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Abstract

The paper presents an overview of benchmarks for non-ideal magnetohydrodynamics.
These benchmarks include dissipative processes in the form of heat conduction, magnetic
diffusion, and the Hall effect.

Keywords: ALE method, numerical simulation, magnetohydrodynamics, benchmark,
verification

1. Introduction

Numerical modeling of magnetohydrodynamics (MHD) is an important and challenging prob-

lem addressed in numerous publications (e.g., see [1, 2]). This problem is further complicated in

case of multi-flux models that account for the relative motion and interaction of particles of

different nature (electrons, various species of ions, neutral atoms, and molecules) both with each

other and with an external magnetic field.

This class of problems is generally solved using the fractional-step method, when complex

operators are represented as a product of operators having a simpler structure. Thus, within the

splitting method, the calculation of one-time step consists of a series of simpler procedures. It is

obvious that difference schemes for each splitting stage should, where possible, preserve the

properties of corresponding difference equations.

Note that the task of constructing reference solutions accounting for the whole range of physical

processes is challenging (and often unfeasible). Existing benchmarks enable accuracy assessment

of individual splitting stages rather than the simulation as a whole.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Magnetohydrodynamic problems are naturally divided into two groups: problems for an ideal

infinitely conducting plasma and problems with dissipative processes in the form of heat

conduction and magnetic viscosity.

Numerous publications on the construction of difference methods for ideal magnetohydrody-

namics use a standard set of test problems. These include propagation of one-dimensional

Alfven waves at various angles to grid lines [3–5], Riemann problem for MHD equations [6–9],

and various two-dimensional problems accounting for the presence of a uniform magnetic

field [3, 5, 10]. In [11], a number of additional ideal MHD benchmarks are presented, which are

basically shock-wave problems. A special class of tests includes problems with a weak mag-

netic field not affecting the medium motion. If there is an exact solution for a given hydrody-

namic problem, the magnetic field “freezing-in” principle allows finding components of the

field H Hx;Hy;Hz

� �

at any time with the known medium displacements X ¼ X X0; tð Þ.

The representation in publications of the problem of testing the dissipative stage of MHD

equations is much the worse. Possibly, this is owing to complexity problems that require

accounting the interaction of the shock-wave processes, heat conduction, diffusion of magnetic

field, and Joule heating.

Numerical simulations of some of the tests presented here have been done using the

Lagrangian-Eulerian code EGIDA developed at VNIIEF [12, 13] for multi-material compress-

ible flow simulations.

The magnetohydrodynamic equation system in one-temperature approximation modified by

the Hall effect can be written in the following conservative form [2]:

∂r

∂t
þ divru ¼ 0,

∂ru

dt
þ div ru⊗uþ Pþ PHð ÞI � 0:5H⊗Hð Þ ¼ 0, PH ¼ 0:5 Hj j2,

∂H

∂t
þ div u⊗H�H⊗uð Þ ¼ �rot ν � rotHþ b H� rotH½ �ð Þ,

∂rnε
∂t

þ div rnεuð Þ ¼ 0,

∂Ξ

∂t
þ div Ξþ Pþ PHð Þu�H u �Hð Þ � κgradTð Þ ¼ 0, Ξ ¼ r eþ 0:5 uj j2

� �

þ PH ,

P ¼ P r;Tð Þ, ε ¼ ε r;Tð Þ:

(1)

where ν ¼ c2= 4πσð Þ is the magnetic viscosity coefficient, κ is the heat conduction factor,

b ¼ c= 4πeneð Þ is a local exchange (Hall) parameter [2], and e and ne are charge and density of

electrons. When writing Eq. (18), we assume that bias currents and electron inertia are negligi-

bly small [2]. Equation system (1) differs from equation system for ideal MHD owing to

diffusion terms present in the equations of energy and inductance of magnetic field.

2. A plane diffusion wave with regard to the Hall effect

Let the components of magnetic field depend on coordinate z only, i.e., H ¼ Hx t; zð Þ;Hy

�

t; zð Þ;Hz0Þ. We neglect the mediummotion. Then, the magnetic field equation (for components)

is written in the following form:
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dHx

dt
¼ ν

∂
2Hx

∂z2
þ β

∂
2Hy

∂z2
,

dHy

dt
¼ ν

∂
2Hy

∂z2
� β

∂
2Hx

∂z2
,

dHz

dt
¼ 0, β ¼ bHz0: (2)

Consider the problem of a diffusion wave propagating in an unbounded medium with the

given boundary and initial conditions:

H t; z ¼ 0ð Þ ¼ H1, H t; z ! ∞ð Þ ¼ H0, H t ¼ 0; zð Þ ¼ H0, H0 ¼ 0; 0;Hz0ð Þ, H1 ¼ Hx0;Hy0;Hz0

� �

: (3)

