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Abstract

Multiple myeloma progression is characterized by a dense interaction between can-
cer cells and bone marrow microenvironment. The interactions of myeloma cells with 
various stromal cells and extracellular matrix components are the main regulator of the 
biological processes that underlie the progression of the disease and of the classic symp-
tomatology correlated. The bone marrow of myeloma patients has recognized autocrine 
and paracrine loops that regulate multiple signaling pathways and the malignant phe-
notype of plasma cells. One of the pivotal biological processes which are responsible 
for myeloma progression is the formation of new vessels from existing ones, known as 
angiogenesis. It represents a constant hallmark of disease progression and a character-
istic feature of the active phase of the disease. Near angiogenesis, other two ancestral 
processes were active in the bone marrow: vasculogenesis and vasculogenic mimicry. 
These processes are mediated by the angiogenic cytokines, interleukins, and inflamma-
tory cytokines directly secreted by plasma cells and stromal cells. Neovascularization is 
also mediated by direct interaction between plasma cells and the various components of 
bone marrow microenvironment. The observation of the increased bone marrow angio-
genesis in multiple myeloma and its correlation with disease activity and overall survival 
led to consider angiogenesis as a new target in the treatment of multiple myeloma.

Keywords: angiogenesis, antiangiogenesis, bone marrow microenvironment, multiple 
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1. Introduction

In the past decades, myeloma research has been focalized on the malignant cell leading to the 

identification of various genes (i.e., oncogenes and tumor suppressor genes) and of signaling 
pathways by which the identified genes themselves control survival and proliferation of can-

cer cells [1–4]. More recently, newly developed technologies have enabled us to investigate 

cancer cells at the genomic level. Such gene profiling studies are providing insight into the 
pathogenesis and risk stratification of plasma cell diseases, and help to predict both prognosis 
and treatment response [3, 4].

Cancer cells interact with all cells composing the microenvironment and with components of 

extracellular matrix (ECM) [5, 6]. These interactions play the most important role in the epi-

genetic control of the malignant phenotype, as in primary sites as in the metastatic ones [6, 7]. 

Moreover, interactions between host cells in the niche microenvironment and ECM represent 
an intense area of research [5–9]. The aim of these studies is the better understanding of the 
pathophysiological events in the tumor process, including malignant cells, surrounding cells, 

and ECM components [5–9].

Multiple myeloma (MM) is a malignancy of plasma cells that home to and expand in the bone 
marrow (BM) [9]. MM is characterized by a high genomic heterogeneity but, generally, it 

shows the same histological features, [8–10]. The interactions between MM plasma cells and 

BM microenvironment (stromal cells, hematopoietic cells, ahnd ECM) represent near genetic 
modifications an important factor for disease progression [11–14]. Pathophysiological inter-

actions of myeloma cells with the components of BM microenvironment are pivotal during 
the progression-associated bone disease and neovascularization [13]. These interactions are 

mediated by autocrine and paracrine loops that regulate multiple signaling pathways and 

influence many fundamental biological aspects of the malignant phenotype (i.e., apoptosis, 
survival, proliferation, invasion, bone damage, and angiogenesis) [12–14].

Neovascularization is the formation of new vessels from existing ones (angiogenesis) or from 
endothelial precursors (vasculogenesis) and represents one of the principal biological process 
controlled by the interactions between plasma cells and BM microenvironment. It is a con-

stant hallmark of disease progression [11–15]. Angiogenesis is controlled by several angio-

genic cytokines [14, 15]. The major of these are vascular endothelial growth factor (VEGF), 
fibroblast growth factor-2 (FGF-2), and hepatocyte growth factor (HGF) directly secreted not 
only by the tumor plasma cells but also by stromal cells [14, 15].

The observation of an increased BM angiogenesis in MM, an overexpression of angiogenic 
cytokines, and their correlation with disease activity, overall survival and the development of 

new antiangiogenic compounds, led to consider angiogenesis as a new target in the treatment 

of MM [11–15].

2. Neovessels formation in multiple myeloma

Neovessels in the BM of patients with active MM appear thin, tortuous, and arborized and 
are highly permeable showing fenestrae, vesicles, transcellular holes, widened intercellular 
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 junctions, and a discontinuous basement membrane [16]. These alterations are consequent to 

the rapid neovascularization induced by tumor plasma cells by mean of three different pro-

cesses: (i) angiogenesis, (ii) vasculogenesis, and (iii) vasculogenic mimicry [17].

2.1. Angiogenesis

In 1994, Vacca and colleagues [16] demonstrated for the first time that BM microvascu-

lar density was significantly increased in MM compared to monoclonal gammopathy of 
undetermined significance (MGUS) and moreover in active (diagnosis, relapse, and leuke-

mic phase) versus non-active (complete/objective response and plateau) MM. The authors 
first hypothesized that progression from MGUS to MM is accompanied by an increase in 
BM microvascular density. Subsequent studies by other groups confirmed the observa-

tion of increased angiogenesis in active MM compared to healthy individuals or MGUS 
patients [17–20].

