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Abstract

The human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine 
kinase receptor protein. HER2 gene amplification and receptor overexpression, which 
occur in 15–20% of breast cancer patients, are important markers for poor prognosis. 
Moreover, HER2-positive status is considered a predictive marker of response to HER2 
inhibitors including trastuzumab and lapatinib. Therefore, reliable HER2 determination 
is essential to determine the eligibility of breast cancer patients to targeted anti-HER2 
therapies. In this chapter, we aim to illustrate important aspects of the HER2 receptor as 
well as the molecular consequences of its aberrant constitutive activation in breast cancer. 
In addition, we will present the methods that can be used for the evaluation of HER2 
status at different levels (protein, RNA, and DNA level) in clinical practice.

Keywords: breast neoplasm, oncogene, tyrosine kinase receptor, molecular oncology, 
HER2 status, HER2 inhibitors

1. Introduction

Breast cancer is the most frequently diagnosed cancer among women worldwide, affecting 
over 1.5 million women each year. In 2015, it is estimated that worldwide 500,000 women 
have died from this malignancy, which represents 15% of all cancer-related deaths among 
women [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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It is now well recognized that breast cancer comprises a heterogeneous group of diseases in 

term of differentiation and proliferation, prognosis and treatment. Over the past decades, 
microarray-based gene expression studies have allowed the identification of breast cancer 
intrinsic subtypes [2–4]. One of these subtypes is the so-called human epidermal growth fac-
tor receptor 2 (HER2)-enriched subtype. HER2 is a transmembrane tyrosine kinase receptor 
[5]. This protein is encoded by the HER2 gene, which is located on the long arm of chromo-
some 17 (17q12–21.32) [6]. The HER2-enriched subtype is characterized by high expression of 
HER2 and other genes of the 17q amplicon, including growth factor receptor bound protein 
7 (GRB7), and low to intermediate expression of luminal genes such as Estrogen Receptor 1 
(ESR1) and Progesterone Receptor (PGR) [7]. Clinically, HER2-positive breast cancer occurs 
in 15–20% of breast cancer patients and is characterized by the overexpression of the HER2 
receptor and/or HER2 gene amplification [8]. HER2-positive breast cancer patients have a 
particular worse prognosis. Importantly, HER2-positive breast cancer patients are eligible 
to receive targeted treatment with trastuzumab, a monoclonal antibody specifically directed 
against the HER2 receptor [9]. Trastuzumab treatment, in combination with chemotherapy, 
improves the outcome of early [10, 11] and metastatic [12, 13] HER2-positive breast cancer 
patients. The US Food and Drug Administration (FDA) approved trastuzumab for the treat-
ment of metastatic HER2-positive breast cancer patients in 1998 and for the treatment of early 
HER2-positive breast cancer patients in 2006. Lapatinib is a small-molecule inhibitor of the 
intracellular tyrosine kinase domain of both HER2 and EGFR receptors [14]. Lapatinib has 
received FDA approval in 2007 as combination therapy with capecitabine for the treatment 
of patients with HER2-positive advanced breast cancer patients who had progressed on 
trastuzumab-based regimens [15]. Although anti-HER2 agents are generally well tolerated, 
trastuzumab administration has been associated with cardiac side effects, especially when 
used in combination with anthracyclines [16].

HER2 plays a significant role in breast cancer pathogenesis. It is therefore essential to under-
stand the biology of this receptor in order to better treat HER2-positive breast cancer patients. 
Evaluation of HER2 status in breast cancer specimens raises several technical considerations. 
In the last decades, several methods have been developed for HER2 assessment. In this article, 
we will review important aspects of the HER2 biology and its relevance in breast cancer and 
present the techniques that are used in clinical practice for the determination of HER2 status 

in breast cancer specimens.