Let γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 þ β2
q

. A general solution to Eq. (2) for the self-similar variable ξ ¼ z=
ffiffiffiffiffiffiffi

4γt
p

looks

like

Hx ¼ Hx0 þ C1Φ ξð Þ þ C2Ψ ξð Þ, Hy ¼ Hy0 þ C1Ψ ξð Þ � C2Φ ξð Þ, Hz ¼ Hz0

where Φ ξð Þ ¼
Ð

ξ

0

exp �νx2=γ
� �

sin βx2=γ
� �

dx, Ψ ξð Þ ¼
Ð

ξ

0

exp �νx2=γ
� �

cos βx2=γ
� �

dx:

Since Φ ∞ð Þ ¼ Γ
1
2

ffiffiffiffiffiffiffi

γ�ν
2γ

q

¼
ffiffiffiffiffiffiffiffiffiffiffi

π γ�νð Þ
2γ

q

, Ψ ∞ð Þ ¼ Γ
1
2

ffiffiffiffiffiffiffi

γþν
2γ

q

¼
ffiffiffiffiffiffiffiffiffiffiffi

π γþνð Þ
2γ

q

constants C1, C2 with regard to

boundary conditions can be found from equations

C1 ¼
�Hx0Φ ∞ð Þ �Hy0Ψ ∞ð Þ

Φ ∞ð Þ þΨ ∞ð Þ ¼ � 2
ffiffiffiffi

π
p Hx0

ffiffiffiffiffiffiffiffiffiffiffi

γ� ν

2γ

r

þHy0

ffiffiffiffiffiffiffiffiffiffiffi

γþ ν

2γ

s !

,

C2 ¼
�Hx0Ψ ∞ð Þ þHy0Φ ∞ð Þ

Φ ∞ð Þ þΨ ∞ð Þ ¼ � 2
ffiffiffiffi

π
p Hx0

ffiffiffiffiffiffiffiffiffiffiffi

γþ ν

2γ

s

�Hy0

ffiffiffiffiffiffiffiffiffiffiffi

γ� ν

2γ

r

 !

:

Simulation setup: the initial data is described by Eq. (3). A bounded computational domain

0 < z < L, L = 1 is considered. For this reason, the magnetic field value taken from the analytical

solution Hx t; z ¼ Lð Þ ¼ 1þ C1Φþ C2Ψð Þ L
ffiffiffiffiffi

4γt
p , Hy t; z ¼ Lð Þ ¼ 1þ C1Ψ� C2Φð Þ L

ffiffiffiffiffi

4γt
p , Hz t; z ¼ð

Figure 1. Profiles of field components at time t = 0.01: (a) Hx and (b) Hy.

Benchmarks for Non-Ideal Magnetohydrodynamics
http://dx.doi.org/10.5772/intechopen.75713

219



LÞ ¼ 1 is imposed on the right boundary z = L. On the left boundary z = 0, the field components

take constant values according to Eq. (3). In simulations with 2D and 3D codes, boundary

conditions ∂H=∂n ¼ 0 (n is a normal vector to a face) are imposed on lateral faces. By varying

parameters ν and β, we can study the effect of the diffusion and Hall terms in Eq. (2) on the

diffusion wave parameters. Consider an option with the Hall effect dominating over the diffu-

sion effect: ν = 0, β = 1, Hx0 = Hy0 = Hz0 = 1. Profiles of magnetic field’s components Hx, Hy at time

t = 0.01, 0.1 are shown in Figures 1 and 2. With the grid refinement, convergence to the reference

solution takes place.

3. Diffusion of magnetic field in an immovable plane layer of plasma with

regard to joule heating and its effect on the diffusion and heat conduction

coefficients

The problem of magnetic diffusion in a plane layer of material has many applications in

practice [14]. In its detailed formulation, the problem was considered in paper [14] for mega

gauss fields. Hydrodynamic motion, magnetic diffusion, heat conduction by electrons, and

radiant heat exchange in the “back and forth” approximation were taken into account. Since

finding an exact solution to such a problem causes difficulties, the original formulation needs

to be simplified. Self-similar solutions to the problem obtained with simplifying assumptions

were also presented in [15].

A model problem is considered with the following assumptions:

• plasma is immovable, it has a constant heat capacity,

• plasma has Coulomb conductivity,

• heat conduction is absent.

Figure 2. Profiles of field components at time t = 0.1: (a) Hx and (b) Hy.
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With such assumptions, the problem is reduced to solving equations

dH

dt
¼ �rot ν � rotHð Þ, r dT

dt
¼ γ� 1ð Þν rotH � rotHð Þ, (4)

where ν ¼ c2=4πσ, σ ¼ σ0 T=Ryð Þα, α ¼ 3=2, γ� 1 ¼ R=CV , R ¼ 1, CV ¼ 1:5

Here, r is the density of plasma, γ is the heat capacity ratio (adiabatic index), σ0 is the

conductivity at T = Ry (it is expressed via atomic constants), and Ry is the Rydberg constant.