Angiogenesis is the sprouting of new blood vessels from pre-existing ones and is finely 
regulated [17, 18]. Angiogenesis is essential for tumor growth, invasion, and metastasis 

starting from the balanced early avascular phase of cancer up to being uncontrolled and 

unlimited in time during the vascular phase [6, 17, 20]. The angiogenic switch from the 

avascular to the vascular phase is controlled by the many oncogenes, among which c-myc, 

c-fos, c-jun, and ets-1 have been recognized [20, 21]. They are activated in tumor plasma 

cells as a consequence of immunoglobulin translocations and genetic instability [20, 21],  

and induce the angiogenic phenotype in MM plasma cells [21]. MM plasma cells become 

CD45-negative and begin to produce VEGF [22]. The same angiogenic switch represents 

a crucial event for the progression from asymptomatic to symptomatic MM [23]. So, 

angiogenesis represents an important process in MM progression as well as an important 

 prognostic factor [17, 19, 20].

2.2. Vasculogenesis

Vasculogenesis is responsible for the primary development of the vascular system during 
embryogenesis and is fundamental for the formation of the yolk sac vasculature, of the heart, and 

of the dorsal aortae [24]. It derives from the differentiation of endothelial progenitors, namely 
angioblasts, deriving from mesoderm and aggregate into a primitive capillary plexus [24].  

Important evidence suggests that vasculogenesis contributes to neovascularization in the 

bone marrow of MM patients [25–27]. In fact, putative endothelial progenitor cells have been 

isolated from peripheral blood and several studies have suggested that angioblasts contribute 

to the formation of tumor neovessels [25, 26]. It has been demonstrated that when CD34+ 

VEGFR-2+ cells isolated from peripheral blood of MM patients were cultured on fibronectin-
coated plates and exposed to angiogenic cytokines, they acquire a typical spindle-shaped mor-

phology and express endothelial cell markers (CD34, CD31, Flk-1, Tie-2, and E-selectins) [26].  

Moreover, in the BM of MM patients, but not of MGUS patients, some endothelial cells of 
neovessel wall express on their surface the typical endothelial cell markers: factor VIII-related 
antigen (FVIII-RA), vascular endothelial-cadherin (VE-cadherin), VEGFR-2, and TIE/Tek, as 
well as the CD133 staminal antigen whose expression was found in the microvascular wall 

together with FVIII-RA or VE-cadherin in some active MM patients [26].
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2.3. Vasculogenic mimicry

The phenomenon called “vasculogenesis mimicry” represent a model of neovascularization 

in aggressive solid and hematologic tumors, owing to the specific capacity of malignant cells 
and other non-endothelial cells to form vessel-like networks [27–33]. This phenomenon can be 

an escape mechanism for antiangiogenic drugs that are now incorporated into standard clini-

cal practice [29]. Also, inflammatory cells (i.e. macrophages and mast cells) participate in this 
process [30–33] because they can generate endothelial progenitor and can produce functional 

capillary-like structures in vitro when stimulated by VEGF and/or FGF-2 [30–36].

Scavelli et al. demonstrated that when exposed to VEGF and FGF-2, macrophages isolated 
from BM of myeloma patients develop phenotypic and biologic properties similar to those 
of endothelial cells, and exhibit numerous cytoplasmic extroversions arranged in tube-like 

structures [35]. Finally, in BM biopsies of MM, the participation of inflammatory cells in the 
formation of the capillary network has been directly demonstrated [35, 36].

3. The BM microenvironment

The BM microenvironment plays a pivotal role during MM disease progression by mean 
neovascularization, bone disease, and activity of inflammatory cells. All the BM microenvi-
ronment components surround and support MM plasma cells proliferation, migration, and 

survival, and are implicated in drug resistance [34, 37].

3.1. Endothelial cells

BM endothelial cells of patients with MM are altered in shape and characterized by differ-

ent phenotype (in term of expression of cell adhesion molecules, receptors for cytokines and 
growth factors together with FVIII-RA, and VE-cadherin) from those of normal resting endo-

thelial cells and shows the capacity to proliferate rapidly and spontaneously enhanced angio-

genesis [36–39]. In fact, Vacca et al. [38] demonstrated that the phenotype of MM endothelial 

cells is characterized by expression of surface receptors such as VEGFR-2 and Tie2/Tek (indi-
cators of active angiogenesis), increased expression of the β3-integrin (that plays a pivotal role 
in the prevention of apoptosis, adhesion to the ECM, proliferation, migration, and capillaro-

genesis), expression of endoglin (implicated in the expression of the ligand of the plasma cell 
CD38 (CD31) enhancing plasma cells interaction with the new-formed blood vessels, favoring 
plasma cells entry into circulation, and disseminate). The expression of a water transporter, 
namely aquaporin 1, has been also demonstrated [39]. It enhances vascular permeability, 

facilitates plasma extravasation, increases interstitial pressure, induces hypoxia, and upregu-

lates hypoxia-inducible factor-1 alpha (HIF-1α) and VEGF [39]. Some MM endothelial cells 

express the CD133 indicating their derivation from a subset of CD133+ progenitor cells which 

contribute to the formation of blood neovessels [26, 40, 41]. MM plasma cells recruit BM and 
circulating CD133+ progenitor cells into the tumor microenvironment by mean the release of 

a high quantity of VEGF, FGF-2, and IGF [26]. In the BM microenvironment, CD133+ progeni-
tor cells differentiate into MM endothelial cells and complete the formation of the new vessel 
wall [26].
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MM endothelial cells are functionally different from MGUS endothelial cells, are characterized 
by an overangiogenic phenotype, and resemble transformed cells because of they downregu-