2. HER2 biology and methods of assessment of HER2 status

2.1. HER2 receptor

The HER2 receptor is a 185 kDa transmembrane protein that is encoded by the HER2 (also 

known as erb-b2 receptor tyrosine kinase 2 [ERBB2]) gene, which is located on the long arm of 
chromosome 17 (17q12–21.32) [6]. HER2 is normally expressed on cell membranes of epithe-
lial cells of several organs like the breast and the skin, as well as gastrointestinal, respiratory, 
reproductive, and urinary tract [17]. In normal breast epithelial cells, HER2 is expressed at 
low levels (two copies of the HER2 gene and up to 20,000 HER2 receptors) [18], whereas in 
HER2-positive breast cancer cells, there is an increase in the number of HER2 gene copies 

(up to 25–50, termed gene amplification) and HER2 receptors (up to 40 to 100 fold increase, 
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termed protein overexpression), resulting in up to 2 million receptors expressed at the tumor 
cell surface [19]. Besides breast cancer, HER2 overexpression has also been reported in other 
types of tumors, including stomach, ovary, colon, bladder, lung, uterine cervix, head and 
neck, and esophageal cancer as well as uterine serous endometrial carcinoma [20].

2.1.1. HER2 structure and function

HER2 belongs to the epidermal growth factor receptor (EGFR) family. This family is com-
posed of four HER receptors: human epidermal growth factor receptor 1 (HER1) (also termed 

EGFR), HER2, human epidermal growth factor receptor 3 (HER3), and human epidermal 
growth factor receptor 4 (HER4) [5].

HER family members are transmembrane receptor tyrosine kinases. Tyrosine kinases are 

enzymes that carry out tyrosine phosphorylation, namely the transfer of the γ phosphate of 
adenosine triphosphate (ATP) to tyrosine residues on protein substrate [21].

HER receptors share a similar structure. They are composed of an extracellular domain (ECD), 
a transmembrane segment and an intracellular region [22]. The ECD domain is divided into 
four parts: domains I and III, which play a role in ligand binding, and domains II and IV, 
which contain several cysteine residues that are important for disulfide bond formation [23]. 

The transmembrane segment is composed of 19–25 amino acid residues. The intracellular 

region is composed of a juxtamembrane segment, a functional protein kinase domain (with 
the exception of HER3 that lacks tyrosine kinase activity [24] and must partner with another 

family member to be activated [25]), and a C-terminal tail containing multiple phosphoryla-
tion sites required for propagation of downstream signaling [23]. The catalytic domain con-
tains the ATP binding pocket, a conserved site essential to ATP binding [26].

HER receptors are activated by both homo- and heterodimerization, generally induced by 
ligand binding [27]. This suggests that HER receptor family has evolved to provide a high 
degree of signal diversity [28]. The cellular outcome produced by HER receptors activation 
depends on the signaling pathways that are induced, as well as their magnitude and duration, 
which are influenced by the composition of the dimer and the identity of the ligand [28].

Several growth factor ligands interact with the HER receptors [29]. HER1 receptor is activated 
by six ligands: epidermal growth factor (EGF), epigen (EPG), transforming growth factor α 
(TGFα), amphiregulin, heparin-binding EGF-like growth factor, betacellulin and epiregulin. 
HER3 and HER4 receptors bind neuregulins (neuregulin-1, neuregulin-2, neuregulin-3, and 
neuregulin-4). HER2 is a co-receptor for many ligands and is often transactivated by EGF-
like ligands, inducing the formation of HER1-HER2 heterodimers. Neuregulins induces the 
formation of HER2-HER3 and HER2-HER4 heterodimers [29]. However, no known ligand can 
promote HER2 homodimer formation, implying that no ligand can bind directly to HER2 [30].

The structural basis for receptor dimerization has been elucidated in recent years through 

crystallographic studies [31, 32]. Dimerization is mediated by the dimerization arm, a region 
of the extracellular region of HER receptors. While in its inactivated state the dimerization 
arm of EGFR, HER3 and HER4 is hidden, ligand binding induces a receptor conformational 
change leading to exposure of the dimerization arm [31]. In contrast to the other three HER 

receptors, the dimerization arm of the HER2 receptor is permanently partially exposed, thus 
permitting its dimerization even if the HER2 receptor lacks ligand-binding activity [32].
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Interaction between the dimerization arms of two HER receptors promotes the formation of 

a stable receptor dimer in which the kinase regions of both receptors are closed enough to 

permit transphosphorylation of tyrosine residues, i.e. the transfer of a phosphate group by a 
protein kinase to a tyrosine residue in a different kinase molecule [33, 34]. The first member 
of the dimer mediates the phosphorylation of the second, and the second dimer mediates the 
phosphorylation of the first [23].

