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Abstract

γ-Tocotrienol, a natural isoform within the vitamin E family of compounds, displays 
potent antiproliferative, apoptotic and reversal of epithelial-to-mesenchymal transition 
(EMT) activity against breast cancer using treatment doses that have little or no effect on 
normal cell viability. EMT is a route by which epithelial cells undergo various biochemi-
cal alterations leading to the acquisition of mesenchymal traits. Several aberrant signaling 
pathways are involved in EMT-dependent cancer metastasis. Specifically, dysregulation 
of the canonical Wnt and Hedgehog pathways are intimately involved in promoting 
breast cancer EMT and metastasis. Therefore, studies were conducted to examine effects 
of γ-tocotrienol on Wnt and Hedgehog signaling. Results from these studies demon-
strate that γ-tocotrienol significantly inhibits canonical Wnt and Hedgehog signaling by 
inhibiting receptors, co-receptors and ligand expression, as well as inhibiting expression 
of cytosolic and nuclear signaling proteins within these pathways. Additional studies 
showed that γ-tocotrienol treatment increased the expression of negative regulators of 
both the Wnt and Hedgehog pathways. These findings demonstrate that γ-tocotrienol 
reversal of EMT is mediated, at least in part, through the inhibition of canonical Wnt 
and Hedgehog signaling, and strongly suggest that this form of vitamin E may provide 
significant benefit in the prevention and treatment of metastatic breast cancer.

Keywords: γ-tocotrienol, epithelial-to-mesenchymal transition, canonical Wnt pathway, 
canonical hedgehog pathway, breast cancer
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1. Introduction

Breast cancer is the second leading cause of death in women, and it originates from malignant 
breast cancer cells displaying unregulated growth to produce a tumor mass [1, 2]. Several 
cellular mechanisms are dysregulated in breast tumor cells, including the canonical Wnt and 
Hedgehog signaling pathways, which play an important role in promoting oncogenic pro-
liferation, survival, motility, invasion, and epithelial-to-mesenchymal transition (EMT) [3]. 
Although these events are complex and poorly understood, recent findings show that special-
ized cell membrane microdomains known as lipid rafts are involved in mediating membrane 
receptor activation and signal transduction. Lipid rafts are solid platforms in the plasma mem-
brane that consist of cholesterol and sphingolipids. Lipid rafts are essential for cellular signal-
ing by recruiting transmembrane receptors with adaptor and signaling proteins from non-rafts 
to the raft area of the cell membrane [4–6]. In the case of canonical Wnt and Hedgehog signal-
ing, low-density lipoprotein receptor-related protein 6 (LRP6) and patched (PTCH2), the main 
receptors for activation of these signaling pathways, were shown to be primarily located in the 
lipid raft microdomain [7–9]. Lipid rafts have been shown to be essential for Hedgehog signal 
transduction [10]. γ-Tocotrienol is a natural vitamin E isoform that displays potent anticancer 
activities [11–13]. Previous reports have clearly shown that γ-tocotrienol exerts antiprolifera-
tive and apoptotic activity against neoplastic mammary epithelial cells at treatment doses that 
had little or no effect on normal cell growth and viability [14, 15]. The anticancer effects of 
γ-tocotrienol appear to be mediated through a variety of intracellular signaling mechanism 
[16–18]. Recently, γ-tocotrienol was found to disrupt lipid raft integrity and attenuation of 
receptor signaling transduction [19]. This chapter will focus of experimental evidence demon-
strating γ-tocotrienol reversal of EMT is mediated through the inhibition of the canonical Wnt 
and Hedgehog signaling pathways.

2. Vitamin E and breast cancer

Epidemiological studies have shown that diet and nutrition can play a major role in cancer 
development and progression. It has been suggested that approximately 30–35% of cancer 
morbidity and mortality might be prevented with suitable adjustment of nutrition, and up to 
one third of all the cancers in the United States can be avoided by increasing the consump-
tion of fruits and vegetables in the daily diet [20]. Vitamin E is a generic term that includes a 
family of eight naturally occurring compounds that are further divided into two subgroups 
known as tocotrienols and tocopherols. Tocotrienols are relatively rare and found only a few 
natural sources, such as palm oil, rice bran oil, and annatto bean, while tocopherols are much 
more abundant and found in a wide variety of foods, such as nuts, whole grains, dark green 
vegetables, egg yolk, and various vegetable oils [21–24]. The relative levels of tocopherol and 
tocotrienol in various dietary oil and fats are shown in Table 1.