late or upregulate some genes like tumor cells [41]. These changes are influenced by the MM 
microenvironmental and/or plasma cells factors (such as hypoxia, inflammation, expression of 
multiple cytokines, growth factors, etc.) that render endothelial cells unstable and heteroge-

neous, with progressive characteristics comparable with a cancer cell. In addition, those factors 

may have genetic causes and consequences (i.e., increased expression of oncogenes and loss of 
tumor suppressor genes) [41]. This reciprocal interrelationship and heterogeneity may translate 

into a site- and stage-specific changes in the regulation of BM-microvessel density and angio-

genesis dependence, and ultimately to changes in the proliferation and antiapoptotic potential 

of MM tumor cells, even in the same patient [17]. Moreover, the overangiogenic activity of MM 

endothelial cells is linked to a well-defined protein expression [42]. This proteomic signature 

renders MM endothelial cells very similarly to transformed (such as tumor) cells than normal 
endothelial cells, confirming the results obtained in the studies at the genomic level [41].

3.2. Fibroblasts

The stromal microenvironment is characterized by a modified extracellular matrix, enhanced 
angiogenesis, and cells with an activated phenotype, including fibroblasts referred to as ‘acti-
vated myofibroblasts’ or ‘cancer-associated fibroblasts’ (CAFs) [6, 43–48]. In the poorly vas-

cularized hypoxic or necrotic areas of tumors, they accumulate numerous tumor-associated 

fibroblasts [43, 44]. They respond to experimental hypoxia by producing high amounts of 

VEGF-2, FGF-2, tumor necrosis factor alpha (TNF-α), urokinase and matrix metalloprotein-

ases and synthesizing inducible nitric oxide synthase, which increases blood flow and pro-

motes angiogenesis [45]. In breast, prostate, and pancreatic carcinomas, the number of CAFs 
is associated with an increased malignancy grade, tumor progression, and poor prognosis 

[46]. CAFs are heterogeneous [45] and display phenotypes similar to those of myofibroblasts 
derived from quiescent fibroblasts that have undergone activation during tissue remodeling 
in wound healing, fibrosis [47]. CAFs can arise from resident fibroblasts, BM-derived progeni-
tor cells and cells undergoing the endothelial-mesenchymal transition (EndMT) or mesenchy-

mal transition (MT) [47] in the BM of MM patients, an important interplay between CAFs and 
plasma cells during MM initiation and progression has been demonstrated [48]. Plasma cells 

induce and maintain the CAF-activated phenotype, which, in turn, supports tumor progres-

sion by promoting extracellular matrix remodeling, cell proliferation, apoptosis resistance, 

and angiogenesis [48]. Moreover, CAFs play a key role in the bortezomib resistance of MM 
cells. The protective effect is not related to cell-to-cell interactions but to the ability of bortezo-

mib to trigger bortezomib-resistant CAFs to release in the BM microenvironment several cyto-

kine/growth factors with antiapoptotic effects, such as IGF-1, IL-6 IL-8, and exosomes [48].

3.3. Macrophages

There are several published data on the association between macrophage infiltration, vascu-

larity, and prognosis in cancer [49–52].

In patients with active MM, macrophages contribute to building neovessels through vas-

culogenic mimicry [35]. Under a synergistic stimulation by VEGF/FGF-2, they undergo a 
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 phenotypic and functional adaptation but retain their own CD14 and CD68 lineage markers 

which can be evidenced in the neovessel wall [35]. They display oblong and spindle shape 

with thin cytoplasmic expansions, some of which are either arranged to form a microvessel-

like lumen or anastomosed with each other and with those of nearby macrophages to form 

tubular-like structures [35]. In the BM of patients with active MM, plasma cells secrete VEGF 
and FGF-2 that bind to VEGFR-1 and FGFR-1, -2 and -3 expressed on monocytes/macrophages 
surface and induce monocyte migration and infiltration and macrophage to secrete their own 
VEGF and FGF-2 [17, 35, 49, 52]. These cytokine circuits further promote angiogenesis and 

vasculogenic mimicry [17].

3.4. Mast cells

Mast cells recruitment in the tumor bed has been associated with enhanced growth and inva-

sion in solid and hematological malignancies [49, 53–56]. In MM, tumor plasma cells secrete 

stem cell factor (SCF), FGF-2, VEGF-2, and platelet-derived growth factor (PDGF) that recruit 
mast cells [14, 52]. The granules of mast cells contain several angiogenic factors: (i) tryptase 
and chymase that favor the formation of capillary structures via a direct action on endothelial 

cells and activate latent metalloproteinases and plasminogen activator [53]; (ii) heparin that 
induces endothelial cell proliferation and migration [54]; (iii) histamine, that has a direct angio-

genic effect, induces VEGF production in the granulation tissue [54] and contributes to the 

hyperpermeability of newly formed microvessels, increasing leakage of plasma proteins and 

hence deposition of fibrin whose degradation products are angiogenic in vivo [55]; and (iv) 
TGF-β, TNF-α, IL-8, FGF-2, and VEGF, which are all angiogenic factors [52, 53]. Moreover, in 

the new vessels wall typical tryptase-positive mast cells connected by a junctional system with 

the endothelial cells can be evidenced. As macrophage, mast cells keep their lineage marker 

indicating their adaptation to contribute to vasculogenesis mimicry [33]. In patients with MM 

BM angiogenesis, evaluated as microvessel area, and mast cells counts are highly correlated 
[53, 56] and both parameters increase simultaneously in the active phase of disease [56].

