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Abstract

The Earth’s surface deforms in response to earthquake fault dislocations at depth. Defor-
mation models are constructed to interpret the corresponding ground movements
recorded by geodetic data such GPS and InSAR, and ultimately characterize the seismic
ruptures. Conventional analytical and latest numerical solutions serve similar purpose but
with different technical constraints. The former cannot simulate the heterogeneous rock
properties and structural complexity, while the latter directly tackles these challenges but
requires more computational resources. As demonstrated in the 2015 M7.8 Gorkha, Nepal
earthquake and the 2016 M6.2 Amatrice, Italy earthquake, we develop state-of-art finite
element models (FEMs) to efficiently accommodate both the material and tectonic com-
plexity of a seismic deformational system in a seamless model environment. The FEM
predictions are significantly more accurate than the analytical models embedded in a
homogeneous half-space at the 95% confidence level. The primary goal of this chapter is
describe a systematic approach to design, construct, execute and calibrate FEMs of elastic
earthquake deformation. As constrained by coseismic displacements, FEM-based inverse
analyses are employed to resolve linear and nonlinear fault-slip parameters. With such
numerical techniques and modeling framework, researchers can explicitly investigate the
spatial distribution of seismic fault slip and probe other in-depth rheological processes.

Keywords: FEM, earthquake, deformation, inverse model

1. Introduction

With the wealth of geological and geodetic information accumulated around seismogenic zones

over the past decades, we are posed to ask: in what way we can unify and take advantage of

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



these data to study the earthquake hazard of those areas? The rate of interseismic creeping/slow

slip [1, 2], coseismic slip [3], and afterslip [4] are usually estimated with fault dislocation models

that predict surface deformation from in-depth fault slip motions. Customary analytical (Okada)

solutions analyze rectangular slip in an isotropic half-space [5] and serve as a good initial

approximation for inferring fault behaviors which are critical for assessing regional strain accu-

mulation related to seismic hazard [6, 7]. However, the more we study, the more we find that the

shallow part of the crust (especially the upper crust) is not as simple as, or even far beyond, a

uniform half-space (Figure 1) [8]. The major shortcomings of an Okada solution rest on its

assumptions of homogeneous crust (HOM) and a rectangular fault dislocation [5] which are

inadequate according to in situ geological observations [9]. Failure of simulating the realistic

crustal domain could induce fundamental uncertainties in predicting faulting-induced displace-

ments, which could propagate into the interpretations of related earthquake studies [10]. For

instance, we found that ignoring the heterogeneous crust (HET) in deformation models could

yield to considerable prediction errors when simulating seismic deformation of the 2015 Gorkha,

Nepal earthquake (Figure 1) [3]. This can be explained by the lateral and vertical material

variations across the epicentral area, which poses a technical challenge for conventional analyt-

ical solutions (Figure 1). The importance of HET has also been suggested by many other

colleagues. Hearn and Bürgmann [11] develop a finite element model for the 1999 Izmit Turkey

earthquake and show that the GPS-recovered seismic moment is up to 40% greater for models

incorporating depth-dependent shear modulus than it is for uniform elastic half-space models.

The corresponding Coulomb stress change in the lower crust is �300% larger than a model

domain using a homogenous shear modulus. They conclude that models of co-seismic ruptures

and postseismic viscoelastic relaxation associated with large strike-slip earthquakes should

Figure 1. (a) Topography-shaped FEM domain of the 2015 M7.8 Gorkha, Nepal earthquake. (b and c) Nearfield meshes

are refined within the central Himalayas [7]. Domain spatial distribution of (d) Young’s Modulus and (e) Poisson’s ratio

are derived from CRUST2.0 [34].
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incorporate depth-dependent elasticity, particularly for the triggering studies beneath the lower

crust. Williams and Wallace [12] build finite element models (FEMs) in conjunction with a New

Zealand-wide seismic tomography model to assign elastic properties. They find that these

heterogeneous models typically require �20% less slip than homogeneous models where the

slip is deep or there is reasonable geodetic coverage above the slipping region. In cases where the

slip is shallow (and mostly offshore) and there is little geodetic coverage directly above the

slipping region, the heterogeneous models can predict significantly larger amounts of slip

(�42%). These changes in the predicted magnitude of slip have important implications for

quantifying slip budgets accommodated by slow slip at subduction zones worldwide [12]. The

sensitivity of fault-slip solutions to HET is also demonstrated by Trasatti et al. [13] for the

2009 L’Aquila earthquake, showing up to 20% of discrepancy between Okada and FEM-based

heterogeneous solutions which reveal new fault-slip features near the epicenter. Tung et al. [3,

10] also find the co-seismic GPS displacements are significantly better recovered by a HETmodel

than a HOM model at the 95% confidence level. This model uncertainty is generally larger than

those inherited in the geodetic measurements. The advantages of using FEMs over analytical

solutions for simulating fault deformation are also exemplified among other earthquake studies

[3, 10, 13–25].