The phosphorylation of specific tyrosine residues following HER receptor activation and the 
subsequent recruitment and activation of downstream signaling proteins leads to activation 
of downstream signaling pathways promoting cell proliferation, survival, migration, adhe-
sion, angiogenesis and differentiation [35]. The Phosphatidylinositol 3′-kinase (PI3K)-Akt 
pathway and the Ras/Raf/MEK/ERK pathway (also known as extracellular signal-regulated 
kinase/mitogen-activated protein kinase (ERK/MAPK) pathway) are the two most important 
and most extensively studied downstream signaling pathways that are activated by the HER 
receptors [5, 36]. These downstream signaling cascades control cell cycle, cell growth and 
survival, apoptosis, metabolism and angiogenesis [37, 38]. Signaling from HER receptors is 

then terminated through the internalization of the activated receptors from the cell surface 
by endocytosis. Internalized receptors are then either recycled back to the plasma membrane 

(HER2, HER3, HER4) or degraded in lysosomes (HER1) [39, 40].

HER heterodimers produce more potent signal transduction than homodimers. This can be 

explained by the fact that heterodimerization provides additional phosphotyrosine residues 
necessary for the recruitment of effector proteins [28]. Heterodimerization follows a strict 

hierarchical principle with HER2 representing the preferred dimerization and signaling 

partner for all other members of the HER family [41]. HER2 seems to function mainly as a 

co-receptor, increasing the affinity of ligand binding to dimerized receptor complexes [42, 
43]. HER2 has the strongest catalytic kinase activity [41] and HER2-containing heterodimers 
produce intracellular signals that are significantly stronger than signals generated from other 
HER heterodimers [44]. The HER2-HER3 heterodimer in particular exhibits extremely potent 
mitogenic activity through the stimulation of the PI3K/Akt pathway, a master regulator of 
cell growth and survival [45]. Furthermore, HER2 containing heterodimers have a slow rate 
of receptor internalization, which results in prolonged stimulation of downstream signaling 
pathways [28]. HER2 can also be activated by complexing with other membrane receptors, 
such as Insulin-like growth factor I receptor (IGF-1R) [46].

2.1.2. Consequences of constitutive HER2 receptor activation

Whereas in normal cells the activity of tyrosine kinases is a tightly controlled mechanism, 
in cancer cells, alterations in tyrosine kinases—overexpression of receptor tyrosine kinase 
proteins, amplification or mutation in the corresponding gene, abnormal stimulation by auto-
crine growth factors loop or delayed degradation of activated receptor tyrosine kinase—lead 
to constitutive kinase activation and therefore to aberrant cellular growth and proliferation 
[34, 47]. Constitutive activation of HER1, HER2, HER3, IGF-1R, Fibroblast growth factor 
receptor (FGFR), c-Met, Insulin Receptor (IR), Vascular Endothelial Growth Factor Receptor 
(VEGFR), Jak kinases and Src have been associated with human cancer [34, 48–52].
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Several ways of aberrant activation of HER receptors have been described, including ligand 
binding, molecular structural alterations, lack of the phosphatase activity, or overexpression 
of the HER receptor [53].

In HER2-positive tumors, receptor overexpression has been identified as the mechanism of 
HER2 activation. The increased amount of cell surface HER2 receptors associated with HER2 
overexpression leads to increased receptor-receptor interactions, provoking a sustained tyro-
sine phosphorylation of the kinase domain and therefore constant activation of the signaling 
pathways. HER2 overexpression also enhances HER2 heterodimerization with HER1 and 
HER3 [54] resulting in an increased activation of the downstream signaling pathways. It has 
also been shown that HER2 overexpression leads to enhanced HER1 membrane expression and 
HER1 signaling activity through interference with the endocytic regulation of HER1 [54–56]. 

While HER1 undergoes endocytic degradation after ligand-mediated activation and homodi-
merization, HER1-HER2 heterodimers evade endocytic degradation in favor of the recycling 
pathway [57, 58], resulting in increased HER1 membrane expression and activity [55, 56, 59].