3.5. Osteoclasts and osteoblasts

MM plasma cells that home and expand in the BM causes an unbalanced bone remodeling that 
induces osteolytic lesions and causes pain, the main symptom of MM [34]. In MM, plasma cell-

dependent alterations of Runx2 and the Wnt pathways induce the differentiation of resident 
macrophages in osteoclasts and plasma cells themselves can transdifferentiate to functional 
osteoclasts [57, 58]. Bone disease results from the local production of osteoclast-activating fac-

tors (OAF), as well as IL-6, IL-1α or -1β, IL-11, TNF-α, TNF-β, and M-CSF [11]. In particular, the 

receptor activator of nuclear factor ligand (RANKL), the decoy receptor osteoprotegerin (OPG), 
its receptor (RANKR), and the chemokine macrophage inflammatory protein-1α (MIP-1α) trig-

ger differentiation and activation signals in osteoclasts precursors, and thus promoting bone 
resorption [48]. Adhesion molecules, such as β1 integrins, mediate the binding of MM plasma 
cells to stromal cells and VCAM1 induces overexpression of RANKL in both cell types and 
suppresses OPG production by stromal cells. Furthermore, plasma cells interfere with the reg-

ulation of the bone resorption by the secretion of IL-7 and DKK1, a Wnt inhibitor [59].

It has demonstrated a close link between myeloma cells, osteoclasts, and vascular endothelial 

cells to form a vicious cycle between bone destruction, angiogenesis, and myeloma  expansion 
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in the MM bone marrow and that the inhibition of VEGF produced by plasma and stromal 
cells and osteopontin produced by osteoclasts, reduce angiogenesis and osteoclastogenic 

activity by vascular endothelial cells [11, 57].

Some issues demonstrated that CD38 is expressed by effectors and inhibitory cells, and by 
both osteoblasts and demonstrating the role of CD38 in bone remodeling, in mice and rab-

bit models [60] as in human [61]. Horenstein AL. et al. [62] recently shown that the ectoenzy-

matic network CD73/CD203a is active even in MM bone niche in the alternative production of 
ADO, which levels correlate with disease aggressiveness and ISS staging of MM patients [61].  

Moreover, the role of CD38 in human OC differentiation and as well as the reduction of the area 
of osteoclast bone resorption in vitro by the anti-CD38 monoclonal antibody daratumumab 

have been also demonstrated [63]. Overall these findings suggest the possibility of a role of 
CD38 during osteoclast formation supporting the potential activity of daratumumab on MM 

bone disease and on the protection of MM plasma cells by stromal cells of the bone niche [60–63].

3.6. Hematopoietic stem cells

Hematopoietic stem cells (HSCs) reside in the BM in the endosteum niche and in the vascular 
niche, where they self-renew and differentiate into mature blood cells [64, 65]. This is a finely 
controlled-process by mean numerous signals from the bone marrow components [64, 65]. In 

MM, the BM niches (endosteum and vascular) components play a pivotal role in the regula-

tion of vasculogenesis and angiogenesis [11, 14, 26, 64], and alterations of the signals in niche 

microenvironment modulate myeloma progression and spread [26, 64].

In the BM of patients with MM, the expression of the CD133 staminal antigen in some cells of 
the neovessel wall has been demonstrated [26, 38]. Moreover, a subset of CD34+/CD133+ cells 
mobilized in the peripheral blood for collection during transplant procedure express VEGFR-2 
and are able to differentiate in mature endothelial cells in appropriate culture conditions [28].

3.7. Endothelial progenitor cells

Various studies have demonstrated that endothelial progenitor cells (EPCs) can be isolated 
from patients with MM [40, 66–69] and contribute to the formation of new blood vessels [40]. 

Moreover, circulating EPCs expressing CD146+, CD105+, and CD34+ are increased in MM 
patients compared to healthy controls [66, 67].

Rigolin et al. [69] have hypothesized a possible origin of EPCs and plasma cells from a com-

mon progenitor namely hemangioblast in MM patients. In their work, they demonstrated that 

EPCs, isolated from MM patients presents the 13q14 deletion and the great part of them are 
positive for the CD133 [69]. Finally, some evidence indicates a prognostic significance of the 
circulating EPCs also after treatment with new drugs [66, 68].

3.8. Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are the major component of BM stroma [11, 57, 70–72]. These 

cells, of unclear origin in MM [71], are potentially able to differentiate into multiple histotypes 
(i.e. fibroblasts, adipocytes, chondrocytes, and osteoblasts) and in the BM form specialized 
niches namely “vascular niche” and “osteoblast niche” [57, 70, 71]. MSCs support tumor cell 
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growth, metastasis, survival, bone marrow colonization, and evasion of the immune system 

[72]. MSCs can migrate toward primary tumors and metastatic sites, implying that these cells 

might modulate tumor growth and metastasis. In the BM of patients with MM, functional 
abnormalities of MSCs and complex interaction with MM plasma cells have been demonstrated 

indicating that they play a critical role in MM development and disease outcome [70, 71].  

In fact, MSCs can induce bortezomib-resistance in MM plasma cell by increasing Bcl2 expres-

sion and enhance NF-κB activity via cell-cell contact [73, 74]. Moreover, MSCs are able to 

modulate engraftment of HSC, to suppress T- and B-lymphocyte activation and proliferation, 
and to affect dendritic cell maturation [71]. Finally, since MSCs represents the osteoblasts 
progenitors, in the BM of MM patients, MSCs play a critical role in the pathophysiology of 
myeloma bone disease [75]. They present reduced osteogenic potential and promoting osteo-

clasts formation and activity by increasing RANKL to OPG expression, augmenting secretion 
of activin A, uncoupling ephrinB2-EphB4 signaling, and augmenting Wnt5a production [75].