The chemical structure of all vitamin E isoforms are very similar and characterized by a long 
phytyl chain linked to a chroman ring structure methylated to varying degrees at the 5, 7, and 
8 positions. The four isoforms in each subclass are classified as α-, β-, γ-, and δ-tocotrienol 
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or tocopherol. Tocotrienols differ from tocopherols only in that they contain an unsaturated, 
whereas tocopherols contain a saturated phytyl tail. Figure 1 shows the chemical structures 
of different isoforms of tocotrienols.

Interestingly, numerous studies have shown that tocotrienols, but not tocopherols, have selec-
tive antiproliferative and apoptotic effects against various forms of breast cancer, while have 
little effect on normal mammary epithelial cell growth or function [14, 15, 25]. The anticancer 

Tocopherol Tocotrienols

Dietary oil α α γ δ Total tocotrienol

Palm 152 205 439 94 738

Rice brain 324 236 349 – 586

Wheat germ 133 26 – – 26

Coconut 5 5 1 19 25

Palm-kernel 12 21 – – 21

Coco butter 11 2 2

Corn 112 – – – 0

Cottonseed 389 – – – 0

Peanut 130 – – – 0

Olive 51 – – – 0

Safflower 387 – – – 0

Soybean 101 – – – 0

Sunflower 487 – – – 0

Table 1. Vitamin E levels (mg/L) in common dietary oils [21].

Figure 1. General chemical structure of the different tocotrienols isoforms.
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potency of different tocotrienol isoforms was determined to be characterized as δ-tocotrienol 
≥ γ-tocotrienol > α-tocotrienol > β-tocotrienol [11, 15, 26]. The anticancer effects of tocotrienols 
were discovered in nutritional studies that investigated the role of high-dietary fat consump-
tion on the development of mammary tumorigenesis in laboratory animals. These studies 
showed that diets containing high levels of palm oil inhibited the carcinogen-induced mam-
mary cancer in rats [27]. Additional studies showed that palm oil diets stripped of tocotrienol 
no longer displays their protective effect against mammary tumorigenesis.

During the past decade, tocotrienols have received a great deal of attention because of their poten-
tial value in the prevention and treatment of breast cancer. Tocotrienols have been shown to inhibit 
multiple intracellular signaling pathways in cancer cells [15, 28]. Specifically, tocotrienols have 
been found to suppress EGF-dependent mitogenic signaling in neoplastic and normal mammary 
epithelial cells by significantly inhibiting activity of the phosphatidylinositol-4, 5-bisphosphate-
3-kinase/protein kinase B (PI3K/Akt) pathway [29]. Other studies have shown that γ-tocotrienol 
treatment induced a dose and time-dependent inhibition of EGF-dependent Akt phosphorylation 
(activation) in mammary tumor cells, and these effects were not found to be associated with an 
increase in tensin homolog (PTEN) or protein phosphatase 2 A (PP2A) activity [30]. γ-Tocotrienol 
was also found to decrease activity of signaling proteins downstream of Akt, such as inhibiting the 
transcription factor nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) by sup-
pressing the activation of inhibitor of nuclear factor kappa kinase alpha and beta (IKKα and IKKβ), 
enzymes associated with induction of the NFκB activation [30]. Inhibition of NFκB transcription is 
associated with a suppression in cell proliferation and survival [31]. Additional studies have shown 
that the antiproliferative effects of tocotrienols is associated with an inhibition of protein kinase C 
alpha (PKCα) activation in breast cancer cells [32]. In addition, mitogen activated protein kinase 
(MAPK) has also been shown to be a target of γ-tocotrienol anticancer activity. Studies have indi-
cated that γ-tocotrienol induced inhibition of EGF-dependent proliferation of preneoplastic CL-S1 
mouse mammary epithelial cells resulted from an inhibition of G-protein-mediated activation of 
adenylyl cyclase, cyclic adenosine monophosphate (cAMP) production, as well as a reduction in 
phosphorylated (activated) extracellular signal-regulated kinase 1/2 (ERK1 and ERK2) [33]. In 
addition to the inhibition of mitogenic signaling, γ-tocotrienol is known to inhibit numerous vital 
cellular functions including inhibition of cell cycle progression [13], mevalonate pathway [34, 35], 
glycolysis [12], angiogenesis [36], and epithelial mesenchymal transition (EMT) [37].