With the advancement of computation power, FEM and large data acquisition techniques such

as space geodesy, remote sensing, and imaging, we are now able to study the seismic activities

on large-scale tectonic plates across continents with unprecedented detail and precision. For

finite elastic deformation, elastoplastic analysis over a large domain, based on the Hellinger-

Reissner and the Hu-Washizu functionals, 3D solid enhanced assumed strain formulations are

among the most efficient and stable finite elements [26–35]. For high accuracy FE solutions

over complicated domains of curved boundary, however, we could also use quadratic solid

elements such as 10-node and 20-node tetrahedral elements, 20-node and 27-node hexahedral

elements, etc. [36, 37]. Such methods are demonstrably useful for simulating a variety of

complex science and engineering systems. Nonlinear contact problem of a hip joint is analyzed

using T4, T10, H8 and H20 elements [38]. Fluid-saturated, inelastic, pressure-sensitive porous

solid medium subjected to dynamic large deformation is analyzed by the mixed theory formu-

lation using solid quadratic H27 elements [39].

Following the advanced numerical simulations, much work has been done recently on the

deformation, stress distribution, faults, ruptures, dynamics, and wave propagation of tectonic

plates by FEMs. An elastic plane stress FEM incorporating realistic rock parameters was used to

calculate the stress field, displacement field, and deformation of the plate interactions in the

eastern Mediterranean [40]. A 3D FE model of �3000 hexahedral elements and nodes is set up

by Lu et al. [41] for the surface topology, major active fault zones and the stress field of the

Chinese continent to study the mechanism of the long-distance jumping migration over active

seismogenic areas. Shear zones are identified over regional-scale tectonic plates by 2D FEMs of

faults and boundaries of tectonic plates [42]. By means of cascaded FE simulations, glacial

isostatic adjustment is extended to investigate the relationship between glacial loading/

unloading and fault movement due to the spatial–temporal evolution of stresses [43]. Litho-

spheric pressure and density fields are determined by novel FEM-based gravity inversion which

is implemented within the open-source escript modeling environment [44]. Sophisticated 3D
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FEMs highlight that surface processes acting on normal-fault-bounded mountain ranges may

sustain fault slip formillions of years even after regional extension has stopped [45]. By combining

several datasets, a FEmodule was developed to estimate the gravitational potential energy of the

lithosphere and calculate stresses acting on the real (non-planar) geometry of African plate [46].

A 3D FEM is also employed to simulate the original co-seismic Coulomb stress patterns through

space and time as modified by post-seismic viscoelastic flow [47]. FEM-derived solutions are also

integrated into the regularized linear inversion of InSAR data over the volcano surface to image

the 3D deformation field and pressure distribution [48, 49].

Finite element generation is an important step for advancing 3D large-scale numerical model-

ing, as almost three quarters of the overall analysis time is devoted to mesh generation and the

related geometrical analysis. A comprehensive account of various mesh generation techniques

is described and discussed in the textbook “Finite Element Mesh Generation” by Lo [50]; and

in general, unstructured meshes are generated by the Delaunay triangulation, the advancing-

front approach and the quadtree/Octree techniques etc., whereas structured meshes of

hexahedral elements can be synthesized by some mapping and sweeping processes. Transition

quadrilateral and hexahedral elements [51] and universal connection hexahedral elements [52]

have also been developed for adaptive refinement analysis. However, in conjunction with the

popular mesh generation methods mentioned here, other techniques could also be employed

for specific applications to broad-scale earthquake problems. A full waveform inversion

method that incorporates seismic data on a wide range of space-temporal scales on both

crustal and upper-mantle structure is developed with the multi-grid FE scheme [53]. Further-

more, a non-conforming octree-based scheme on a fictitious domain for the numerical model-

ing of earthquake induced ground motion of realistic surface topology of the Earth’s crust was

presented by Restrepo and Bielak [54]. Other interdisciplinary examples are the adaptive multi-

material grids generated from image data for biomedical fluid–structure simulations [55], and the

conformal finite element/volume meshes derived from 3D measurements of the propagation of

small fatigue cracks [56].

2. Data

2.1. Seismic tomography

The propagation of earthquake waves is a function of rock material properties within the

crustal layer that hosts the waves [57]. These material properties alter the traveling velocities

of the P and S wave subjected to the local elastic rock properties. A tomography model refers to

a velocity model that describes a 3D distribution of P-wave velocity Vp, S-wave velocity Vs,

which is interchangeable with the spatial distribution of elastic moduli, namely, Young’s

Modulus E and Poisson’s ratio v, as formulated by [3, 10]:

E ¼

rV2
s 3V2

p � 4V2
s

� �

V2
p � V2

s

& v ¼

V2
p � 2V2

s

2 V2
p � V2

s

� � (1)
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In general, E increases as a function of depth, while v decreases in the deeper crust and

converges to 0.25 for mantle rocks [58] (Figure 1). It is noteworthy that the homogeneous

elastic half-space assumptions, which are commonly used in the models of earthquake defor-

mation [5], assume that these moduli are uniform in space and generally conflict with the

tomographic observation. Tung et al. [3, 10] quantifies the implications of ignoring seismic

tomography in elastic deformation models for the 2015 M7.8 Gorkha, Nepal earthquake

(Figure 1) and the 2016 M6.2 Amatrice, Italy earthquake. In these examples, over-simplifying

the relatively weak materials near the surface translates to substantial prediction errors of

InSAR and GPS signals. This underpins the necessity of modeling seismic deformation within

the HET domain of FEMs which are one of the few existing methods capable of simulating 3D

crustal rock heterogeneity.

2.2. Geodetic data

2.2.1. GPS data

The time series of Earth positioning are collected by thousands of GPS receiver stations using

radio-wave signals from the constellations of Global Positioning System (GPS) satellites

(Figure 2). Generally, these data provide a 3D displacement field of a station location with

uncertainties close to 1mmdepending the atmospheric noise andother dataprocessing errors [59].

Some GPS stations sample the ground positions continuously, while others are re-visited period-

ically through multiple surveying campaigns [11, 60]. Furthermore, some of the former become

able to provide real-time or near-real-time data feed with automatic data processing procedures

and web-based data sharing platforms, such as EarthScope-PBO-UNAVCO, USGS-NEIC and

NSF-Cascadia Initiative [19]. Continuous GPS sites record systematic positioning data and gener-

ally require more considerations such as sustainable power supply, data logging protocols and

Figure 2. Coseismic deformation of the 2015 M7.8 Gorkha, Nepal earthquake mapped by InSAR and GPS data [7].
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secure station design,while campaign-stylemeasurements rely onmore labor-intensive surveying

strategies and are of lower temporal resolution over a longer time period. The technical details of

GPS survey implementation are far beyond the scope of this work. For our purposes, we mainly

focus on GPS data to constrain the three-component displacement field before and after an

earthquake at given GPS stations (Figure 2).

2.2.2. InSAR data

In 1993, Massonnet et al. [61] presented the first Interferometric Synthetic Aperture Radar

(InSAR) image to map the displacement field of the 1992 Landers earthquake. This image is

derived from the changes in the phase distribution of radar scenes acquired respectively from

two separate satellite passes over the epicentral area. An InSAR image unfolds the LOS

displacement field that represents the difference between the positions of surface location at

the time of the second and first satellite passes. By comparing the differential radar phase

arrivals recorded before and after the earthquake, the spatial distribution of phase interference

estimates the displacements parallel to the look direction of the satellite in unwrapped InSAR

images (Figure 2). No information is available about the displacement between the two image

acquisition times. The technical details of InSAR processing are far beyond the scope of this

chapter, but aspects relevant to signal modeling are described here. The process of unwrapping

InSAR data is to integrate the spatial phase data to map the line-of-sight (LOS) displacements.

For our purposes, the obtained displacement field refers to that induced by earthquake dislo-

cations [61]. FEMs are designed to predict these unwrapped phase data and hence characterize

seismic sources [3, 10]. Moreover, InSAR observations are susceptible to artifacts caused by

atmospheric noises and mismodeled orbital effects [62]. The former can be avoided via reduc-

ing the temporal baseline separation between two satellite passes, while the latter can be

accounted for with linear inverse methods, as discussed in Section 4. Due to these artifacts,

each pixel of an InSAR image is not completely independent so that a data covariance matrix is

involved to empirically weight each pixel [63]. Alternatively, geospatial reduction techniques

such as quadtree decomposition may be applied to filter unwanted signals, account for covari-

ance and improve computational efficiency of matrix inversion.

2.3. Topography and bathymetry

Unlike the conventional HOM assumption [5], our FEMs and corresponding meshing regimes

are capable of calculating the fault deformation over surface topography [3]. This surface is

configured as a stress-free surface because we assume that there are only minimal normal

stress variations and shear resistance. It is well known that the shape of such free surface

affects deformation predictions, especially for tsunami modeling studies [64]. We can visualize

this aspect by considering how the calculated deformation field would be affected by the limiting

case of a vertical cliff near the rim of continental shelf. In this case, the ground surface is

orthogonal to the assumed flat surface of an HOM domain. Matsuyama et al. [65] underlines

the importance of including non-uniform topography and bathometry in fault deformation

model to assess the tsunami hazard and coastal impact upon tsunamigenic events. Subjected to

the ongoing tectonic movements and irregular structural settings, seismogenic/tsunamigenic
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zones usually attain a variable topography or bathymetry, which can be well accommodated by

our FEMs for better accuracy of source characterization and tsunami wave predictions (Figure 1)

[3, 66].