3.9. Adipocytes

The cancer-associated adipocytes (also namely peritumoral, intratumoral, or tumor-infiltrat-
ing adipocytes) influence tumor biology also by promoting angiogenesis [76–81]. A great 

number of signaling factors contributing to angiogenesis in both adipose tissue and tumors: 

VEGF, Ang-1 and -2, leptin, adiponectin, TNF-α, FGF, TGF-β, HGF, IL-6, and IL-8 [77–79, 81]. 

The VEGF/VEGFR system is the main mediator of angiogenic activity in adipose tissue [77]. 

In particular, adipocytes produce VEGF, Ang-2, and HGF [77, 81]. In MM, the hypoxic envi-

ronment of BM favors the production of angiogenic factors by adipocytes, particularly VEGF, 
and decreases adipogenic differentiation increasing adipose-derived stem cell proliferation 
and migration [82, 83], supporting aberrant microvessel growth and neovascularization, and 

MM plasma cell proliferation [82, 83]. Paracrine and autocrine signaling of VEGFA between 
BM adipocytes and MM cells have been also demonstrating [77, 80, 81].

3.10. Soluble factors and transduction pathways

The progression from in situ to invasive and metastatic solid tumors are accompanied and 

enhanced by the switch from the perivascular to the vascular phase [84, 85]. The same pro-

cess has been demonstrated in MM in which active disease represent the ‘vascular phase’ of 
plasma cell tumors, and non-active disease (remission or plateau phase), smoldering MM and 
MGUS their ‘perivascular phase’ [22, 26, 43].

VEGF is the main angiogenic cytokine secreted in the BM of patients with MM [86–88]. VEGF 
carries out its activity through the MEK-1/ERK pathway by the interaction with his receptors 
(VEGFR1–3) [86]. In the BM of patients with MM paracrine loops between endothelial cells 
and plasma cells [89] and autocrine loops on the same endothelial cells have been demon-

strated [90]. Moreover, plasma cell-derived VEGF stimulates IL-6 and VEGF secretion in BM 
stromal cells, whereas stromal cells-derived IL-6 promotes proliferation, survival, and VEGF 
production in plasma cells, activating a loop between both growth factors [91].

Levels of FGF isoforms are significantly higher in the serum and plasma cell lysates of patients 
with active MM compared with non-active MM and MGUS patients [92–94]. Moreover, FGF-2 
inhibition suppresses the angiogenic potential of plasma cells from patients with active MM 
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in vitro and in vivo [92, 93]. Finally, FGF-2 triggers paracrine MM-stromal cell interactions in 
an IL-6/FGF-2 paracrine loop [92, 95] and syndecan-1 (CD138), a low-affinity receptor of FGF-
2, is also expressed by MM cells [96]. The high expression/activation of the FGF2 signaling in 
active MM also overcomes the inhibitory effect of the Pentraxin 3 (PTX3) [97, 98], a soluble 

pattern recognition receptor that binds with high affinity and selectivity to FGF2 inhibiting its 
pro-angiogenic activity, autocrine loops usually activated to self-limit physiologic angiogen-

esis in a normal subject or MGUS patient [97].

HGF has been identified in human MM cell lines and in freshly isolated plasma cells from 
patients with MM [99, 100]. Serum levels of this factor are higher in newly diagnosed MM 

patients and decline after induction therapy in the responding patients. Ferrucci et al. dem-

onstrated the co-expression of HGF and c-MET in MM endothelial cells, suggesting autocrine 
stimulation [99]. Moreover, BM stromal cells produce HGF, paracrine stimulation of MM cells 
within the BM microenvironment can also take place [99, 100]. The inhibition of this pathway 

causes reduction of spontaneous and plasma cell-induced angiogenesis in MM endothelial 

cells in vitro and in vivo [99–101].

The Ang-1/Ang-2 expression in MM patient serum and BM samples correlates with the BM 
microvascular density [102–106]. It has been demonstrated that Ang-1, as well as Ang-2 

expression, is upregulated in MM cell lines and in plasma cells obtained from MM patients 

[103, 105] and that the angiopoietin receptor Tie-2 is upregulated in the BM endothelial cells 
in the presence of MM cells [104]. Moreover, anti-Tie-2 antibodies blocked the in vitro angio-

genic activity of MM cells [104]. Higher levels of Ang-1 and Ang-2 have been detected in MM 
patients as compared to controls [102] and their ratio may represent an independent prognos-

tic factor in these patients [106].

Osteopontin (OPN) contributes to angiogenesis in MM [107–109]. Its expression corre-

lates with BM microvascular density, and OPN-immunodepleted conditioned media from 
myeloma cells fail to induce a pro-angiogenic effect [107, 108] and an anti-OPN antibody 

block myeloma-induced angiogenesis [107]. Moreover, OPN may represent a useful serum 

marker of bone disease and BM angiogenic extent in myeloma patients [109].