It has also been reported that HER2 overexpression enhances cell proliferation through the 
rapid degradation of the cyclin-dependent kinase (Cdk) inhibitor p27 and the upregulation of 
factors that promote cell cycle progression, including Cdk6 and cyclins D1 and E [60].

Several methods have been developed for the assessment of HER2 status in breast cancer 
specimens, at the protein level, DNA level, and RNA level. Here below, we present some of 
the existing techniques that are used for the HER2 determination in clinical practice.

2.2. Methods for the evaluation of HER2 status in breast cancer specimens

2.2.1. HER2 status evaluation at the protein level

2.2.1.1. Immunohistochemistry (IHC)

IHC allows the evaluation of the HER2 protein expression in formalin-fixed, paraffin-embedded 
(FFPE) tissues using specific antibodies directed against the HER2 receptor protein [61]. HER2 

receptor is then visualized with the chromogen 3,3′-diaminobenzidine tetrahydrochloride (DAB) 
resulting in a brownish membranous staining. Several commercially available diagnostic tests 
for the determination of HER2 expression have been approved by the FDA: the HercepTest™ kit 
(DAKO, Glostrup, Denmark), the InSite™ HER2/neu kit (clone CB11; BioGenex Laboratories, 
San Ramon, CA), the Pathway™ kit (clone 4B5; Ventana Medical Systems, Tucson, AZ), and the 
Bond Oracle HER2 IHC System (Leica Biosystems, Newcastle, UK).

By this method, it is possible to estimate the number of cells showing membranous stain-
ing in the tissue section as well as the intensity of the staining [62]. Membranous staining 

in the invasive component of specimen is scored on a semi-quantitative scale. According to 
the American Society of Clinical oncology (ASCO) and the College of American Pathologists 
(CAP) recommendations for HER2 testing in breast cancer published in 2013, HER2 expression 
is scored as 0 (no staining or weak/incomplete membrane staining in ≤10% of tumor cells), 1+ 
(weak, incomplete membrane staining in >10% of tumor cells), 2+ (strong, complete membrane 
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staining in ≤10% of tumor cells or weak/moderate and/or incomplete membrane staining in 
>10% of tumors cells) or 3+ (strong, complete, homogeneous membrane staining in >10% of 
tumor cells) [61]. In clinical practice, HER2 immunohistochemical status is evaluated as nega-
tive if the immunohistochemical score is 0 or 1+, equivocal is the score is 2+, and positive if the 
score is 3+. Patients with a positive HER2 status at the IHC are eligible for targeted therapy 
with HER2 inhibitors. The IHC 2+ category is considered borderline and confirmatory testing 
using an alternative assay (fluorescence in situ hybridization (FISH) or other in situ hybridiza-
tion (ISH) methods, see Section 2.2.2) is required for final determination.

IHC is an easy and relatively inexpensive method [63]. However, this technique can be 
affected by numerous factors, including warm/cold ischemic time [64], delay and duration of 
fixation [65], and antibody used [66, 67]. Moreover, since the interpretation of results is based 
on semiquantitative scoring, this technique is prone to interobserver variability and therefore 
to substantial discrepancies in the IHC results, particularly for cases scoring 2+ [68].

2.2.1.2. Enzyme-linked immunosorbent assay (ELISA)

As mentioned before, HER2 receptor is composed of an extracellular domain (ECD), a transmem-
brane domain, and an intracellular domain with tyrosine kinase activity. The HER2 ECD can be 
cleaved from the HER2 full-length receptor through matrix metalloproteases and released into 
the serum [69]. HER2 ECD levels present in serum can be measured using an enzyme-linked 
immunosorbent assay (ELISA). HER2 ECD is detected using two antibodies that recognize two 
specific epitopes of the antigen. Several commercially available ELISA assays received FDA 
approval: the automated ELISA assay Immuno-1 (Siemens Healthcare Diagnostics, Tarrytown, 
NY), the manual ELISA assay (Siemens Healthcare Diagnostics) in 2000, and the automated 
ELISA assay ADVIA Centaur (Siemens Healthcare Diagnostics) in 2003 [70].