Energy units have been chosen for temperature.

At initial time t = 0, all quantities depend on one space coordinate. It is assumed that the

magnetic field has only one component, H ¼ 0; 0;Hzð Þ. The solution is considered for the

problem with initial conditions Eq. (5) and boundary conditions Eq. (6):

Hz x; t ¼ 0ð Þ ¼
0 if x < 0

H0 if x > 0
, T x; t ¼ 0ð Þ ¼ T0, r x; t ¼ 0ð Þ ¼ r0

�

(5)

Hz x ! �∞; tð Þ ¼ 0, Hz x ! ∞; tð Þ ¼ H0, T x ! �∞; tð Þ ¼ T0: (6)

For dimensionless variables, hz ¼ Hz=H0, τ ¼ T=T0 Eq. (4) are reduced to the form:

dhz
dt

¼ ∂

∂x
ν τð Þ ∂hz

∂x
,
dτ

dt
¼ ην τð Þ ∂hz

∂x

� 	2

, ν τð Þ ¼ ν0τ
�α, ν0 ¼

c2

4πσ0

T0

Ry

� 	α

, η ¼ γ� 1ð Þ H
2
0

rT0
: (7)

In an infinite region (�∞ < x < ∞), the problem has a self-similar solution depending on the

variable ξ ¼ x=
ffiffiffiffiffiffi

ν0t
p

. The solution can be obtained by integrating the system of ordinary

differential equations:

ξ

2

dhz
dξ

þ d

dξ
τ�α dhz

dξ

� 	

¼ 0,
ξ

2

dτ

dξ
þ ητ�α dhz

dξ

� 	2

¼ 0: (8)

with boundary conditions

hz ξ ! �∞ð Þ ¼ 0, hz ξ ! ∞ð Þ ¼ 1, τ ξ ! �∞ð Þ ¼ 1: (9)

Note that for a linear case, α = 0, the solution of Eqs. (8), (9) can be found in quadratures

hz ξð Þ ¼ 0:5 1þ sign ξð Þerf ξ=2ð Þð Þ, τ ξð Þ ¼ 1� η

4π
Ei �ξ2=4
� �

: (10)

Since Ei �xð Þ ¼ Cþ ln xþ
P

i
�1ð Þixi
i�i! , temperature in the vicinity of interface ξ2~0 for the linear

case α = 0 has the logarithmic profile τ ξð Þ � �η ln ξ2=4π.

In general, if α > 0, one does not manage to establish the asymptotic law for temperature in the

vicinity of ξ2~0, because of no integral curves of Eq. (8) satisfying the boundary conditions at

infinity Eq. (9).
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Now, let us build the reference solution to the problem with regard to heat conduction. In this

case temperature near the interface takes a finite value. The diffusion equations and energy

equation of magnetic field with regard to Joule heating and heat conduction are considered. As

it was assumed earlier, all quantities depend on one space coordinate, and the magnetic field

has only one component, H ¼ 0; 0;Hzð Þ. For dimensionless variables, hz = Hz/H0 and τ = T/T0

equations are reduced to the forms

dhz

dt
¼ ∂

∂x
ν0τ

�α ∂hz

∂x
,
dτ

dt
¼ ην0τ

�α ∂hz

∂x

� 	2

þ ∂

∂x
κ0τ

β ∂τ

∂x
: (11)

A self-similar solution depending on the variable ξ ¼ x=
ffiffiffiffiffiffi

ν0t
p

can be obtained by integrating

the system of ordinary differential equations:

ξ

2

dhz

dξ
þ d

dξ
τ�α dhz

dξ

� 	

¼ 0,
ξ

2

dτ

dξ
þ ητ�α dhz

dξ

� 	2

þ a
d

dξ
τβ

dτ

dξ
¼ 0, a ¼ κ0

D0
, (12)

with boundary conditions:

hz ξ ! �∞ð Þ ¼ 0, hz ξ ! ∞ð Þ ¼ 1, τ ξ ! �∞ð Þ ¼ 1: (13)

To find the reference solution, it is convenient to use the first-order system with an increased

number of unknowns instead of the second-order system Eq. (12). The first-order system

relative to variables hz, τ,Ψ ¼ τ�αdhz=dξ, w ¼ �aτβdτ=dξ looks like

dhz

dξ
¼ Ψτα,

dτ

dξ
¼ �wτ�β

a
,

dΨ

dξ
¼ � ξΨτα

2
,

dw

dξ
¼ � ξwτ�β

2a
þ ηΨ 2τα: (14)