Matrix Metalloproteinase-2 and -9 (MMP-2 and MMP-9) secretion is increased in patients 
with active MM versus non-active MM or MGUS [92, 110, 111] and usually, the MMP-2 

expression is stronger [92, 110]. MM cell lines and freshly isolated BM plasma cells of MM 
patients produce MMP-9 [112], and MMP secretion of MM cells is triggered by BM stromal or 
endothelial cells [92, 112].

PDGF-Receptor Beta (PDGF-Rbeta) is expressed in plasma cells of MM patients [111, 113], 

and PDGF-BB/PDGF-Rbeta kinase axis promotes MM tumor growth by activating ERK-1/2 
and AKT [113, 114]. Dasatinib, an orally bioactive TK-inhibitor significantly delays MM tumor 
growth acting as an inhibitor of PDGF-Rbeta kinase activation [113].

Airoldi et al. [115] demonstrated that IL-12 receptor B2 (IL-12Rbeta2) is downregulated in 
MM plasma cells and IL-12 reduces their pro-angiogenic activity by downregulation of a 
wide panel of angiogenic factors, including FGF-2, VEGF, Ang-2, and IL-6 and upregulation 
of some inhibitors of angiogenesis, including CXCL-4, interferon alpha and gamma (IFN-α 
and IFN-γ), and tissue inhibitor of metalloproteinase-2 (TIMP-2).
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IL-27 exert strong antitumor activities against MM cells from patients by binding with its 
specific IL-27 receptor [116, 117] inhibiting the angiogenic potential of MM plasma cells. In 

animals injected with the U266 MM cell line, the expression of the genes encoding the che-

mokines CCL-2, CXCL-3, CXCL-5, and CXCL-6 is significantly downregulated by IL-27 treat-
ment [116, 117].

Another important paracrine loop between MM endothelial cells and plasma cells involves 

CXC-chemokines and their cognate receptors have been evidenced in the BM of MM patients 
[118, 119]. In fact, BM endothelial cells express and secrete high amounts of the CXC-
chemokines CXCL8/IL-8, CXCL11/interferon-inducible T-cell alpha chemoattractant (I-TAC), 
CXCL12/stromal cell-derived factor (SDF)-1α, and CCL2/monocyte chemotactic protein 
(MPC)-1 [118] that mediate the interactions between plasma cells and stromal cells interact-

ing with the respective chemokine receptors (CXCR and CCR) [118, 120].

HIF-1α has been demonstrated to be stabilized in MM plasma cells, in hypoxic as in normoxic 
conditions [82, 83, 119, 121–123]. The constitutive stabilization of HIF-1α in myeloma cells is 
associated with the oncogenic c-Myc activity, suggesting that a common signaling pathway is 

active in MM plasma cells [122]. Among target genes controlled by HIF-1α, the genes coding for 
the pro-angiogenic cytokines VEGF, IL-8, and OPN have been evidenced, and HIF-1α silencing 
significantly suppresses the pro-angiogenic properties of MM cells reducing their secretion [87]. 

Moreover, MM endothelial cells from relapsed/refractory MM patients, but not those of newly 
diagnosed or non-active MM patients, showed a stabilization and activation of the HIF-1α pro-

tein in normoxic conditions [124]. This stabilization is induced by ROS and correlated with the 
expression of HIF-1α pro-angiogenic targets [124]. The inhibition of HIF-1α in MM plasma cells 
[123] as well as in endothelial cells [124] impaired the MM plasma cells/stromal cells communi-
cation, the angiogenesis-related functions, and revert bortezomib- and lenalidomide-resistance 

[123, 124]. It may also have prognostic significance because patients with MM endothelial cells 
expressing the stabilized HIF-1α protein had shorter overall survival [124].

The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine kinase that 
mediates intracellular metabolism, cell survival, and actin rearrangement. mTOR is made of 
two independent complexes, mTORC1, involved in protein synthesis and autophagy inhibi-
tion, and mTORC2, involved in progression promotion, survival, actin reorganization, and 
drug resistance [125–127]. In MM endothelial, a significantly higher activation of mTORC2 
have been demonstrated. Its inhibition induces a reduction of the angiogenic abilities of MM 

endothelial cells, suggesting a major role of mTORC2 in the “angiogenic switch” and indi-
cates that mTORC2 might be a new antiangiogenic target in MM [127].

In MM endothelial, cell-to-cell contact-dependent homotypic activation of Notch pathway 

has been shown [128, 129]. MM plasma cells cocultured with MM endothelial cells trigger 

Jagged1/2-mediated Notch activation enhancing endothelial angiogenic activity. Moreover, 
halting Notch axis reduces angiogenesis in vitro and in vivo suggesting Notch pathway as a 

novel therapeutic target in MM [129].

The ephrins (Efn) and their receptors (Eph), a large family of receptor tyrosine kinases, are 
involved in several biological processes including cancer growth, progression, and angiogen-

esis [130–133]. Caivano et al. [134] recently demonstrated that EphA3 is highly overexpressed 
in MM endothelial cells and its expression correlates with disease progression. They have also 
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defined the biological role of EphA3 in MM angiogenesis and their preliminary data indicate 
that EphA3 could represent an angiogenic target in patients with MM [134].

Focal adhesion kinase (FAK) is a tyrosine kinase that localizes at focal adhesion sites of endo-

thelial cell to the ECM [135–137]. It mediates signaling starting from integrin, is upregulated in 

many cancer types, controlling tumor aggressiveness, and metastasis [135], and is implicated 

in endothelial cell survival, proliferation, and migration [136, 137]. Integrin/FAK-mediated 
signaling cooperate with other growth factor receptor signaling (i.e. FGFR signaling) to pro-

mote angiogenesis in MM [138].