Although some studies suggest that HER2 ECD levels measured in patient’s serum could be 
used as a biomarker for the monitoring of the disease course and the response of the patient 

to therapy, the clinical use of the ELISA assay for the evaluation of the HER2 ECD has not yet 
been widely implemented [71, 72]. This is mainly due to the fact that studies that analyzed 

the association between HER2 ECD levels and prognostic and predictive factors in breast 
cancer patients reported conflicting results, depending on which cutoff value was considered 
or which assay was used [71].

ELISA is an easy and fast method. In addition, given that HER2 ECD can be measured directly 
in serum, ELISA can be used to monitor the dynamic changes of HER2 status following treat-
ment or over the course of the disease progression [71]. Results obtained by ELISA, however, 
might not be reliable if the serum samples are from patients under treatment, as trastuzumab 
present in the patient’s serum might compete with the two antibodies used in the assay.

2.2.2. HER2 status evaluation at the DNA level

2.2.2.1. Fluorescence in situ hybridization (FISH)

The FISH technique is a cytogenetic technique that uses fluorescent probes to target specific 
DNA sequences in FFPE tissue samples [73]. FISH is effectuated either as a single-color assay 
(HER2 probe only) to evaluate HER2 gene copies per nucleus or as a dual-color assay using 
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differentially labeled HER2 and chromosome 17 centromere (chromosome enumeration 
probe 17, CEP17) probes simultaneously. The dual-color assay allows the determination of 
the HER2/CEP17 ratio [74]. The HER2/CEP17 ratio is often regarded as a better reflection of 
the HER2 amplification status, as the latter may be influenced by abnormal chromosome 17 
copy number (mainly polysomy) [75].

The HER2 gene locus on chromosome 17 is recognized by the HER2 probe, which is labeled with a 
fluorophore (orange as example). The α satellite DNA sequence located at the centromeric region 
of chromosome 17 is recognized by a fluorophore-labeled chromosome 17 centromere probe 
(green as example). Nuclei are then counterstained with 4,6′-diamino-2-phenylindole (DAPI). 
Fluorescent hybridization signals can be visualized using a fluorescence microscope equipped 
with appropriate filters (for example Spectrum Orange for locus-specific probe HER2, Spectrum 
Green for centromeric probe 17, and the UV filter for the DAPI nuclear counterstain) [76].

Three FISH assay kits have been approved by the FDA for the determination of the HER2 

gene amplification in breast cancer specimens: the single-probe INFORM HER2 FISH DNA 
kit (Ventana Medical Systems), the dual-probe PathVysion HER-2 DNA probe kit (Abbott 
Molecular, Des Plaines, IL), and the dual-probe HER2 FISH PharmDx kit (DAKO).

According to the 2013 ASCO/CAP guidelines, a case is evaluated as amplified when the mean 
HER2 gene copy number is ≥6 signals/nucleus or HER2/CEP17 ratio is ≥2.0, else as equivocal 
if mean HER2 gene copy number is ≥4 and <6 signals/nucleus, and else as non-amplified 
when the mean HER2 gene copy number is <4 signals/nucleus. In order to adequately evalu-
ate HER2 status, a minimum of 20 tumor cell nuclei are counted in at least two invasive tumor 
areas. For equivocal FISH specimens, results are confirmed by counting 20 additional cells 
[61]. Moreover, the equivocal category requires reflex testing with the alternative assay (IHC) 
on the same specimen for final determination. Reflex testing can also be performed using IHC 
or ISH methods on an alternative specimen. If specimen is evaluated as equivocal, even after 
reflex testing, the oncologist may consider targeted treatment.

Although still matter of debate, several researchers consider FISH as being more accurate 
and reliable than IHC in the assessment of HER2 status in breast cancer specimens [77–80]. In 

addition, given that DNA is more stable than protein, preanalytical factors have less impact 
on assay results compared with IHC [81]. Although the FISH technique yields results that are 
considered more objective and quantitative than immunohistochemical scoring [73, 82], this 
method is nine times more time-consuming [83] and three times more expensive compared 
with IHC [84]. In addition, costly equipment is required for signal detection [67]. The FISH 

assay can be interpreted only by well-trained personnel, as distinguishing invasive breast 
cancer from breast carcinoma in situ under fluorescence is arduous [85].