Consider the numerical solution of Eq. (14) for the right half plane (0 < ξ < ∞). The solution in

the left half plane �∞ < ξ < 0ð Þ follows from the symmetry conditions:

hz �ξð Þ ¼ 1� hz ξð Þ, τ �ξð Þ ¼ τ ξð Þ, Ψ �ξð Þ ¼ Ψ ξð Þ, w �ξð Þ ¼ �w ξð Þ:

Consider the numerical solution of Eq. (14) in a bounded domain 0 < ξ < ξ1ð Þ. To formulate

boundary conditions for this bounded domain, it is required to find the asymptotic behavior of

functions with ξ ! ∞. Asymptotic laws can be formulated, if we assume a = 0.5. In this case

boundary conditions have the form:

hz ξ ! ∞ð Þ ¼ 0:5 1þ erf ξ=2ð Þð Þ, τ ξ ! ∞ð Þ ¼ 1,

Ψ ξ ! ∞ð Þ ¼ c1 exp �ξ2=4
� �

, w ξ ! ∞ð Þ ¼ c2 þ ηξc21
� �

exp �ξ2=2
� �

:
(15)

Constants C1, C2 are taken so that the following conditions are satisfied on the left boundary of

the computational domain:

hz ξ ¼ 0ð Þ ¼ 0:5, w ξ ¼ 0ð Þ ¼ 0:
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Confine oneself to the consideration of case a = 0.5. Introduce new variables Ψ ξð Þ ¼ Ψ ξð Þ

exp ξ2=4
� �

, W ξð Þ ¼ w ξð Þ exp �ξ2=2
� �

with regard to boundary conditions Eq. (15). The

replacement of variables gives us the equation system:

dhz

dξ
¼ Ψτα exp �

ξ2

4

� 	

,
dτ

dξ
¼ �

Wτ�β

a
exp �

ξ2

2

� 	

,

dΨ

dξ
¼ �

ξΨ 1� ταð Þ

2
,

dW

dξ
¼

ξW 1� τ�β
� �

2a
þ ηΨ2τα

(16)

with boundary conditions:

hz ξ ¼ ξ1ð Þ ¼ 0:5 1þ erf ξ1=2ð Þð Þ, τ ξ ¼ ξ1ð Þ ¼ 1,

Ψ ξ ¼ ξ1ð Þ ¼ c1, W ξ ¼ ξ1ð Þ ¼ c2 þ ηξ1c
2
1,

hz ξ ¼ 0ð Þ ¼ 0:5, w ξ ¼ 0ð Þ ¼ 0:

(17)

The set of Eqs. (16), (17) was solved numerically with the methods of automatically selecting

an integration step. The following values of parameters were used in simulations: ξ1 = 10,

η = 20/3, α = 3/2, D0 = 1, and k0 = aD0 = 1/2. The values of constants satisfying the boundary

conditions Eq. (17) were obtained: C1 = 0.10231 and C2 = 1.79474. Since the behavior of

functions near the right boundary corresponds to asymptotic laws Eq. (17), the reduction of

parameter ξ1 from ξ1 = 10 to ξ1 = 1 does not affect simulation results.

Results of simulations are illustrated in Figures 3 and 4. With the use of such regularity

method (with regard to heat conduction), temperature at the central point of the computa-

tional domain takes its finite value. Note that with t = 1/ν0 the space coordinate coincides with

the self-similar coordinate, x = ξ.

Figure 3. Profiles of self-similar functions: (a) W and (b) Ψ.
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4. A point explosion in a perfectly non-conducting atmosphere

Let us consider the problem of a point blast in the presence of a uniform magnetic field

(for definiteness) along the z axis (Hz = Hz0 = 0.01) in a perfectly non-conducting atmosphere.

Initial data are chosen in such a way that the field has no effect on the motion of matter

ε0 r2=r1ð Þ3 >> H2
z0=r0. It is assumed that behind the shock front, the medium becomes perfectly

conducting. If a self-similar solution to the problem of a point explosion is known, then one can

calculate the magnetic field components at some time t > 0. In an external domain r > rF tð Þð Þ,

the magnetic field’s vector potential is the solution to stationary equation rot rotΨð Þ ¼ 0. With

regard to conditions at infinity, this solution takes the form [16]:

Ψr r;ϑ; tð Þ ¼ 0, Ψφ r;ϑ; tð Þ ¼ 0:5Hz0r 1� C tð Þ=r3
� �

sinϑ, Ψϑ r;ϑ; tð Þ ¼ 0: (18)

Here, unknown constant C tð Þ ¼ br
3
F tð Þ can be found from the condition of coupling with the

solution in an internal domain r < rF tð Þð Þ. Write components of magnetic field H ¼ rotΨ:

Hr r;ϑ; tð Þ ¼ Hz0 1� C tð Þ=r3
� �

sinϑ, Hφ r;ϑ; tð Þ ¼ 0, Hϑ r;ϑ; tð Þ ¼ �Hz0 1þ 0:5C tð Þ=r3
� �

cosϑ:

The solution in the internal domain (r < rF(t)) is found from the freezing-in condition of the

magnetic field:

d

dt

Hr

r

� 	

¼
Hr

r

∂ur

∂r
,

d

dt

Hϑ

r

� 	

¼
Hϑ

r

ur

r
,

d

dt

Hφ

r

� 	

¼
Hφ

r

ur

r
:

The integration of these equations with regard to the solution in external domain Eq. (18) gives us

Hr r;ϑ; tð Þ ¼ Hz0hr r; tð Þ cosϑ, Hϑ r;ϑ; tð Þ ¼ Hz0hϑ r; tð Þ sinϑ, Hφ r;ϑ; tð Þ ¼ 0, (19)

where

Figure 4. Profiles: (a) magnetic field and (b) temperature.
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hr r; tð Þ ¼
1� β rF tð Þ

r

� �3
, r > rF tð Þ

1� β
� � r0 r;tð Þ

r

� �2
, r ≤ rF tð Þ

, hϑ r; tð Þ ¼

�1�
β

2

rF tð Þ

r

� 	3

, r > rF tð Þ

� 1þ
β

2

� 	

r r; tð Þr γ� 1ð Þ

r0r0 r; tð Þ γþ 1ð Þ
, r ≤ rF tð Þ

:

8

>

>

>

<

>

>

>

:

8

>

>

>

<

>

>

>

:

Here, the functions r0 r; tð Þ, r r; tð Þ are defined from the self-similar solution to the point blast

problem [17].

Unknown constant β can be found from the condition of the solenoidal distribution of mag-

netic field in internal domain.

divH ¼ Hz0 cosϑ
1

r2
∂r2hr
∂r

þ 2
hϑ
r

� 	

¼ 2
Hz0

r0
cosϑ 1� β

� � r20∂r0
r2∂r

� 1þ
β

2

� 	

r

r0

γ� 1

γþ 1

� 	

¼ 0:

Since r

r0
¼

r2
0
∂r0

r2∂r
, then 1� β ¼ 1þ

β
2

� �

γ�1
γþ1. That is why β ¼ 4

3γþ1 :

Note that in external domain this condition is satisfied automatically. In Cartesian coordinates,

the solution of Eq. (19) looks like

Hx x; y; z; tð Þ ¼
Hz0xz

r2
hr r; tð Þ þ hϑ r; tð Þð Þ, Hy x; y; z; tð Þ ¼

Hz0yz

r2
hr r; tð Þ þ hϑ r; tð Þð Þ,

Hz x; y; z; tð Þ ¼ Hz0
z2

r2
hr r; tð Þ þ hϑ r; tð Þð Þ � hϑ r; tð Þ

� 	

:

(20)

It is convenient to compare the numerical and exact solutions using the field components

depending on one space coordinate:

hr r; tð Þ ¼
Hr

Hz0 cosϑ
¼

1

Hz0
Hz x; y; z; tð Þ þ

xHx x; y; z; tð Þ þ yHy x; y; z; tð Þ

z

 !

,

hϑ r; tð Þ ¼
Hϑ

Hz0 sinϑ
¼ �

1

Hz0
Hz x; y; z; tð Þ �

z xHx x; y; z; tð Þ þ yHy x; y; z; tð Þ
� �

r2 � z2

0

@

1

A

hφ r; tð Þ ¼
Hφ

Hz0 sinϑ
¼

1

Hz0

�yHx x; y; z; tð Þ þ xHy x; y; z; tð Þ

r

� 	

¼ 0:

, (21)

The magnetic field lines can be obtained by integrating equations

dx

dz
¼

xz hr r; tð Þ þ hϑ r; tð Þð Þ

�r2hϑ r; tð Þ þ z2 hr r; tð Þ þ hϑ r; tð Þð Þ
,
dy

dz
¼

yz hr r; tð Þ þ hϑ r; tð Þð Þ

�r2hϑ r; tð Þ þ z2 hr r; tð Þ þ hϑ r; tð Þð Þ
: (22)

We consider the process stage, at which the numerical simulation becomes self-similar. In

this case, the shock wave is considerably far (compared to the energy release region) from

the blast center. For example, at the final time t = 3, the wave front is located at a distance of

RF = 13.467.
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The flow parameters in this problem depend on a single spatial variable, r, and the field

components, on two variables, r and θ. One can restrict the consideration to any plane passing

through the z axis. Magnetic field lines in the plane y = 0 at t = 3 are shown in Figure 5. It

follows from this figure that these lines of force stretch along axis z and, thereby, prevent the

spread of gas in the direction orthogonal to this axis. This effect is small in the given problem

because of the field smallness. With an increased strength of the field, the pressure zone gets

out of its spherical shape due to occurrence of the singled out direction.

