum profiles establishing 
multiple MAM (rectangle) conforming a huge “MAM network”. Similar fashion is observed in three cellular processes 

(arrows); es: denotes extracellular space.
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increased tumorigenicity, stem cell-ness, and invasiveness of invasive glioblastoma cells [23]. 

Molina et al. [23] reported that the glioma cells with high Akt activation actively invaded the 

surrounding parenchyma along blood vessels and with matter tracts. In human astrocyto-

mas, the co-option vessel shows invadopodia with mitochondria that display dense matrix 

condensed configuration [9]. This finding possibly represents the ultrastructural basis of the 
molecular process expressed above, which permits the invasiveness of glioblastoma cells. 

On another hand, the PI3K-Rac and PI3K-3/Akt pathways are involved in the production of 
ROS that accumulates at the membrane ruffles [24], ROS production stimulates cytoskeletal 
reorganization required for a migratory response. Migrating glioma cells show activation of 

the PI3K/Akt pathway, and PI3K inhibitors have been tested experimentally, resulting in a 
decrease in migration [25]. Therefore, Inhibition of mitochondrial ROS generation may repre-

sent another important therapeutic target to most gliomas.

The degree of development of MN and quantity of MAM could be linked to the functional or 

metabolic state of the different tumor cells found in human astrocytic tumors. Then, the well-
differentiated glioma cells (or “MAM-enriched cells”) could be more active in these processes 
than the poorly differentiated glioma stem cells (or “MAM deficient cells”) [10]. A recent study 

Figure 5. (A) Two glioblastoma multiforme cells exhibit several invadopodia that contain mitochondria with dense 

matrix condensed configuration (arrows). The cytosol shows multiple mitochondria with similar morphologies and 
physically adjacent to distended endoplasmic reticulum MAM. EM: denotes extracellular matrix. (B and C) Glioma cells 
filopodias (f). M denotes: mitochondria; * designates: dilated endoplasmic reticulum cystern; arrows indicate: filiform 
projections. (D) Under fluorescent microscopy, U251 glioma cells stained with MitoTracker Red (label the mitochondria). 
The mitochondria are in the filopodia (circle and arrow). Green: actin filaments. Blue: nuclei. (personal communication 
and courtesy from Martin R. Jadus, Diagnostic & Molecular Health Care Group, Veterans Affairs Medical Center, Long 
Beach, California, USA, Neuro-Oncology Program, Chao Comprehensive Cancer, University of California–Irvine, 
Orange, California, and USA; and Pathology and Laboratory Medicine, Med. Sci. I, University of California, Irvine, 
California, USA).
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showed that glioma stem cells are less glycolytic than differentiated glioma cells, consuming 
lower levels of glucose, and producing lower amounts of lactate while maintaining higher ATP 

levels compared with their differentiated progeny [26]. Another study, by means of transmis-

sion electron microscopy, analysis revealed that the number of mitochondria with distinct cris-

tae and electron-dense matrices increased significantly in the non-stem differentiated glioma 
cells when compared to their undifferentiated glioma stem cells. The final conclusion was that 
glioma stem cells prefer a relatively higher glucose metabolism, which implies that they utilize 

different mitochondrial biosynthesis and metabolic pathways when compared to differenti-
ated glioma cells [27]. Other research established that glioma stem cells displayed diminished 
endoplasmic reticulum-mitochondria contacts compared to glioma differentiated cells. Forced 
endoplasmic reticulum-mitochondria contacts in glioma stem cells increased their cell surface 

expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. The 

final conclusion was that endoplasmic reticulum-mitochondria contacts control surface glycan 
expression and sensitivity to killer lymphocytes in glioma stem-like cells [28].

The length of the interface is changing under different biochemical conditions [29, 30]. 

Apparently, the execution of the physiological programs is dependent on the length of the 

MAM, since the structural plasticity of the MAM cleft accompanies changes in cell metabo-

lism [29]. Changing the thickness of MAM would impact on the activity of several enzymes of 
the Krebs cycle and on the strength of the IP3R Ca2+ signaling pathway [30]. Furthermore, the 
variability of the ultrastructural aspects observed on astrocytic tumors suggests a dynamic 

regulation of the interorganellar junction that can be modified by functional requirements 
needed to adapt to different cell demands. Solid and glycolytic tumor tissue is frequently 
characterized by a loss of normal MAM architecture and formation [6]. Today, altered Ca2+ 

signaling at the MAM is recognized as a hallmark of cancer cells that shifts their metabo-

lism to glycolysis and increases their resistance to cell death [31]. MAM-resident mTORC2 
controls the MAM integrity and mitochondrial functions [4, 32] and is the core of MAM 

signaling hub that controls growth and metabolism. Recent studies suggest that mTORC2 
can promote glioblastoma growth and chemotherapy resistance in cancer cells as well as 

controlling genome stability and tumor metabolism including glycolysis, glutaminolysis, 

lipogenesis, and nucleotide and reactive oxygen species metabolism [33]. Glucose is required 
to activate mTORC2 and promote tumor growth [33] by means an auto-activation loop of 

mTORC2, rendering glioblastoma resistant to EGFR, PI3K, or AKT-targeted therapies. Then, 
if sufficient nutrients are present, glioblastoma cells maintain mTORC2 signaling to drive cell 
proliferation, and survival [33, 34]. mTOCR2 markedly increases glycolysis in glioblastoma 
[33]. Consequently, replacement of fermentable fuels like glucose and glutamine with non-
fermentable fuels like ketone bodies becomes a logical approach to management [35, 36]. The 

dietary intervention prevents glioma cells accessing their preferred fuel source, i.e., glucose 

[37–40], and consequently, the signal transduction of mTORC2, cell proliferation and survival 
are diminished [35]. Therefore, impairments in glucose availability can be devastating for 

glioma survival [26].