Moreover, fluorescence signal counting is time consuming. To overcome this limitation, image 
analysis software for the automated assessment of fluorescence signals has been developed. 
Several investigators have reported an excellent concordance between HER2/CEP17 ratios 
calculated through manual counting and those obtained with automated image analysis 

system [86–88]. Some image analysis systems has been approved by the FDA for the auto-
mated determination of HER2 gene amplification: the Metafer (MetaSystems, Altlussheim, 
Germany) and the Ariol HER2/neu FISH (Applied Imaging, San Jose, CA). Furthermore, this 
software allows the storing of captured images [86].
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2.2.2.2. Bright-field in situ hybridization (ISH) methods

Given that FISH technology have some limitations, alternative ISH methods have been devel-
oped for the assessment of HER2 gene amplification in breast cancer specimens. Similar to 
FISH, these methods allow the quantification of HER2 gene copy number within tumor cell 

nuclei in FFPE tissues using a DNA probe that specifically recognizes specific DNA sequences. 
However, whereas the FISH assay is performed with DNA probes that are coupled to a fluo-
rescent detection system, these alternative ISH methods are performed with probes that are 
coupled to chromogenic (chromogenic ISH [CISH]), or silver detection system (silver-enhanced 
ISH [ISH]), or a combination of CISH and SISH (bright-field double ISH [BDISH]) [89]. Similar 

to FISH, ISH methods are performed either as single-color assay or as a dual-color assay.

Since visualization is achieved using other reactions than fluorescence-labeled probe, signals 
can be evaluated using a standard bright-field microscope, allowing the simultaneous analy-
sis of HER2 gene amplification and morphologic features of tissues. Moreover, contrary to 
fluorescent signals that fade over time, bright-field ISH signals are permanent [90]. Here after, 
we will briefly describe the bright-field ISH methods that are used in clinics.

2.2.2.3. Chromogenic in situ hybridization (CISH)

CISH allows the visualization of target genes in breast cancer tissue sections through peroxi-
dase enzyme-labeled probes [90]. The single-color CISH assay (SPOT-Light HER2 CISH kit; 
Life Technologies, Carlsbad, CA), and the dual-color CISH assay (HER2 CISH PharmDx kit; 
Dako) received FDA approval in 2008 and 2011, respectively [61].

With the single-color CISH assay, only the absolute HER2 gene copy number is evaluated. The 
hybridized HER2 probe is visualized by DAB as chromogen. HER2 gene copies are recognizable 

as brown chromogenic reaction product signals within nuclei. Slides are then counterstained 

with hematoxylin [82, 91, 92]. HER2 signals are recognizable either as large brownish signal 

clusters or as numerous individual brownish small signals [92]. Cases with low-level ampli-
fication show six to 10 signals per nucleus in more than 50% of breast cancer cells, whereas 
high-level amplification cases are characterized by a mean HER2 gene copy number of more 

than 10 or by large gene copy clusters in more than 50% of breast cancer cell nuclei [92, 93].

The dual-color CISH assay allows the simultaneous visualization of the HER2 and CEP17 
probes on the same slide [94]. HER2 probes are visualized using a chromogen (green as 
example), whereas CEP17 probes are visualized using another chromogen (red as example). 
Slides are then counterstained with hematoxylin. Results obtained by dual-color CISH are 
reported as dual-color FISH [61].

The CISH assay is twice cheaper [72] and 1.2 times faster [82] comparatively to FISH. Further-
more, since the CISH assay allows an easier identification of the invasive component compared 
with FISH, evaluation of CISH signals is less time-consuming than FISH [82, 94]. In addition, 
tumor heterogeneity is promptly recognizable, even at low magnification [95]. Moreover, the 
dual-color assay can be performed on an automated slide stainer, improving the reproduc-
ibility of the assay [96]. However, the assessment of HER2 gene copy number can be arduous 

in tumor regions showing high-level amplification, since overlapping dots lead to formation 
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of signal clusters that are difficult to evaluate [94]. In addition, technical problems, including 
under- or overfixation, over- or underdigestion of tissue samples can lead to inaccurate results 
or loss of signals [91, 93].