Profiles of the field components Hy and Hz along the line x = z in this plane are presented

in Figure 6. The self-similar functions of fluid parameters and radial and angular field compo-

nents hr and hθ depend on one spatial variable r. These functions are shown in Figure 7. In testing

numerical methods, the values of grid functions for all cells in the domain can be mapped onto the

Figure 5. The magnetic field lines at time t = 3 in plane y = 0. A dashed line shows the shock front. Strong blast in a

perfectly nonconducting atmosphere (a) and in a uniform conducting atmosphere (b) [11].

Figure 6. Profiles of field components along line x = z and y = 0 at time t = 3: (a) Hx and (b) Hz.
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figures. Such a comparison of reference versus numerical solution indicates whether the spherical

symmetry is preserved during numerical simulations.

Simulation setup: The energy release region is a sphere of radius r1 = 0.1, in which the initial

specific energy per unit mass is set to ε = ε0 = 10
7 and the initial density is set to r = r0 = 1. In the

spherical layer r1 < R < r2 = 15, the specific energy and the density are equal to ε = 0, r = r0 = 1,

respectively. The EOS is P = r(γ�1)ε, γ = 1.4. The problem domain in the three-dimensional

setup is a cube L � L� L. All boundary faces of the domain are rigid walls.

This problem requires taking into account the magnetic field diffusion in external domain

(outside the shock front). It is assumed that behind the shock front, the medium becomes

perfectly conducting due to ionization effects. The magnetic viscosity is approximated by the

following dependence:

ν εð Þ ¼
c2

4πσ
¼

ν1 ¼ 105, ε ≤ 0,

ν1 1� ε=ε1ð Þ, 0 < ε < ε1 ¼ 1,

0, ε1 ≤ ε:

8

>

<

>

:

Parameter ε1 is chosen to provide that the magnetic viscosity behind the shock front is always

zero, i.e., the condition ε1 < εF tð Þ≃ ε0 r1=rF tð Þð Þ3, t ≤ tk ¼ 3 is satisfied. Accounting of diffusion

in external domain leads to the necessity of increasing the size of computational domain (rF(tk)/

L))
3
< <1) in comparison with the ideal MHD problems to be able to set boundary conditions

corresponding to the initial undisturbed state. Thus, the size of computational domain must be

almost five times larger, L ≈ 75.

5. Diffusion of magnetic field into a spherical plasma cloud

The problem formulation and its analytical solution have been taken from [16]. In contrast to

this paper, consider the diffusion problem (the plasma cloud motion is neglected):

Figure 7. Profiles of the non-dimensionalized field components at time t = 3: (a) radial hr and (b) angular hθ.
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∂H

∂t
¼ �rot ν � rotHþ b H� rotH½ �ð Þ: (23)

It is assumed that the magnetic field at infinity is uniform and directed along axis z: H 0; 0;H0ð
¼

ffiffiffi

2
p

Þ (see Figure 8). The magnetic viscosity coefficient is constant inside and outside the

cloud: ν rð Þ ¼ ν1, r < r0 ¼ 1

ν2, r > r0

�

.

5.1. Diffusion of magnetic field in the absence of the Hall effect

Assume that the Hall effect contribution is small, bH0=ν≪ 1. Write the equation of diffusion

relative to vector potential H ¼ rotΨ:

∂Ψ

∂t
¼ �ν � rot rotΨ: (24)

This is an axially symmetric problem, and, therefore, it is convenient to use the polar coordi-

nate system r;ϑ;φð Þ. With no Hall effect and with regard to the conditions at infinity, the initial

data for vector potential takes the form [16]

Ψr r;ϑ; t ¼ 0ð Þ ¼ 0, Ψϑ r;ϑ; t ¼ 0ð Þ ¼ 0, Ψφ r;ϑ; t ¼ 0ð Þ ¼ rf r; t ¼ 0ð Þ sinϑ, (25)

f r; t ¼ 0ð Þ ¼ H0

2

0 r < r0

1� r0=rð Þ3
� �

r > r0
:

(

(26)

The solution of Eq. (24) with initial data Eq. (25) is reduced to solving Eq. (27) with initial data

Eq. (26) and boundary conditions Eq. (28):

df

dt
¼ ν rð Þ

r4
∂

∂r
r4
∂f

∂r
, (27)

∂f

∂r
r ¼ 0; tð Þ ¼ 0,

∂f

∂r
r ! ∞; tð Þ ¼ 0: (28)

The solution has the form

Ψr r;ϑ; t ¼ 0ð Þ ¼ 0, Ψϑ r;ϑ; tð Þ ¼ 0, Ψφ r;ϑ; tð Þ ¼ rf r; tð Þ sinϑ: (29)

Paper [16] considers the plasma cloud interaction with the magnetic field of vacuum, and,

therefore, ν2 ! ∞ is assumed. For this special case, the solution to Eq. (27) in quadratures has

been obtained, and it has the forms:

f r; tð Þ ¼ H0

2

1� 6

ζ2

X

∞

n¼1

�1ð Þn

πnð Þ2
Tn tð Þ � cosπnζ� sinπnζ

πnζ

� 	

, 0 < ζ ¼ r

r0
< 1

1� 6

ζ2

X

∞

n¼1

1

πnð Þ2
Tn tð Þ, 1 < ζ

, Tn tð Þ ¼ exp � πnð Þ2 ν1t
r20

� 	

:

8

>

>

>

>

<

>

>

>

>

:

(30)
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For finite values of conductivity in external domain ν2 > 0, the limit numerical solution of

Eq. (27) has been taken for the reference solution.