The current standard of care for glioblastoma patients consists of maximal safe resection, 

followed by radiotherapy, and concurrent chemotherapy with Temozolomide [15, 41, 42]. 

Despite substantial clinical research efforts over the past decades, therapeutic progress 
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has been marginal [43]; added benefits from Temozolomide [44] and bevacizumab [45] 

are modest, and patient overall survival remains poor. Increasing recognition of the meta-

bolic peculiarities of cancer has prompted investigations of nutritional strategies targeting 

glycemic modulation in cancer treatment, predominantly through the use of high-fat and 

low-carbohydrate diets (ketogenic diets; KDs), but also caloric restriction (CR), intermittent 
fasting (IF), and other combinatorial dietary protocols [46, 47]. All of these strategies induce 

a physiological state of systemic ketosis that metabolically compensates for the therapeutic 

reduction of carbohydrate intake and a concurrent decrease in blood glucose levels [47]. 

Both glycemic reduction and systemic ketosis are established key metabolic correlates of 

these nutritional strategies and are thought to mediate their therapeutic efficacy [35, 47]. The 

reduced availability of glucose as an energy substrate has been shown to selectively starve 

glioma cells both in vitro and in vivo [48–54]. Glioma cells are metabolically maladapted to 
utilize ketone bodies [48, 52, 55]. Unlike highly selective pharmacological blocking agents, 

KMT might produce a global dampening of insulin-related signaling with potentially more 
efficacy and less side effects [56]. On a functional level, several preclinical studies could 
demonstrate that ketogenic metabolic therapy (in particular, KD treatment, and/or CR) 
induces a metabolic shift in malignant brain tissue toward a proapoptotic, antiangiogenic, 

anti-invasive, and anti-inflammatory state accompanied by a marked reduction in tumor 
growth in vivo [57]. According to the current literature, ketogenic metabolic therapy is a 

safety and feasible alternative for malignant glioma. Cumulative clinical trials suggest that 
ketogenic metabolic therapy is emerging as a potential therapeutic option and might be 

combinable with existing anti-neoplastic treatments for malignant glioma [57]. Recently, a 

press-pulse therapeutic strategy for cancer management was presented [58]. The press-pulse 

therapeutic strategy for cancer management is illustrated with calorie-restricted ketogenic 

diets used together with drugs and procedures that create both chronic and intermittent 
acute stress on tumor cell energy metabolism, while protecting and enhancing the energy 

metabolism of normal cells. Optimization of dosing, timing, and scheduling of the press-
pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient 

toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials 

for the non-toxic management of most cancers [58].

7. Conclusions

There is a great need to develop new therapies for gliomas. The ultrastructural findings 
observed in MN and MAM in the human gliomas indicate that: (1) The majority of glioma cells 
are incompetent to produce adequate amount of energy by means of oxidative phosphoryla-

tion and compensatory increases in glycolytic ATP production and (2) The variability of the 
ultrastructural aspects of MAM observed on astrocytic tumors suggests a dynamic regulation 

of the interorganellar junction that can be modified by functional requirements needed to 
adapt to different cell demands. These findings possibly represent the ultrastructural basis 
of the metabolic processes of glioma cells. MAM-resident mTORC2 controls the MAM integ-

rity and mitochondrial functions, and mTORC2 can promote growth and chemotherapy 
resistance in cancer cells as well as tumor metabolism including glycolysis, glutaminolysis, 
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lipogenesis, and nucleotide and reactive oxygen species metabolism. Considering that thera-

peutic progress has been marginal, ketogenic metabolic therapy in the context of the press-

pulse therapeutic strategy is emerging as a potential therapeutic option (Figure 6).
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Figure 6. General visualization of the glioma pathology, metabolic aspects and, their metabolic therapy approach. 
Glucose derived from extracellular nutrients is required to activate mTORC2 and promote tumor growth and resistance. 
Glucose is converted in acetyl-CoA for the pyruvate deshydrogenase (PDH) action. Acetyl-CoA produces the activation 
of mTORC2 by acetylation of RICTOR. mTORC2 signaling facilitates the metabolic reprogramming, tumor growth, 
and resistance. This is a nutrient availability-dependent process, by means an auto-activation loop of mTORC2. The 
metabolic therapy approach, limit the availability of glucose and consequently, the signal transduction of mTORC2, cell 
proliferation, and survival are diminished (ellipse denotes MAM).
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