2.2.2.4. Silver-enhanced in situ hybridization (SISH)

SISH is an automated enzyme metallography assay, in which an enzyme reaction is used to 
selectively deposit metallic silver from solution at the reaction site to produce a black staining 
[97]. All steps of the assay are performed on the Ventana BenchMark XT automated slide 
stainer [98, 99]. HER2 and chromosome 17 analysis is performed on sequential slides [98, 99]. 

As previously mentioned, HER2 and CEP17 probes are visualized through the process of 
enzyme metallography. During the process, silver precipitation is deposited in the nucleus, 
and HER2 or CEP17 signals are visualized as black dots within cell nuclei [99]. Similar to the 

FISH assay, HER2 gene amplification status assessed by SISH is reported as a HER2/CEP17 
ratio, according to the ASCO/CAP guidelines [61].

Given that the SISH assay is fully automated, this technique is six times faster to perform than the 
FISH assay [99]. In addition, black SISH signals are easier to evaluate compared with other bright-
field ISH techniques [100, 101]. However, to correct for chromosome 17 aneusomy, the hybridiza-
tion of a further section is required for separate assessment of CEP17 copy number [100].

2.2.2.5. Bright-field double ISH (BDISH)

Bright-field double ISH (BDISH) or dual-color in situ hybridization (dual ISH) is a fully auto-
mated bright-field ISH assay for the simultaneous determination of HER2 and CEP17 signals 
on the same FFPE breast cancer tissue sections [100]. This assay combines the visualization 
of HER2 gene copies through the deposition of metallic silver particles, similar to the mono-
color SISH procedure, with the detection of CEP17 copies with a red chromogen, similar to 
the CISH assay [102]. HER2 signals are visualized as discrete black spots and the CEP17 sig-
nals as red spots in the nuclei. Slides are then counterstained with hematoxylin [100]. HER2 

gene amplification status assessed by BDISH is reported as a HER2/CEP17 ratio, according to 
the ASCO/CAP guidelines.

This technique is very pertinent especially for cases displaying chromosome 17 aneusomy 
or intratumoral heterogeneity, as it allows the simultaneous visualization of both HER2 and 
CEP17 probes on the same slide [100]. Furthermore, as the HER2 signals and CEP17 signals 
differ in color and size (HER2 black spots are smaller than CEP17 red spots), both signals 
can be distinguished from each other, even though they colocalize within cell nuclei [100]. 

Moreover, since this assay is completely automated, results are available within 6 h, in addi-
tion of being more reproducible, as risk of human errors are diminished [101]. The BDISH 
assay presents the same disadvantages as CISH and SISH.

2.2.2.6. Instant-quality FISH (IQFISH) and automated HER2 FISH

Recently, new FISH assays have been developed for the evaluation of HER2 gene amplifi-
cation in breast cancer specimens, including instant-quality FISH (IQFISH), which received 
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FDA approval, and automated HER2 FISH. In analogy to conventional FISH, these new 
assays allow the quantitative determination of HER2 gene amplification. The IQFISH assay 
is performed in the same way as manual FISH, with the exception of the hybridization buffer 
(IQFISH buffer), which considerably reduces the time required for the hybridization step 
(16 times faster) and therefore the total assay time [103, 104]. Moreover, while hybridization 
buffer provided in conventional FISH assay contain the toxic formamide, the IQFISH buffer is 
nontoxic [103]. Compared to conventional FISH, automated FISH is less expensive, since the 
full automation of the assay requires less human intervention [105]. Furthermore, automated 
FISH enables faster processing of samples and recording [105].

2.2.3. HER2 status evaluation at the RNA level

2.2.3.1. Polymerase chain reaction (PCR)-based assays

Polymerase chain reaction (PCR) is a technique used for the detection of DNA samples 
through the exponential amplification of target DNA sequences.

Reverse transcription PCR (RT-PCR) assay allows the quantification of mRNA and can be 
used for the evaluation of HER2 expression in breast cancer specimens in both FFPE and 
frozen tissues [106, 107]. Extracted mRNA is at first reverse transcribed into complementary 
DNA (cDNA). cDNA is then measured by quantitative PCR (qPCR). The relative quantita-
tion of HER2 gene expression is evaluated comparing the target gene expression with that of 
housekeeping genes. The relative HER2 gene expression measured in samples is then normal-
ized to a calibrator obtained by mixing RNA from several normal breast tissue specimens. Of 
note, the Oncotype Dx (Genomic Health, Redwood City, CA) assay is a test based on RT-PCR 
technology and is used to analyze the expression of 21 genes involved in breast cancer biol-
ogy, such as HER2, ER, and PR. This assay is used to predict the likelihood of breast cancer 
recurrence in patients with early-stage, node-negative, ER-positive breast cancer [106].