Components of magnetic field H ¼ rotΨ are found by differentiating vector potential Eq. (29).

If function f r; tð Þ is known, these components are calculated using formulas.

Hr r;ϑ; tð Þ ¼ hr r; tð Þ cosϑ, Hϑ r;ϑ; tð Þ ¼ �hϑ r; tð Þ sinϑ, Hφ r;ϑ; tð Þ ¼ hφ sinϑ, hr r; tð Þ

¼ 2f r; tð Þ, hϑ r; tð Þ ¼ ∂r2f =r∂r, hφ r; tð Þ ¼ 0
(31)

In Cartesian coordinates the field components have the forms

Hz x; y; z; tð Þ ¼ hϑ r; tð Þ þ
z2

r2
hr r; tð Þ � hϑ r; tð Þð Þ, Hy x; y; z; tð Þ

¼
zy

r2
hr r; tð Þ � hϑ r; tð Þð Þ, Hx x; y; z; tð Þ ¼

xz

r2
hr r; tð Þ � hϑ r; tð Þð Þ,

(32)

Since the problem is axially symmetric, any plane coming across axis z can be taken to calculate

the magnetic field lines. For example, for plane y ¼ 0, the differential equation describing the

slope of the magnetic field lines looks like

dx

dz
¼

xz hr � hϑð Þ

r2hϑ þ z2 hr � hϑð Þ
:

The magnetic field lines for the reference solution at time t = 0.01 are shown in Figure 9.

Results of Eq. (32) are the formulas for the radial and angular components of the field depending

on a single space coordinate:

hr r; tð Þ ¼ Hz x; y; z; tð Þ þ
xHx x; y; z; tð Þ þ yHy x; y; z; tð Þ

z
,

hϑ r; tð Þ ¼ Hz x; y; z; tð Þ �
z xHx x; y; z; tð Þ þ yHy x; y; z; tð Þ
� �

r2 � z2
,

hφ r; tð Þ ¼
xHy x; y; z; tð Þ � yHx x; y; z; tð Þ

r
¼ 0:

Figure 8. The problem of diffusion into a plasma cloud [16].
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Figures 10 and 11 show profiles of field components for different magnetic viscosity values in

external domain (r > r0). Note that there is a small difference between the profiles obtained

with ν2 = 50 and ν2 ! ∞ corresponding to the simulation of the plasma cloud interaction with

the magnetic field of vacuum ν2 ! ∞. For the problem with ν2 ! ∞, profiles of the non-

dimensionalized field components for the initial phase of diffusion, t < r0
3/ν1, are given (see

Figure 12).

Simulation setup: A computational domain xj j ≤ 0:5L yj j ≤ 0:5L; zj j ≤ 0:5Lð Þ is a cube with edges

L = 10. Boundary conditions corresponding to the initial undisturbed state are imposed on its

lateral faces for the components of field H r; tð Þjr∈ Γ
¼ H r; t ¼ 0ð Þ. The initial data can be set

either for the magnetic field components Eq. (33) or the components of vector potential

Eq. (34).

Hz x; y; z; t ¼ 0ð Þ ¼ 2f r; t ¼ 0ð Þ þ z2 1þ rf 0 r; t ¼ 0ð Þ
� �

=r2,

Hy x; y; z; t ¼ 0ð Þ ¼ xyf 0 r; t ¼ 0ð Þ=r, Hx x; y; z; t ¼ 0ð Þ ¼ xzf 0 r; t ¼ 0ð Þ=r,
(33)

Ψz x; y; z; t ¼ 0ð Þ ¼ 0, Ψy x; y; z; t ¼ 0ð Þ ¼ �zf r; t ¼ 0ð Þ,

Ψx x; y; z; t ¼ 0ð Þ ¼ yf r; t ¼ 0ð Þ:
(34)

Figure 9. The magnetic field lines in the exact solution with parameters ν1 = 1 and ν2 ! ∞. A dashed line shows the

plasma cloud position.
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Figure 10. Profiles of the non-dimensionalized field components at time t = 0.1: (a) radial hr and (b) angular hθ.