3. Model configurations

3.1. Domain and mesh configurations

Since FEMs are designed to simulate the crustal body of the seismogenic zone in a scale of few

tens to thousands of kilometers, one of the initial decisions is to define a particular model

coordinate system and units. A FEM is an assembly of numerous finite-volume elements

stitched together to form a broader modeling domain (Figure 1). Those elements may attain

different degrees of freedom (DOF) and geometry. For instance, a linear (p = 1) 4-node tetrahe-

dral T4 element having 4 vertices attains a DOF of 4, while a linear (p = 1) 8-node hexahedral

H8 element comprises 8 vertices and inherits 8 DOF. The latter could be further improved by

the enhanced assume strain to be very competitive in regular simple geometry and structural

shell problems. Furthermore, DOF applied to the solution variables may, for example, have 3

displacement components (DOF = 3) plus an additional pore pressure DOF. The meshing

schemes of these elements are generally divided into two main categories, namely, structured

meshing and free meshing. The former requires the meshes to be created according to a certain

degree of uniformity. The element orientation, volume and nomenclature are defined in a

structured manner, which is favorable for low-level modeling and solving procedures. On the

contrary, the latter loosens all these criteria to let mesh “fill up” the model domain with the

least number of elements. The choice of element type and meshing scheme heavily depends on

the nature of the problems researchers are going to resolve. When earthquake slip is along a

complex fault curvature, tetrahedral elements are preferred with regards to their smaller

interior angles and thus ability to effectively tessellate a sharply-turning geometry such as

listric faults and abruptly-changing topography (Figure 1). The prediction differences between

the tetrahedral and rectangular elements become negligible when the fault is planar and the

surface is flat. Given the same element-edge length and constant model domain, the tetrahe-

dral mesh aggregation usually contains more elements than the rectangular aggregation as the

volume of an individual tetrahedral element is smaller than that of a rectangular element.

Hence, the computational time is longer for the former. Similarly, the free meshing algorithm

allows more efficient and flexible tessellation of complex geometry than the structured

approach, requiring more computational power. The modeling accuracy could be further

boosted by incorporating quadratic elements (p = 2) instead of linear elements (e.g., T4 and H8).

Quadratic Tetrahedral T10 element, which is one of the most versatile elements for both

flexibility and accuracy, can fill up most complicated domains using an automatic mesh

generation scheme, while the corresponding hexahedral H20 element provides another accu-

rate formulation for simple geometry. As expect, using quadratic elements not only substan-

tially improves simulation accuracy but also increases the number of domain nodes and hence

computing time.

Finite Element Models of Elastic Earthquake Deformation
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This leads the researcher to cautiously consider a fundamental trade-off problem between the

FEM approximations and the limitations of the available computing resources. There might be

cases in which differences between 1Dmodel and a 2Dmodel are negligible for a smaller study

area. However, the computational time of model configuration and execution of a 3D domain

is at least several tens to thousands times longer than that of a 2D domain, depending on the

adopted meshing scheme and element/seed size. A 3D domain subjected to tetrahedral ran-

dommeshing with the largest number of elements is compensated by a maximum flexibility of

simulating the tectonic and lithospheric environment. For a given size of domain space, a large

number of smaller elements translates to larger solution matrix of algebraic operations that

may become numerical unfeasible when the computing time is too long or the calculation

process is non-accomplishable. Alternatively, a small number of larger elements satisfies a

smaller matrix problem that only requires nominal computing facilities, but at a cost of losing

precision to resolve the equations of elasticity. Thus, apart from a general adaptive refinement

analysis [3, 10], a common approach is to tessellate the near field region with a relatively

small element size which gradually increases near the far-field boundaries [3, 10, 62, 67]. This

radially-decaying meshing strategy satisfies the need for a refined resolution of nearfield areas

expected with a relatively higher strain gradient (Figure 1), while the far-field boundary

conditions are still connected numerically through large elements between the deformation

source (i.e., the earthquake fault(s)) and the outer lateral surfaces exhibiting relatively low

strain gradients. When installing the heterogeneous distribution of rock material into the

FEM domain, elements of similar elastic properties (similar values of E and v ideally with

respect to their integration points) are grouped into discrete element sets such that the entire

FEM is a representation of multiple element sets (Figure 1) [3, 10]. As such, the resolution of

rock heterogeneity is controlled by the element size as well as the discretization of elastic

parametric values. From our modeling experiences, we default the number of element set to

be about 100 for describing both regional and local crustal material variations (Figure 1).