RT-PCR has a large dynamic range, in addition of being a quantitative method. PCR results, 
however, are often associated with false-negative results due to dilution of amplified tumor 
cells with surrounding nonamplified stromal cells [108, 109]. In addition, the evaluation of 
HER2 status at the mRNA level by RT-PCR using FFPE tissues can be problematic, as mRNA 
integrity can be damaged by several factors, including tissue fixation and storage time [110].

3. Conclusion(s)

HER2 is a prognostic marker in breast cancer. HER2 overexpression and HER2 gene amplifi-
cation, which occur in 15–20% of breast cancer patients, cause aberrant constitutive activation 
of the signaling pathway. This leads to uncontrolled and unregulated cell growth and cor-
relates with poor outcome of HER2-positive breast cancer patients.

In addition, HER2-positive status is considered a predictive marker of response to HER2-
targeted drugs, including trastuzumab and lapatinib [111]. Considering the clinical and eco-
nomic implications of targeted anti-HER2 treatments, reliable HER2 test results are essential. 
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False negative results would deny the patients access to the potential benefits of trastuzumab, 
whereas false positive results would expose patients to the potential cardiotoxic side effects of 
this expensive agent without experiencing any therapeutic advantages [89].

Although several techniques have obtained FDA approval for the HER2 assessment in breast 
cancer specimens, the ASCO/CAP guidelines recommend performing IHC or ISH methods 
to determine HER2 status in breast cancer. The optimal method for evaluating HER2 status 
in breast cancer specimens, however, is still matter of debate, since each method is char-
acterized by its own advantages and disadvantages. Therefore, emphasis must be put on 
standardization of procedures and quality control assessment of already existing methods. 
Also, development of new accurate assays should be promoted. Moreover, large clinical 
trials are needed to identify the technique that most reliably predicts a positive response to 
HER2 inhibitors.

Acknowledgements

DF received doctoral fellowships from the Fonds de recherche du Québec—Santé (FRQS) 
and the Laval University Cancer Research. CD is a recipient of the Canadian Breast Cancer 
Foundation-Canadian Cancer Society Capacity Development award (award #703003) and the 
FRQS Research Scholar.

Conflict of interest

The authors have no conflicts of interests to declare.

Notes/thanks/other declarations

The authors have no other declarations.
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HER2 Human epidermal growth factor receptor 2

GRB7 Growth factor receptor bound protein 7

ESR1 Estrogen Receptor 1
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IHC Immunohistochemistry

FISH Fluorescence in situ hybridization

ERBB2 erb-b2 receptor tyrosine kinase 2

HER3 Human epidermal growth factor receptor 3

HER4 Human epidermal growth factor receptor 4

ATP Adenosine triphosphate

ECD extracellular domain

EGF Epidermal growth factor

EPG Epigen

TGFα Transforming growth factor α

PI3K Phosphatidylinositol 3′-kinase

ERK Extracellular signal-regulated kinase

MAPK Mitogen-activated protein kinase

FGFR Fibroblast growth factor receptor

IR Insulin Receptor

VEGFR Vascular Endothelial Growth Factor Receptor

Cdk Cyclin-dependent kinase

FFPE Formalin-fixed, paraffin-embedded

DAB 3,3′-diaminobenzidine tetrahydrochloride

ASCO American Society of Clinical Oncology

CAP College of American Pathologists

ELISA Enzyme-linked immunosorbent assay

CEP17 Chromosome enumeration probe 17

DAPI 4,6′-diamino-2-phenylindole

ISH in situ hybridization

CISH Chromogenic in situ hybridization

SISH Silver-enhanced in situ hybridization

BDISH Bright-field double ISH

PCR polymerase chain reaction
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RT-PCR Reverse transcription PCR

cDNA Complementary DNA

qPCR Quantitative PCR
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