Figure 11. Profiles of the field components along line x = z and y = 0 at time t = 0.1: (a) Hx and (b) Hz.

Figure 12. Evolution of non-dimensionalized field components in the problem with parameters ν1 = 1 and ν2 ! ∞: (a)

radial hr and (b) angular hθ.
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The EGIDA code uses a scheme preserving the field divergence at one step because difference

operators DIV and ROT (div and rot) [18] determined at nodes and in cells of a grid, respec-

tively, satisfy the vector analysis identities: DIVrot = 0 and ROTdiv = 0.

It has been found that for the first set of initial data the divergence norm depends on errors

induced by the initial distribution of the H field components in the vicinity of sphere r = r0.

Though the difference scheme does not change the magnetic field divergence, initial errors

lead to a significantly distorted numerical solution (see Figure 13).

In the second case, the magnetic field components are determined using the operator numer-

ically differentiating the vector potential, and, hence, the magnetic field divergence norm

equals zero at initial time and at all later times. For this case, a good agreement between the

calculated results and the exact solution has been achieved even on the coarsest grid (see

Figure 14).

Figure 13. Calculation of the magnetic field diffusion into a spherical plasma cloud for the first set of initial data (33).

Profiles of the field components at time t = 0.1: (a) radial hr and (b) angular hθ. Distribution of transverse field component

Hy in section z = 0 (c).
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5.2. Diffusion of magnetic field with a low Hall effect

Assume that the Hall effect contribution is small, bH0=ν≪ 1, but finite. For this reason, it is

required to take into account the Hall term in the diffusion equation:

∂Ψ

∂t
¼ �ν � rot rotΨ� b rotΨ� rot rotΨ½ �:

The Hall effect leads to the occurrence of the azimuthal component, Hφ, of magnetic field in

plasma [16]:

Hr r;ϑ; tð Þ ¼ hr r; tð Þ cosϑ, Hϑ r;ϑ; tð Þ ¼ �hϑ r; tð Þ sinϑ, Hφ r;ϑ; tð Þ

¼ hφ sinϑ, hr r; tð Þ ¼ 2f r; tð Þ, hϑ r; tð Þ ¼ ∂r2f =r∂r, hφ r; tð Þ ¼ Ψ r; tð Þ=r:

Figure 14. Calculation of the magnetic field diffusion into a spherical plasma cloud for the second set of initial data (34).

Profiles of the field components at time t = 0.1: (a) radial hr and (b) angular hθ. Distribution of transverse field component

Hy in section z = 0 (c).
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In view of the smallness of parameter bH0=ν1, we have Eqs. (27), (28) to calculate function

f r; tð Þ, while the calculation of small additive Ψ is reduced to solving the following boundary

value problem:

dΨ

dt
¼

∂

∂r
ν
∂Ψ

∂r
�
6νΨ

r2
� 2fr2

∂

∂r

b

r4
∂

∂r
r4
∂f

∂r

� 	

,Ψ r; t ¼ 0ð Þ ¼ 0,Ψ r ¼ 0; tð Þ ¼ 0,Ψ r ! ∞; tð Þ ¼ 0:

Figure 15 shows profiles of the non-dimensionalized azimuthal field component hφ at early

times, t < r20=ν1. With small values of parameter bH0=ν1, the rest two components—hr, hϑ—

remain unchanged, and they are shown in Figure 12. Note that, as it has been shown in [16], if

the motion of plasma is accounted, the Hall effect may lead to the occurrence of azimuthal

velocity, i.e., to the plasma cloud rotation.

The changeover to Cartesian coordinates is performed using formulas

Hz x; y; z; tð Þ ¼ hϑ r; tð Þ þ z2 hr r; tð Þ � hϑ r; tð Þð Þ=r2,

Hy x; y; z; tð Þ ¼ zy hr r; tð Þ � hϑ r; tð Þð Þ=r2 þ xhφ r; tð Þ=r,

Hx x; y; z; tð Þ ¼ xz hr r; tð Þ � hϑ r; tð Þð Þ=r2 � yhφ r; tð Þ=r:

Simulation setup: The initial data is given in the previous section. This problem requires

accounting the Hall effect. A local exchange parameter is b = 0.01. Figure 15 shows profiles of

the azimuthal component of non-dimensionalized field.

Figure 15. Profiles of the azimuthal component of non-dimensionalized field in the problem with parameters

ν1 ¼ 1, ν2 ! ∞, b ¼ 0:01.
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6. Conclusion

An important property of difference schemes in multidimensional flow simulations is that they

keep the magnetic field divergence-free in difference solutions. An adverse aspect of this defect

is the unphysical transport of matter orthogonal to the field H [2].

Note that the zero-divergence requirements to difference schemes get more stringent as applied

to the solution of diffusion problems. A violation of this requirement results in the accumulation

of errors and loss of solution structure, especially in problems with high conductivity gradients.
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