Various growth factor receptors induced an increase in DNA synthesis in MM endothelial 
cells by mean PI3K/Akt-MEK/ERK pathway inducing angiogenesis [17, 86, 138]. The role of 

this pathway in promoting angiogenesis is mainly related to the phosphorylation of eukary-

otic translation initiation factor 4E-binding protein 1 (4E-BP1), S6-kinase (S6K), and MAP 
kinase interacting kinase mediated by ERK [139, 140]. This process leads to an increased rate 

of mRNA translation into HIF-1α protein in an oxygen-independent way [139, 140]. ERK is 
also able to activate the transcription of HIF-1α by the co-activator CBP/p300 that increases 
HIF-1α/p300 complex formation [139, 140].

MicroRNAs are small endogenous non-coding RNAs (21–25 nucleotides) involved in regulat-
ing normal physiological processes as well as cancer pathogenesis [141–143]. Particularly, some 

miRNA have been implicated in tumor angiogenesis individuate as potential therapeutic targets/
therapy [143–145]. Evidence suggests that MM cells promote angiogenic activity via HIF-1α, a key 
transcription factor of hypoxia, leading to the overproduction of angiogenic cytokines [91, 104].  

Moreover, communication between plasma cells, stromal cells, and endothelial cells is medi-

ated also by mean the exosomes, small endosome-derived vesicles, containing a wide range 

of functional proteins, mRNA, and miRNA [146]. In BM of MM, miR-135b has been involved 
as the principal pro-angiogenic miRNA by targeting factor-inhibiting HIF-1 [147], whereas 

miR-199a-5p, which directly targets HIF1-α, miR-15a, and miR-16, and VEGF, have been 
demonstrated to be strong inhibitors of MM-induced angiogenesis [148, 149]. Overall, pub-

lished data indicate that circulating microRNAs in exosomes and microvesicles can be use-

ful biomarkers of angiogenesis, and synthetic miRNAs may be potential new antiangiogenic 
therapeutics tools in MM [150].

4. Antiangiogenesis in multiple myeloma

The combination of biological drugs in the actual therapeutic strategies of MM have improved 

the outcome of MM patients because of their activity on microenvironment [17, 151–153].

4.1. Proteasome inhibitors

Bortezomib, a potent, highly selective, and reversible proteasome inhibitor targeting the 26S 
proteasome complex [154, 155] act on key cellular processes, such as cell cycle progression, 

inflammation, immune surveillance, growth arrest, and apoptosis [154]. Bortezomib acts by 
mean the modulation of NF-κB transcription factor, which mediates the expression and secretion  
of cytokines, chemokines, cell adhesion molecules involved also in anti-apoptosis and  cellular 
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growth control [154–156]. After phosphorylation by IκB kinase, IκB is polyubiquitinated and 
degraded by the 26S proteasome, which allows p50/p65 NF-κB nuclear translocation and 
binding to consensus motifs in the promoter region of target genes [155, 156]. NF-κB regu-

lated also the expression of adhesion molecules, such as ICAM-1 and VCAM-1, on both MM 
cells and BM stromal cells [156], so, its inhibition downregulates these adhesion molecules 

favoring the susceptibility of MM plasma cells to therapeutic agents [156]. Moreover, NF-κB 
activation controls the production of IL-6 by BM stromal cells that increase production and 
secretion of VEGF-2 and FGF-2 from MM plasma cells [91]. By blocking NF-kB, bortezomib 
inhibits MM cell adherence to the BM stromal cells reducing MM cell growth and VEGF-2 and 
FGF-2 secretion [17, 91, 154, 155].

Bortezomib is directly cytotoxic on MM plasma cells by blocking proteasome activity that 
causes the accumulation of misfolded polyubiquitinated proteins and causes ROS produc-

tion [155, 156]. The accumulation of misfolded proteins in the endoplasmic reticulum triggers 

caspase-4 activation, and ROS accumulation causes disruption of membrane potential and the 
release of cytochrome c from mitochondria, and then the caspase-9 activation. These cytoplas-

mic alterations consequently, initiate the apoptotic cascades causing apoptosis of the cell [155, 

156]. Finally, bortezomib downregulates VEGF, IL-6, IGF-I, Ang-1, and Ang-2 production and 
secretion by MM plasma cells and BM stromal cells, targeting aberrant blood vessel develop-

ment through a potent inhibition of proliferation of activated endothelial cells [17, 154].

Ixazomib (MLN2238) is a second-generation proteasome inhibitor with a similar activity of 
bortezomib on the inhibition of NF-kB [157, 158]. It has been demonstrated that ixazomib affects 
BM stromal cells triggered MM cell growth and BM stromal cells-induced endothelial cell pro-

liferation suggesting that ixazomib not only directly targets MM plasma cells but also over-

comes the cytoprotective effects of the MM host BM microenvironment [158]. In fact, ixazomib 

is able to impact angiogenesis in vivo decreasing the expression of angiogenic markers in mice 

as well as in vitro reducing the capillary formation by HUVEC in the Matrigel™ system [159].