Lipid rafts are distinct structures within the cell membrane that are enriched with sphingo-
lipids, cholesterol, and acyl fatty acid chains that act to form a very rigid microdomain. Lipid 
rafts exist in two different forms: “planar lipid rafts,” which are referred to as “non-caveolar” 
and caveolae lipid rafts. Planar rafts are characterized as non-invaginated microdomains lack-
ing specific morphological features. In contrast, caveolae lipid rafts are tube-like invaginations 
of the plasma membrane characterized by specific scaffolding proteins or caveolins [4]. Some 
proteins are essential to membrane raft development and their role can be seen as constitutive 
components of rafts. One of the important proteins serving scaffolding functions in the caveo-
lar raft is caveolin 1 (Cav1), a classical hairpin protein that plays a role in caveolae-mediated 
signaling, endocytosis, and transport [4]. Recent studies have shown that tocotrienols act to 
disrupt lipid raft integrity and disrupt plasma receptor membrane receptor activation and sig-
nal transduction. These findings provide evidence to explanation the wide range of inhibitory 
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effects γ-tocotrienol has on numerous signaling pathways [19]. Molecular targets associated 
with tocotrienol anticancer activity are shown in Table 2.

Figure 2 shows the effects of γ-tocotrienol treatment on the growth of malignant and normal 
human breast cancer cells. Results show that exposure various doses of γ-tocotrienol induced 
a dose-dependent inhibition in the growth of the highly malignant MDA-MB-231 breast cancer 
cells, as compared to cells in the vehicle-treated control group in Figure 2A. The IC

50
 dose 

γ-tocotrienol in these studies was found to be approximately 5 μM. However, treatment with 
similar or even higher doses of γ-tocotrienol on immortalized normal MCF-10A mammary epi-
thelial cell line was found to have little or no effect on cell growth or viability (Figure 2B) [14].

Molecular target References

PI3K/Akt [29]

PKCα [32]

MAPK [33]

Cell cycle [13]

Mevalonate pathway [34, 35]

Glycolysis [12]

Angiogenesis [36]

EMT [37]

Lipid rafts [19]

Table 2. Summary of some of the molecular targets associated with mediating the anticancer effects of tocotrienols.

Figure 2. γ-Tocotrienol effects on the growth of the highly malignant MDA-MB-231 human breast cancer cells and 
the immortalized normal MCF-10A human mammary epithelial cells. MDA-MB-231 and MCF-10A cells were initially 
seeded at a density of 1 × 104 cells/well (6 wells/group) in 96-well culture plates and maintained on serum-free defined 
media containing 0–30 μM doses of γ-tocotrienol over a 4-day culture period. The viable cell number was determined 
by using the MTT colorimetric assay. Vertical bars show mean cell number ± SEM in each treatment group. (*P < 0.05) as 
compared with cells in their respective vehicle-treated control groups.
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3. Epithelial-to-mesenchymal transition (EMT)