3.2. Governing equations of elasticity

The governing equations regulate the physical behavior of a system. The governing equations

for the elastic materials in a heterogeneous domain are [5, 58]:

∂

∂xj
G xð Þ

∂ui
∂xj

þ
∂uj

∂xi

� �� �

þ
∂

∂xi
λ xð Þ

∂uk
∂xk

� �� �

δij ¼ 0 & δij ¼
0, i 6¼ j

1, i ¼ j

(

(2)

where x is a spatial component of coordinate axes x; u refers to the corresponding displace-

ment; G and λ are respectively the shear modulus and Lame’s parameter; δ is the Kronecker

delta; component indices i and j span over orthogonal axes 1, 2, and 3 for a 3D domain such

that x1, x2, and x3 are equivalent to Cartesian coordinates x, y, and z. The subscript k represents

summation over all these three components. These equations describe elastic behavior in a

domain comprising a spatial distribution of isotropic elastic material properties G and λwhich

can be derived from E and v [68]. Noting that when the elastic properties are taken outside of

the spatial derivatives, along with appropriate initial and boundary conditions, Eq. (2) is

reduced to the Navier formulation [69] and becomes a description of a HOM space that is
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commonly assumed in deformation models [5]. However, some seismogenic zones such as

subduction margins require localized complexity, or a distribution of material properties,

[G(x), λ(x)] or [E(x), v(x)]. As we incorporate seismic topographical data (e.g., CRUST2.0 [8])

into the calculation of rock material (Figure 1), Eq. (2) describes elastic behavior of a 3D elastic

domain inheriting a spatial distribution of isotropic elastic properties. If researchers want to

include elastic anisotropy, they can replace scalar elastic moduli by tensors. FEMs are, so far,

the best mathematical tool that satisfy these elastic equations over arbitrary crustal domains.

3.3. Loading conditions and kinematic constraints

The loading conditions can be viewed as the impulse that triggers the fault model to deform.

For our purposes of simulating fault-slip deformation and consistency with analytical solu-

tions, the loading conditions are assigned with a set of kinematic constraints developed by

Masterlark et al. [70]. The fault discontinuity in FEMs is meshed with multiple node pairs

which consist of two overlapping nodes sharing the same initial geographic location. A quasi-

static fault slip is applied to these node pairs by locally offsetting these two node members,

node n1 and n2 of each pair along the rake, θrake. The loading condition specifies the subfault

dislocation, ∆m, of each node pair through three equations of motion along the orthogonal

axes:

mn1
strike �mn2

strike ¼ ∆mstrike ¼ ∆m� cos θrakeð Þ (3)

mn1
dip �mn2

dip ¼ ∆mdip ¼ ∆m� sin θrakeð Þ (4)

mn1
normal �mn2

normal ¼ 0 (5)

where mn1
strike and mn2

strike refer the along-strike motion of node n1 and n2 respectively; mn1
dip and

mn2
dip are the along-dip motion of node n1 and n2 respectively; mn1

normal and mn2
normal denote the

fault-normal motion of node n1 and n2 respectively. The null fault-normal displacements of

Eq. (5) ensure the footblock and hanging block are welded together along the fault-normal axis

throughout the entire calculation. Non-slipping node pairs are constrained with ∆m ¼ 0 equiv-

alent to a welded condition. For the FEM of the 2016 M6.2 Amatrice, Italy earthquake [10], 665

node pairs are assigned to assemble the fault so that the loading conditions and kinematic

constraints contain �2000 equations of motion. The predicted earthquake deformation with

these equations are proved consistent with half-space analytical solutions.

4. Model calibration

The primary purpose of seismic source characterization is to resolve the spatial and temporal

distribution of fault dislocations during earthquakes. Fault deformation models reveal funda-

mental elastic behavior of fault slip to interpret the observed quasi-static earthquake displace-

ments. Geodetic data that map the surface deformation of an earthquake, are used to quantify

the slip directionality, θrake and magnitude, ∆m of each subfault node (Figure 3) [63, 70]. These
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data are regarded as the calibration targets, while the slip parameters are deemed as calibra-

tion parameters. To implement, the calibration procedure involves both forward modeling and

inverse modeling [71]. The former yields predictions with respect to a particular input slip

pattern, where the latter calibrates the pattern retroactively by fitting the geodetic observations

[71]. The forward model is an essential component for inverse modeling as it signifies the

deformation field induced by each individual subfault of an earthquake rupture (Figure 3)

[3, 10]. Characterizing an earthquake source from the coseismic deformation field first involves

finding the fault location, orientation and eventually the detailed slip distributions (Figure 3)

[10]. The choice of calibration parameters strongly depends on the availability of data con-

straints and background information. Well-studied earthquakes having more data warrant

more calibration parameters than those having relatively sparse information. There are some

calibration parameters (e.g., ∆m) which change linearly with the calibration data (e.g., u), while

others (e.g., fault strike, dip and depth) vary nonlinearly with the geodetic data. For instance,

doubling the slip magnitude doubles the ground movement observed in the data, whereas

doubling the depth or dip of an earthquake fault of a constant slip magnitude does not double

the resulting surface deformation [5]. The former could be easily calibrated via matrix inver-

sion methods [71], while the latter necessitate exclusive sampling of a multidimensional

nonlinear parameter space [10]. In particular, the latter require exponentially more samples

when the loading entity has to be adequately characterized by a large number or DOF of

nonlinear parameters. The number of random samples required to explore a suite of nonlinear

parameters, thus, depends on the degree of nonlinearity and the algorithmic efficiency of

stochastic optimization. A rule of thumb could start from bisecting the parametric space. For

instance, a model of 7� of freedommay requires 27 = 128 samples for each iteration of stochastic

sampling [10]. While experience plays an important role in selecting a specific suite of

nonlinear parameters, the calibration process and its solution convergence quantitatively con-

trol the precision of these calibration parameters [10]. The details are described in the following

paragraphs.