The antiangiogenic activity of another proteasome inhibitor, carfilzomib, has not been clearly 
demonstrated but it seems to have inhibitory activity on tumor-stromal interactions and angio-

genesis [137, 160]. Moreover, VEGF pathway polymorphisms have been associated with clinical 
outcomes in MM patients [161], and have been reported that polymorphisms of VEGF pathway 
are associated with response to the combination of carfilzomib and lenalidomide [162].

4.2. Immunomodulators (IMIDs)

Thalidomide, a first generation immunomodulatory drug (IMiD), has a direct tumoricidal 
activity, an antiangiogenic effect and modulates TNF-α signaling through direct and/or indi-
rect effects on the tumor microenvironment [15, 163–167], reduces FGF-2, VEGF, and IL-6 
secretion in BM stromal cells and by MM cells [163]. It also interferes with NF-κB activity by 
blocking its ability to bind to DNA abrogating inflammatory/angiogenic cytokine production 
[165, 166], and disrupts the direct interactions between MM plasma cells and BM stromal cells 
by modulation of cell surface adhesion molecules [167].

Two new IMiDs, including lenalidomide and pomalidomide, demonstrating up to 50,000 

times more potent inhibition of TNF-α than thalidomide, has been developed [168–170]. They 
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inhibit VEGF and FGF-2 secretion from both myeloma and BM stromal cells and block endo-

thelial cell migration and proliferation in vivo and in vitro [169]. Lenalidomide, a first deriva-

tive of thalidomide, is less toxic and more potent than the parent drug, and in patients with 

relapsed or refractory MM, lenalidomide can overcome resistance not only to conventional 

chemotherapy but also to thalidomide [169]. De Luisi et al. [170] demonstrated that lenalido-

mide inhibits angiogenesis and migration of MM endothelial cells and that lenalidomide-

treated MM endothelial cells show changes in VEGF/VEGFR-2 signaling pathway, and in 
several proteins controlling EC motility, cytoskeleton remodeling, and energy metabolism 
pathways. Both thalidomide and lenalidomide downregulate VEGF. Pomalidomide is a third 
generation IMiD with increased activity in vitro compared with thalidomide and lenalido-

mide [171, 172], which exerts anti-MM effects through multiple mechanisms, including induc-

tion of apoptosis via caspase-8, reduction of proliferation, inhibition of NF-κ B activation, 
reduction of stromal cell stimulatory cytokine secretion, and angiogenesis inhibition [172].

4.3. Bisphosphonates

The bisphosphonates are other compounds that, although originally used to reduce bone loss 

in MM due to an anti-osteoclast activity, have also been shown to have antiangiogenic activity 

[173–175]. In fact, zoledronic acid has a direct cytotoxic activity on tumor cells and suppresses 

angiogenesis, inhibits FGF-2- and VEGF-dependent proliferation of endothelial cells and inhibits 
VEGFR-2 in an autocrine loop [173]. It has also been demonstrated that the addition of zoledronic 

acid to antimyeloma therapy, bortezomib-, lenalidomide-, or thalidomide-based, is associated 

with a benefit in term of skeletal-related event rate as well as in term of the progression-free sur-

vival rate of myeloma patients [174]. Neridronate exerts its antiangiogenic activity through both 

a direct effect on endothelial cell proliferative activity and inhibitory effect on the responsivity of 
the endothelial cells to the proliferative stimuli mediated by angiogenic cytokines [175].

4.4. Monoclonal antibodies and other drugs

The most successful therapeutic approach to target VEGF in cancer is the use of a humanized 
monoclonal antibody against VEGF, bevacizumab [176]. Several clinical trials in MM tested 

the effects of bevacizumab used in conjunction with other agents including lenalidomide, 
dexamethasone, or bortezomib with discouraging results [177].

In addition to bevacizumab, other VEGFRs targeting compounds (including aflibercept-VEGF-
trap), tyrosine kinase inhibitors (cabozantinib, dasatinib, pazopanib, sorafenib, sunitinib, and 
semaxanib), PI3K/Akt-MEK/ERK pathway inhibitors, FAK inhibitors, interleukin inhibitors 
(atiprimod), farnesyltransferase inhibitors, other monoclonal antibodies (anti-CD40), and marine 
cartilage extract (neovastat) have shown antiangiogenic activity but no significant results or only 
preliminary preclinical data have been reported with the use of this drugs in MM [177–181].

5. Conclusions

Despite the good results obtained in the last decades, MM remains an incurable malignancy, 

indicating that our knowledge on the mechanisms responsible for disease progression and 
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drug resistance is still not completely clear. The goal obtained with the introduction of the 

new target drugs for MM therapy is the improvement of the outcome of MM patients in term 

of progression-free and overall survival. The simultaneous block of plasma cell proliferation 

and survival, plasma cells/BM stromal cells interaction, and BM stromal cells activity by the 
novel agents help us to get these results. In fact, the BM microenvironment plays a crucial role 
in the pathophysiology of MM. An active crosstalk between MM plasma cells and stromal 

cells in the BM of myeloma patients is constantly working. It represents a hallmark of active 
MM favoring survival, proliferation, and migration of plasma cells, and modulates neovessel 

formation by mean angiogenesis favoring the disease progression. The crosstalk between MM 

plasma cells and BM microenvironment is not only responsible for drug resistance of plasma 
cells but also of endothelial cells and other cells composing the microenvironment. The better 
understanding of the biological mechanisms controlling the interactions between MM cells 

and BM stromal cells remain fundamental for our knowledge about disease progression and 
for developing novel drugs targeting these processes.
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