EMT plays a major role in organogenesis, angiogenesis and cancer metastasis [38, 39]. EMT was 
first observed and defined in the late 1980s at Harvard University by Elizabeth Hey [40]. EMT 
was defined as a differentiation program by which epithelial cells lose their attachment with 
other epithelial cells to become more mesenchymal-like, and are able to become mobile and 
invade their surrounding extracellular matrix [41, 42]. Because this process is reversible [43], 
epithelial cells displaying a mesenchymal phenotype, are also able to re-differentiate back into 
their epithelial phenotype [44]. Epithelial cells displaying their normal epithelial phenotype 
are well-structured in single layers of cuboidal or columnar cells. They are closely attached to 
surrounding cells by intercellular adhesion complexes. These cells also display an apicobasal 
polarity with a characteristic basal basement membrane that separates the epithelium from 
other tissues. In contrast, epithelial cells with a mesenchymal phenotype are characterized by 
the absence of polarity and intercellular adhesion junctions, hallmarks that have come to define 
EMT [45]. During the EMT process, cells lose the attachment of β-catenin and E-cadherin, which 
act to tightly link and attach surrounding epithelial cells together. This loss of attachment 
leads to a disruption of the adherens junctions [46]. These events then allow the mesenchymal 
phenotype to move freely and invade the surrounding extracellular matrix. In normal condi-
tions, EMT provides a necessary function during embryogenesis, growth and wound healing. 
However, aberrant EMT can result in pathological conditions such as organ fibrosis and cancer 
metastasis. EMT mediated metastasis of malignant breast cancer epithelial cells can often form 
secondary tumors in the bone or lung [46]. EMT that occurs under normal conditions, such as 
embryogenesis, is referred to as type 1 EMT or classical EMT [47]. However, EMT that devel-
ops during inflammation, wound healing, tissue regeneration, and organ fibrosis is referred to  
as type 2 EMT, whereas EMT associated with cancer metastasis is termed type 3 EMT and plays 
an important role in the development, growth and progression of breast cancer [47].

Transcription factors also play a role in the initiation of EMT. Receptor activation by various 
growth factors, such as hepatocyte growth factor (HGF), epidermal growth factor (EGF), and 
fibroblast growth factor (FGF) are involved in the activation of various transcription factors 
involved in EMT. Growth factor-induced activation of transcription factors include zinc finger 
protein snail 1 (SNAIL1), (SNAIL2), zinc finger e-box-binding homeobox 1 (ZEB1), (ZEB2), 
twist, forkhead box protein 1 (FOXC1), (FOXC2), transcription factor 3 (TCF3), also known 
as (E47), and homeobox protein goosecoid (GSC) [37, 43, 45]. EMT also plays a role in the 
restructuring of extracellular matrix proteins by up-regulating fibronectin, collagen, proteases 
like MMPs, and other remodeling enzymes. In addition, autocrine and paracrine secretion of 
growth factors, cytokines, and extracellular proteins can modulate cancer cells phenotype and 
promote EMT [37, 43, 45].

Epigenetic modification, such as acetylation or methylation of the DNA, also can play a role in 
the EMT activation. For example, methylation of arginine (R531) by protein arginine methyl-
transferases 7 (PRMT7) plays a crucial role in inducing the EMT and the promotion of migra-
tory and invasive behavior of breast cancer cells [48]. EMT can also be activated by expression 
of certain miRNAs, such as micro-RNA200/205 family (miRNA200) and (miRNA205), whose 
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prominent targets are the ZEB1 and ZEB2, known as specific repressors of E-cadherin. Likewise, 
members of the ABC family of transporters, such as ABCB5, plays a major role in the activation 
of EMT [49]. Studies have shown that several signaling pathways, including the canonical Wnt 
pathway, the canonical Hedgehog pathway, Notch pathway, Janus kinase (JAK)/STAT path-
way, and TGFβ pathway are involved in the activation of EMT [50]. Activation of these EMT-
inducing signaling pathways leads to the disruption of adherens junctions (desmosomes), 
tight junctions, and gap junctions through suppression of several proteins, such as partition-
ing defective 6 homolog alpha or ZEB1, which represses plakophilin, an important junctional 
adhesion protein [43]. These pathways can act separately or together through cross-talk to 
increase cancer cell migration, invasion, drug resistance, stemness, and self-renewal potential 
[51, 52]. Taken together, it is clearly evident that EMT is an extremely complex process and a 
great deal more information is required to fully understand this phenomenon.

Figure 3 shows the effects of γ-tocotrienol on the expression of EMT cellular biomarkers in 
the highly malignant MDA-MB-231 human breast cancer cells. Western blot analysis shows 
that MDA-MB-231 cells in the vehicle-treated control group displayed relatively low levels 
of expression for the epithelial cell markers cytokeratin 8, cytokeratin 18 and E-cadherin, and 
corresponding high levels of expression for the mesenchymal cell markers vimentin, fibro-
nectin and total β-catenin (Figure 3A). Treatment with 3–7 μM γ-tocotrienol (MDA-MB-231) 
induced a dose-responsive reversal in epithelial versus mesenchymal cell marker expression 
(Figure 3A). Immunocytochemistry was then performed to confirm the finding in Figure 3A. 