Figure 3. Linear inversion of coseismic displacements observed by GPS and InSAR data for a subfault-slip distribution.
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4.1. Forward model

The predicted three-component displacement, di, for location i due to the slip,mj of subfault, j, is:

di ¼ Gij mj (6)

where di is a three-component displacement vector [dx,i, dy,i, dz,i]
T; mj is a two-component slip

vector [mdip_slip,j, mstrike_slip,j]
T; the superscript T denotes the matrix transpose operator; Gij is the

unit-slip-displacement Green’s function between location i and subfault j based on the FEM

predictions of unit fault slip embedded in a domain having a specified distribution of material

properties (Figure 1). Note that the deformation is a linear function of slip and nonlinear

function of the fault location, dip and strike as well as the distribution of domain materials.

The LOS displacement, dLOS,i for the ith InSAR pixel is a linear combination of contributions

from the fault slip and a plane shift:

dLOS, i ¼ di V i
T
þ p1xi þ p2yi þ p3 (7)

where Vi is the line-of-sight (LOS) unit vector of the ith InSAR pixel; pi are coefficients of a plane

to account for the plane-shift displacements attributed to errors in modeling orbital effects [62].

The generalized matrix formulations for Eqs. (6) and (7) are respectively:

d ¼ G m&dLOS ¼ G VT
; x; y; 1

� 	

m; p1; p2; p3
� 	T

(8)

where d is the column vector of displacement data;G is the integrated Green’s functionmatrix;m

is the slip vector; dL is the InSAR data column vector;V is the LOS unit column vector; x and y are

the pixel location column vectors; 1 is a unity vector; The complete data vector that includes both

GPS and InSAR data could be constructed by appending the matrices given in Eq. (8).

4.2. Inverse model

The common goal of inverse model is to estimate the calibration fault parameters based on the

observed seismic data. While recognizing that a forward model is the linkage between the

calibration data and the calibration parameters, inverse models step forward to optimize the

calibration parameters and minimize the prediction errors against the calibration data. As

mentioned above, those linear and non-linear calibration parameters are analyzed differently

based their relations with the earthquake deformation. Our FEMs primarily contribute to the

calculation of the Green’s function matrix, G (Eq. (8)), depending on the characteristic model

configurations that may include nonlinear calibration parameters. Variations of the nonlinear

calibration parameters typically exert asystematic and non-systematic influence on G, whereas

those of linear calibration parameters multiply matrix entries with a constant factor.

4.2.1. Linear inverse analysis

With the consideration of both strike-slip (ss) and down-dip (dd) component, a complete

Green’s function matrix becomes G = [Gdd, Gss]
T and has dimensions of 2 M x N, given there
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are M dislocating nodes-pairs (within the fault-slip region) and N displacement data points.

Similarly, the dislocation vector has dimensions of 2 M so that m = [mdd, mss]
T. Given m is a

vector representing M dislocating nodes-pairs and d is a vector of N displacements, the under-

determined problem of linear inversion (when 2 M > N) always poses non-unique solutions of

fault-slip models (Figure 3). Elastic dislocation problems for multiple slip patches generally have

both over- and under-determined aspects - a given patch influences all data, and each datum

constrains all patches. A physical solution can be hence resolved by simultaneously [71]: 1)

estimating the slip distribution that minimizes misfit to geodetic data, 2) damping spurious

solution oscillations, and 3) accounting for the uncertainties of geodetic data. To do so, first, we

pre-multiply Eq. (6) by a weight matrix,W to account for the geodetic data uncertainties [71]:

WGm ¼ Wd ¼ Gwm ¼ dw & Wij ¼
1=σj

0

if i ¼ j

if i 6¼ j

(

(9)

where W is an N x N weight matrix formulated from the reported 1-sigma uncertainties of

geodetic measurements, σ. σj is the uncertainty of the jth element of d. Alternatively, W can be

derived from data covariance matrix, Cd = (W
T
W)

�1 through Cholesky decomposition.

Neglecting the data uncertainties implies that Cd and W are an identity matrix, for which the

uncertainties and weights are unity for all data. Second, we can reconfigure Eq. (9) using

second-order Tikhonov Regularization to damp the null space of the data kernel (smooth the

fault-slip distribution, m) by:

Gw
TGw þ β2LTL


 �

m ¼ Gw
Tdw&L¼

Ldd 0

0 Lss

� �

(10)

where L is a 2 M x 2 M matrix of damping. For curved fault configurations, L is literally

substituted by the global conductance matrix, LGCM referring to finite element approximation

of Laplacian operator, ∇2m = 0 [10, 17]. This global conductance matrix, LGCM is the only

mathematical tool to impose Laplacian regularization over slip locations of irregular fault

geometries, for example, associated with the 2015 M6.2 Amatrice, Italy earthquake [10]. Using

such Laplacian operator for smoothing allows us to conveniently impose and test Dirichlet

(null; x = 0) and/or Neumann (∂m/∂x = 0) specifications along the boundaries of the rupture

surface [10]. With desired geodetic points, d, the Green’s function matrix, G, and the global

conductance matrix, LGCM and weight matrix, W all essential components of the slip inversion

are ready in Eq. (10) to solve the least-squares solution of m (Figure 3):

m ¼ Gw
T
Gw þ β2LGCM

TLGCM


 ��1
Gw

T
dw (11)

where β is the regularization parameter controlling the tradeoff between minimizing misfit,

ew
T
ew (given ew = dw-Gwm) and satisfying ∇

2
m = 0 [71]. Some other workers recast the linear

inversion through a Bayesian method to arrive at a physical solution, m [2, 72]. A Markov-

chain Monte Carlo (MCMC) method is used to sample numerous combinations of subfault

slips, mi, and smoothing coefficient, βi (and possibly relative data weights, αi) to create poste-

rior probability density functions which in terms provide estimates of the above parameters
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[72]. The uncertainty of the calibration parameters is characterized by the parameter covari-

ance matrix, Cm [71]:

Cm ¼ Gw
T
Gw


 �

�1
Gw

T
dwGw Gw

T
Gw


 �

�1
(12)

Eqs. (11) and (12) provide a mechanism for providing estimates of central tendency and

uncertainties for linear calibration parameters, in a way that accounts for the data uncer-

tainties. From the 2015 M7.8 Gorkha, Nepal earthquake, the HOM domain without consider-

ing heterogeneous rock properties in calculating G significantly degrades the fidelity of

predicted GPS displacements beyond the data uncertainties (Figure 3), suggesting that a HET

FEM domain is necessary for improving model predictions [3].

4.2.2. Nonlinear inverse analysis

This procedure is specially designed for nonlinear deformational parameters such as fault

location, width, length, dip and strike to quantify the geometry and location of earthquake

rupturing faults. As such, nonlinear inverse analyses are always conducted before the

inverting for linear fault-slip parameters [10]. The solutions of those nonlinear parameters then

later influence the accuracy of the linear slip solutions. For instance, uncertainties in fault dip

propagate into the magnitude of subfault slip components such that a larger dip mistakenly

resolved by the nonlinear analysis gives rise to larger slip magnitude predicted by the linear

solutions. The nonlinear inverse method constitutes perturbing a nonlinear parameter and

examining its impact on G with numerous forward model predictions. The ultimate goal of

such analysis is to resolve a set of nonlinear parameters that minimizes ew
T
ew [10]. There are

many different sampling approaches, including classical grid search and probabilistic random

search [73]. The former conducts the parameter search over a predefined grid to find an

optimal solution [63]. However, this strategy is usually biased by the researcher’s expectations

and achieves a poor solution resolution. On the contrary, the probabilistic type of Monte Carlo

sampling randomly perturbs the solutions of a nonlinear parameter with more sophisticated

and dynamic sampling strategies [10]. These regimes require re-computation of G upon each

suite of sampled parameters, and hence is more applicable to the earthquake models with few

(e.g., less than 10) calibration parameters. Directed stochastic sampling methods such as Monte

Carlo Markov Chain (MCMC) and Monte Carlo Simulated Annealing (MCSA), combine the

effectiveness of gradient methods and adaptive random sampling to calibrate nonlinear fault

parameters of earthquake sources [10].

In the 2016 M6.2 Amatrice, Italy earthquake (AE), Tung et al. [10] used the MCSA method to

calibrate a few thousands of nonlinear parameters in FEM-based models of seismic deforma-

tion (Figure 4). In particular, both a planar and listric dislocation are examined through a series

of nonlinear analysis to invert the InSAR data obtained by ESA Sentinel-1 A/B and JAXA

ALOS-2 satellite, assuming a uniform slip distribution. On one hand, seven nonlinear param-

eters, namely, fault dip, δ, strike, ϕ, length, L, width,W, and fault-center location, [xc, yc, zc] are

used to designate the geometry and location of a planar fault (Figure 4) [10]. On the other hand,

the listric fault geometry is constrained by a set of 6 parameters, namely, listric parameter,