Figure 3. γ-Tocotrienol effects on epithelial versus mesenchymal cell markers expression. (A) Whole cell lysates were 
prepared from cells in each treatment group for subsequent separation by polyacrylamide gel electrophoresis (35 μg/lane) 
followed by western blot analysis. (B) Immunocytochemical analysis was done to confirm the finding shown in A. Cells 
in the various treatment groups were fixed, blocked, and incubated with specific primary antibodies for cytokeratin 8, 
cytokeratin 18, vimentin, and total level of β-catenin followed by incubation with Alexa Fluor 488-conjugated secondary 
antibody. Green staining in the photomicrographs (magnification 200×) indicates positive fluorescence staining for 
target proteins and the blue color represents counter staining of the cell nuclei with DAPI.
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MDA-MB-231 cells in the vehicle-treated control group displayed a relatively low level of 
positive immunofluorescence staining for the epithelial cell marker cytokeratin 8, cytokeratin 
18, and a relatively high level of positive immunofluorescence staining for the mesenchymal 
markers vimentin and β-catenin (Figure 3B). Treatment with 5 μM γ-tocotrienol resulted in a 
reversal of positive immunofluorescence staining of epithelial versus mesenchymal cell mark-
ers in MDA-MB-231 cells (Figure 3B) [14].

4. Canonical Wnt pathway

The canonical Wnt pathway is one of the fundamental pathways that is overexpressed in can-
cer metastasis that is involved in the initiation of EMT [53, 54]. Wnt is an acronym derived 
from two proto-oncogene wingless and intel 1. At present, 19 Wnt ligands have currently been 
identified [55]. Those ligands form a large group of secreted glycoprotein that are secreted 
through autocrine and/or paracrine mechanisms. After DNA transcription and translation 
takes place, protein is translocated to the endoplasmic reticulum (ER), where a lipid tail is 
attached to the ligand by porcupine enzyme. Then, the ligand is transported to Golgi apparatus 
by Wntless/evenness enzymes. At the Golgi, a sugar moiety is linked to the ligand, facilitating 
its translocation to the ECM and binding to the receptors, respectively. Once the Wnt ligand is 
in the ECM, numerous proteins, such as dickkopf (DKK1), sclerostin (SOST), secreted frizzled-
related protein (SFRP), and Wnt inhibitory factor 1 (WIF1), play a role to block the signal. In 
contrast, other proteins, such as R-spondin (RSPO) and norrin can stimulate Wnt signaling 
[56]. Wnt pathway co-receptors are located in the lipid rafts which are microdomains in the cell 
membrane needed for the stimulation of signal transduction [7]. A number of proteins, such as 
glycosaminoglycan, dally and dly, are responsible for handling the Wnt ligand to the lipid rafts 
[55]. Ligand then bind to the co-receptors and induce activation of the signaling pathway [55].

The Wnt pathway can be stimulated canonically and non-canonically [57]. Nevertheless, the 
critical and most studied pathway is the canonical Wnt pathway, known to have a role in trig-
gering EMT [58]. When there is no need for any developmental process, this pathway remains 
inactive and the receptor ligand is sequestered in the extracellular matrix by the action of num-
ber of specific binding proteins. Bound ligand to the Wnt receptor is inactive and prevents to 
a reduction in the phosphorylation of the disheveled protein (DVL), which is known to inhibit 
the cytosolic complex. The cytosolic complex composed of several proteins, such as glycogen 
synthase kinase 3 beta (GSK3β), axin 1, adenomatous polyposis coli (APC), and casein kinase 
1 alpha (CK1α). The kinases in this complex remain active to phosphorylate the majority of the 
β-catenin, a biomarker for the canonical Wnt pathway activation. Phosphorylated β-catenin 
is then targeted for degradation by proteasomal enzymes [59]. In the nucleus, β-catenin is 
translocated out of the nucleus by the action of APC, Ran, and Manchette-associated bind-
ing adaptor protein 3 (BP3). The T-cell factor/lymphoid enhancer factor (LEF/TCF) area in 
the DNA is the binding location of β-catenin and is hidden by Groucho, histone deacetylase 
(HDAC), and glucose transporter-binding protein (GtBP) as a mechanism to rid the cell of 
β-catenin activity. Finally, the rest of β-catenin in the nucleus is sequestered by Chibby (CBY) 
and inhibitor of β-catenin and TCF 4 (ICAT) [60]. The summation of these events results in the 
blockade of Wnt signaling and downstream gene expression and mitogenesis.
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However, during conditions of Wnt activation, such as during wound healing, the pathway 
becomes acutely active during the healing process. During this time, Wnt ligands are trans-
located to the extracellular matrix where they bind to their receptor and co-receptors, which 
ultimately leads to phosphorylation of DVL. Phosphorylated DVL block GSK3β activity in the 
cytosolic complex. As a result, β-catenin will not be phosphorylated and no longer targeted 
for degradation. The stabilized β-catenin can now be translocated from the cytosol into the 
nucleus and induce transcription [61]. There are also numerous other proteins such as CREB-
binding protein (CBP), polymerase associated factor 1 (PAF1), and Brahma (Brm), which work 
together as transcription factors to potentiate the Wnt signaling pathway [60]. Activation 
of this pathway leads to increase cyclin D1 expression, which is associated with cell cycle 
progression and growth. Similarly, an increase in myelocytomatosis (c-Myc) expression as a 
result of Wnt activation leads to increased cell proliferation and increase in MMP9 expression, 
which is involved in the disruption of the tight junctions [62]. An increase in snail and slug 
expression leads to a loss of the attachment of β-catenin and E-cadherin and the progression 
of EMT [63]. However, after the wound is healed and Wnt signaling is no longer needed, a 
negative feedback effect can occur by the action of certain proteins, such as DKK1 and axin 2, 
and represents highly controlled gene expression and cell growth [64]. However, cancer cells 
are characterized by an increased expression of Wnt ligands, as well as has numerous proteins 
in the cytosolic complex, such as β-catenin, APC, or axin 1, that can become mutated. These 
factors lead to the continuous activation of the Wnt pathway and is associated with increased 
tumor growth, motility, invasion and metastasis [7, 65].

Figure 4 shows the effects of γ-tocotrienol treatment on the relative levels of signaling and regu-
latory proteins within the canonical Wnt and Hedgehog pathways. Total levels of the Wnt3a, 
FZD7 receptor, phosphorylated-LRP6 (active form), DVL2 and cyclin D1 were highly expressed 
in the vehicle-treated MDA-MB-231 cell line with corresponding relatively low expression of 

Figure 4. Western blot analysis of γ-tocotrienol effects on the canonical Wnt and Hedgehog major regulatory proteins. 
(A) Highly malignant MDA-MB-231 human breast cancer cells were initially seeded at density of 1 × 106 cells/100 mm 
dish and maintained on serum-free defined media containing different doses of γ-tocotrienol over a 4-day culture 
period. Following treatment exposure, whole cell lysates were prepared from MDA-MB-231 in each treatment group 
for consequent separation by polyacrylamide gel electrophoresis (35 μg/lane) followed by western blot analysis for the 
major regulatory proteins of the Wnt pathway. (B) Whole cell lysates were prepared then subjected to polyacrylamide 
gel electrophoresis (30 μg/lane) and western blot analysis for detection of Shh ligand, PTCH2, Smo, GSK3β, Gli1 and 
SUFU levels within the Hedgehog pathway.
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Naked 1 (a negative regulator of Wnt pathway (Figure 4A). Treatment with 3–7 μM γ-tocotrienol 
(MDA-MB-231) induced a dose-dependent decline in Wnt3a, FZD7 receptor, phosphorylated-
LRP6, DVL2, cyclin D1 levels, and a corresponding increase in Naked 1 level as compared to 
cells in their respective vehicle-treated control groups (Figure 4A). These findings indicate that 
γ-tocotrienol inhibition of EMT is mediated in part by a suppression of canonical Wnt signaling. 
Similar results were observed in T47-D breast cancer line (data not shown). Previous studies 
have shown that inhibition of Wnt signaling resulted in a reduction in nuclear factor erythroid 
2-related factor 2 (Nrf2) activity, a transcription factor associated with the promotion of EMT 
[66–68]. At present, it is not known if γ-tocotrienol reversal of EMT involves a corresponding 
decrease in Nrf2 activity. Additional studies are required to determine if Nrf2 plays a role in 
the anticancer effects of γ-tocotrienol. In summary, experimental evidence strongly suggests 
that γ-tocotrienol therapy may provide therapeutic value in the treatment of highly malignant 
breast cancer that is characterized by aberrant canonical Wnt signaling.