[a, b], locking depth, Dm, fault horizontal width, Hx, fault length, L and fault location, xc [10].
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Once these geometric parameters are fixed, the planar and listric models of distributed

coseismic slip can then be derived linearly (Figure 5). The nonlinear analysis searches through

a few thousands of uniformly-slipping fault models to minimize the weighted error misfit

ew
T
ew. This MCSA method combines simulated annealing [74] and nested Monte Carlo

method [73] to search for a set of fault parameters that minimize ew
T
ew. The cooling schedule

of the MCSA algorithm is described by

Ti ¼ To
N � i

N

� �k

þ Toωmin (13)

vpi ¼
Ti

To

� �kp

þ vpmin

" #

vbounded_range (14)

where To and Ti refer to the temperature of initial step and ith step (0,1,2,…N-1) respectively; ωmin

denotes the scaling factor of minimum temperature, Tmin ≈ωminTo,N is number of iteration (step);

Figure 4. Solution convergence of resolving a planar source geometry in a HOM and HET domain for the 2016 M6.2

Amatrice, Italy earthquake [22]. The configurations of a planar dislocation specified by (a) width, (b) length, (c) dip, (d) strike

and (e, f and g) the location of fault center [xc, yc, zc] are optimized by minimizing (h) the model misfit, χ2 between the

predicted and observedLOSdisplacements. The samples overHOMandHETare denoted as grayand black dots respectively,

while the solution convergence is denoted by blue and red lines respectively. The brackets denote the 1-sigma parameter

range. TheHETsolution yielding smallermisfit ismore compatiblewith the faultmodel (yellow dashed line) suggested by [5].
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Vpi refers to the pth parameter’s search range in the ith step; Vpmin and Vbounded_range are the last-

step scaling factor and the bounded parameter range of the pth parameter respectively; k and kp
respectively indicate the cooling/decaying coefficient of temperature and the search range of the

pth parameter. The cooling schedule Ti is an array of decreasing number/temperature guiding the

search of parameter at each step as well as the solution precision (Figure 4). Sharply changing

(larger k and kp) schedules narrows down the search range earlier, and allow the solutions to

converge more rapidly. The unique advantage of MCSA over other Bayesian approaches like

MCMC is its effectiveness of searching for the global optimal solution over the local minima of

the model misfit. Its resistance to local minima is reinforced by acceptance criteria:

χ
2
i < χ

2
i�1 (15)

e� χ
2
i
�χ

2
i�1ð Þτ=Ti > r (16)

where χ2
i and χ

2
i�1 refer to the mean error of the ith step and i-1th step respectively; r denotes a

random parameter between 0 and 1; τ is a normalization factor. The criterion described in Eq. (15)

always accepts a better solution of the subsequent step, while the criterion in described Eq. (16)

accepts aworse solution onlywhen themisfit discrepancy, χ2
i � χ

2
i�1 between the subsequent steps

is small. The cooling schedule Ti is initially designed with a MCMC analysis that does not include

the acceptance criteria described in Eqs. (15) and (16).We then retrospectively fine-tune the cooling

schedule and the acceptance criteria in a manner until a consistent solution is obtained. A general

principle ofMCSA is fix the values ofTi and τ so that the initial few steps are able to escape the local

minima and arrive at a desired solution precision after all calculation steps (Figure 4).

5. Conclusions

The innovative modeling protocols of FEMs are developed to satisfy the need of simulating

realistic elastic earthquake systems. By taking advantage of the increasingly data availability

of seismic and tomographic studies, complex fault geometry and distributed rock materials

are revealed especially within the upper crust. The customary half-space models of fault

deformation, which assume a homogeneous domain and rectangular dislocations, cannot fully

Figure 5. 3D representation of slip distributions resolved for the 2016 M6.2 Amatrice, Italy earthquake over a (a) planar

and (b) listric fault [22].
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account for such shallow-crust complexity and hence induce prediction uncertainties when

imaging earthquake sources with geodetic observations. New generations of fault model are

fashioned in the framework of finite elements such that arbitrary lithological and structural

heterogeneity can be accommodated when modeling seismic ruptures, which is particularly

essential for earthquake locations of drastically changing lithology such as subduction mar-

gins. The modeling results of FEMs are found significantly more accurate than those of the

conventional analytical solutions in nonlinear fault-geometry analyses and linear inversion for

detailed slip distributions. This chapter, for the first time, describes the basic principles of

constructing a sophisticated FEM for modeling elastic dislocation and elaborate how other

auxiliary geophysical and geodetic data can be fed into the numerical domain and associated

inverse analyses respectively. The resolution of governing equations and the corresponding

validations are also discussed to ensure the reliability of the proposed FEM method. The

modeling capacities of FEMs can further be extended beyond to simulate earthquake-induced

poroelastic [75, 76] and viscoelastic [77] coupling processes which render physical mechanisms

of triggering aftershocks and post-seismic surface deformation, summarizing the exceptional

advantages of using FEMs for a wide range of earthquake research.
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