5. Canonical Hedgehog pathway

The canonical Hedgehog pathway is characteristically over active in many forms of metastatic 
breast cancer and is associated with enhanced migration, invasion, stemness and self-renewal 
of cancer cells [69–72]. Over activity of the Hedgehog pathway is also associated with playing 
a role in promoting EMT [71]. The Hedgehog ligand was first discovered in the Drosophila 
fruit fly [73]. Several human Hedgehog ligands have also been identified that are involved in 
cell growth and controlled organ formation by insuring that the tissue reaches the accurate 
size and position. In the adult, this pathway normally remains quiescent. However, activa-
tion of the Hedgehog pathway may be triggered during tissue maintenance and regeneration 
[74]. A link between Hedgehog signaling and developmental defects was first discovered in 
1996, and later that year a link between Hedgehog signaling and cancer was found when the 
tumor suppressor gene patched (PTCH) was discovered [67]. Soon afterwards, the Hedgehog 
cell service signaling transducer, smoothened (Smo), was discovered and found to have the 
potential to function as an oncogene. These findings lead to the development of the Hedgehog 
pathway inhibitor, cyclopamine, and successful clinical trials using cyclopamine and similar 
agents followed [75]. Hedgehog ligands are produced by three different genes. The first gene 
is the Indian Hedgehog (Ihh) and is found in gut, skeletal muscle, and chondrocytes [76]. The 
second gene is the Desert Hedgehog (Dhh) and is expressed in the testis [76].

The third gene is the Sonic Hedgehog (Shh) and is involved in many developmental processes 
[76]. Shh is called a morphogen since the signal of this ligand relies on its concentration [77]. 
The Shh is produced from zone of polarizing activity (ZPA), which is located on the posterior 
side of the limb bud in the embryo [78]. The Hedgehog pathway has a link with the formation 
of specific types of humans cancer [74]. After the transcriptional and translational process 
occur, this ligand is secreted as a precursor protein, and the ligand is subsequently subjected 
to several post translational modifications [73]. Autocatalytic cleavage then splits the ligand 
into two parts. One part is the signaling molecule, while the other part appears to have no 
function. A cholesterol molecule and palmitic acid moiety are then added to C-terminal and 
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N-terminal of the signaling piece, leading to an increase in its hydrophobicity, localization 
and binding to the receptor [73]. The canonical Hedgehog signaling pathway has several vital 
components which play a role in modulating signal intensity. Most of the components within 
the Hedgehog pathway include the Hedgehog ligand, the PTCH receptor, Smo, and the cyto-
solic complex and downstream effectors, which consist of suppressor of fused (SUFU) and 
Gli family of proteins. The Gli family is an important component of the Hedgehog pathway 
which is divided into three forms known as Gli1, Gli2, and Gli3. Gli transcription factors can 
activate the signal, have dual function to stimulate or impede the signal [79]. A number of 
kinases, such as GSK3β, CK1α, and protein kinase A, are known to be essential in the regula-
tion of Hedgehog signaling [80]. The PTCH receptor of this pathway is located in the lipid raft 
microdomains of the plasma membrane [8].

Activation of the Hedgehog pathway can be blocked in the absence of ligand expression or 
a lack of mutation in PTCH and/or Smo [79]. In such cases, the inhibitory effect of PTCH on 
Smo is intact and Hedgehog ligand transport to the cell membrane is prevented and receptor 
activation and signal transduction does not occur [79]. In contrast, activation of the Hedgehog 
pathway will result in conditions when the Hedgehog ligand is highly expressed, and/or when 
mutation of PTCH and/or Smo occurs [79]. In these conditions, inhibitory effect of PTCH on 
Smo is absence and Smo can freely travel to the cell membrane, leading to the phosphory-
lation of SUFU and the transcription factor in the cytosolic complex. Once this occurs, Gli 
separates from the cytosolic complex proteins and then translocates into the nucleus where it 
promotes an increase in the Hedgehog target gene expression [79]. Recent studies have shown 
a direct connection between EMT and stemness of breast cancer resulting that is directly asso-
ciated with the activation of the canonical Hedgehog signaling and the development of tumor 
recurrence and metastasis [71].

Figure 4B shows the effects of γ-tocotrienol treatment on signaling protein levels and 
activation within the Hedgehog pathways. Results show that the Hedgehog Shh ligand 
is relatively high in MDA-MB-231 breast cancer cells in the vehicle-treated control group. 
Similarly, PTCH2 receptor, Smo, GSK3β, and Gli1 were highly expressed, while the 
inhibitor for Hedgehog signaling SUFU displayed a relatively low level of expression in 
the vehicle-treated MDA-MB-231 human breast cancer cells (Figure 4B). Treatment with 
γ-tocotrienol induced a dose-dependent decrease in Shh ligand expression, as well as a 
dose-responsive reduction in PTCH2 receptor, Smo, GSK3β, and Gli1, and a correspond-
ing increase in SUFU protein levels, as compared to MDA-MB-231 cells in the vehicle-
treated control group (Figure 4B). These data indicated that γ-tocotrienol inhibition of 
EMT is also mediated by a suppression of canonical Hedgehog pathway and provides 
further evidence that γ-tocotrienol treatment may provide significant benefit in the treat-
ment of metastatic breast cancer.

6. Conclusion

Results from these reports show that treatment with 0–5 μM γ-tocotrienol induced a sig-
nificant dose-dependent inhibition of highly malignant MDA-AM-231 human breast cancer 
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cell growth after a 4-day culture period. Furthermore, canonical Wnt and Hedgehog sig-
naling are highly expressed in these triple negative breast cancer cells, and γ-tocotrienol 
growth inhibitory effects are associated with a reduction in Wnt and Hedgehog signaling 
and regulatory proteins. Since γ-tocotrienol also induces a reversal of EMT in these cells and 
canonical Wnt and Hedgehog signaling pathways are involved in promoting EMT, it can be 
concluded that γ-tocotrienol inhibition of EMT is mediated by a corresponding reduction 
in canonical Wnt and Hedgehog signaling in malignant MDA-MB-231 human breast cancer 
cells. This hypothesis is further evidenced by the finding that γ-tocotrienol inhibition of Wnt 
and Hedgehog signaling and reversal of EMT is associated with a significant decrease in 
migration, invasion and stemness of these cells [12].

Metastasis is still the primary cause for the mortality (90%) in cancer patients with cancer. 
While a great deal of progress has been recently achieved in the further understanding of 
the molecular and cellular mechanisms involved in the metastatic process, these mechanisms 
are not completing understood and clinical therapies for the management and treatment of 
metastatic cancer remains insufficient. Expanding knowledge in gene expression, cellular 
behavior, and biological events of cancer cells will provide important and novel insights for 
the treatment of metastatic breast cancer. New biomarkers in areas, such as EMT will provide 
innovative chances in predictive methods of the metastatic potential of a primary tumor and 
a novel target for therapy. Experimental results summarized in Figure 5 indicates some of the 
key targets in the treatment of EMT and metastasis and the possible role of γ-tocotrienol in 
the prevention and treatment of these processes.

In summary, experimental evidence demonstrates that γ-tocotrienol reversal of EMT 
results, at least in part, through the inhibition of canonical Wnt and Hedgehog signaling. 
These findings also suggest that supplemental treatment with γ-tocotrienol may be effec-
tive in providing significant benefit in the prevention and treatment of metastatic breast 
cancer.

Figure 5. Schematic representation of γ-tocotrienol effects on the canonical Wnt and Hedgehog pathways and EMT. 
γ-Tocotrienol inhibits Wnt signaling by decreasing the expression of Wnt3a ligand, FZD7/LRP6 complex activation, 
DVL2 and cyclin D1 and a corresponding increase in Naked 1 level. Additionally, γ-tocotrienol inhibits Hedgehog 
signaling by decreasing the expression of Shh ligand, PTCH2, Smo, GSK3β, and Gli1 associated with a corresponding 
increase in SUFU levels. Several other cytosolic and nuclear proteins were minimized which can ultimately lead to a 
suppression in gene expression associated with EMT.
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