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Abstract

In this study, cold plasma at atmospheric pressure, as a novel approach of bioprocess 
intensification, was used to induce yeast for the improvement of ethanol production. 
Response surface methodology (RSM) was used to optimize the discharge-associated 
parameters of cold plasma for the purpose of maximizing the ethanol yield achieved 
by cold plasma-treated S. cerevisiae. The resulting yield of ethanol reached to 0.48 g g−1 
under optimized parameters of plasma exposure time of 1 min, power voltage of 26 V, 
and an exposed sample volume of 9 mL, which represented an increase of 33% over con-
trol. Compared with non-exposed cells, cells exposed with plasma for 1 min presented 
a notable increment in cytoplasmic free Ca2+, when these exposed cells showed the sig-
nificant increase in membrane potential. At the same time, ATP level decreased by about 
40%, resulting in about 60% reduction in NADH. Taken together, these data suggested 
that the mechanism that air cold plasma raised plasma membrane potential, which led 
to increases in cytosolic Ca2+ concentration. Furthermore, the cofactor metabolism, such 
as ATP and NADH, was subjected to regulation that was mediated by Ca2+, ultimately 
improving yeast productivity. This may have a underlying and broad utilization in 
enhancing bioconversion capability of microbe in the next few years.

Keywords: ethanol, Saccharomyces cerevisiae, cofactor metabolism, bioprocess 
intensification, cold plasma at atmospheric pressure

1. Introduction

Bioethanol is currently being commercially produced as an alternative to petroleum-based trans-
portation fuels, since it is clean, renewable, carbon-neutral and environmentally friendly [1–3]. 
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Saccharomyces cerevisiae is one of dominant strains of bioethanol production. During fermenta-
tion, various factors such as cell membrane barrier, intracellular enzyme activity, the multiple 
inhibitions of products and substrates, limit the yeast growth and reduce microbial viability, and 
consequently cause a decrease in ethanol yield [4]. Among those factors, cell membrane perme-
ability is main influence factor that restricts the rates of substrate uptake and release of metabolic 
products. It has become a focus of global attention to develop a novel method to control mem-
brane permeability for improving yeast capacity in bioconversion of ethanol.

Pretreatment technologies have been developed to intensify bioethanol production, includ-
ing physical, chemical, biological and physicochemical technologies [5–9]. Furthermore, 
the methods to control the membrane permeability have also been established, such as 

microwave, electric field, oxidative stress [10–12]. However, these methods have several 
drawbacks. For example, the chemical methods could generate enormous amounts of haz-
ardous waste, while physical methods are difficult to apply at large scales. It is therefore 
necessary to develop a novel approach to change cell membrane permeability for improved 

bioethanol yield.

Cold plasma at atmospheric air pressure has recently been regarded as a new and advanta-
geous pretreatment technology result from its superior features of high efficiency, low energy 
consumption and environmentally friendly. Air cold plasma could present various biological 
effects on the microbes, such as activation effect, sterilization effect and mutagenesis effect, 
due to the changes in the concentration of reactive species caused by different parameters 
associated with the plasma discharge [13]. Therefore, the discharge-associated parameters 
for improved ethanol yield need to be optimized. In this study, the response surface method 
(RSM) was performed to optimize experimental parameters that could cause the increase in 
the yield of ethanol generated by S. cerevisiae.

Saccharomyces cerevisiae has been widely used in the production of bioethanol by transform-
ing glucose in industry. The glucose metabolic pathway in S. cerevisiae during anaerobic fer-
mentation is shown in Figure 1. The tricarboxylic acid cycle (TCA) pathway occurs as two 
branches in the cytosol [14], but does not operate as a cycle in the mitochondrion as most of 

the earlier reports.

The cell membrane is the first barrier that the substrate enters into the cytoplasm. Thus the 
improved membrane permeability would promote the glucose utilization and even ethanol 
release. The rapid consumption of glucose could disturb the cofactor metabolism (such as 
ATP, NADH et al.) and the re-distribution of carbon flux in glycolysis pathway [15]. In addi-
tion, the open of ion channels is the one of mechanisms that the cell membrane permeability 

is improved. Especially, calcium ion channel administers the alterations of cytoplasm calcium 
ion concentration ([Ca2+]

cyt
). Ca2+, as a key secondary messenger, is importantly responsible for 

cell metabolism and activities of some categories of ATPase [16]. As shown in Figure 1, a raise 

of [Ca2+]
cyt

 can be result of improved inflow of extracellular Ca2+ by Cch1 protein/Mid1 protein 
(Cch1/Mid1 p) on cell membrane or as a result of outflow of vacuolar Ca2+ into the cytoplasm 

through vacuole membrane-located Yvc1 protein (Yvc1p) channel [17–20]. Until now, little 
knowledge has been obtained on the relationship among air cold plasma, cell membrane per-
meability, cofactor metabolism and ethanol yield.
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The object of this study was to achieve the maximum yield of ethanol by optimizing param-
eters associated with plasma discharge. Moreover, the mechanism of intensified yield of 
ethanol produced by S. cerevisiae was explored. These data will provide the valuable theory 
base for developing a novel bioprocess intensification technology in biochemical engineering 
industry.

2. Results and discussion

2.1. Parameter optimization associated with plasma discharge for enhanced ethanol 

yield

2.1.1. Influence of plasma treatment time on ethanol yield

To achieve the maximum ethanol-yield, plasma treatment time was set at five different time 
intervals, from 1 to 5 min. Ethanol yield at 3 min reached to the maximum (0.45 g/g), and it pre-
sented an increase of 29% over the control (Figure 2). This indicated that a plasma treatment 

Figure 1. Major pathway of glucose metabolism in S. cerevisiae under anaerobic conditions.
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time of 3 min was appropriate for maximal ethanol production. Thus, 3-min treatment time 
was chosen as the treatment time for studying the influences of various power supply voltages 
and volumes of yeast suspension on ethanol yield. In our earlier research, the highest yield 
of 1,3-propanediol produced by Klebsiella pneumoniae was got when the cell suspension was 
treated by dielectric barrier discharge for 4 min [21], proposing that different species microbes 
tend to respond differently to different times of plasma treatment. It was clear that 3-min is 
optimal for S. cerevisiae to obtain the maximum ethanol yield in glucose fermentation.

2.1.2. Influence of power supply voltage on ethanol yield

The influence of the power supply voltage in plasma treatment on ethanol yield is shown 
in Figure 3. Ethanol yield raised with raising power supply voltages, up to 0.42 g/g, then 
dropped with further increase in power supply voltage. The maximum yield of ethanol was 
achieved at 26 V.

It has been reported that charged particles in low-temperature plasma play a key role in the 
alterations of the outer structure of Candida albicans [22]. Raising the power supply voltages 
also causes an increase of the electric field in the gap distance. This might cause the microbial 
cell membrane to depolarize and become permeabilized, making it easier for the substrate to 
enter into the cells and for the products to release out the cells, which accordingly forming 
27% increase in ethanol yield over the control. However, further increment in voltage results 
in a reduction of ethanol yield. This might be attributed to the neutralization of the negative 
charges, which could lead to cytoplasm leakage and cell death [13].

2.1.3. Influence of treated suspension volume on ethanol yield

The influence of various sample volumes on the ethanol yield was studied for the maximal eth-
anol yield. As shown in Figure 4, a sample volume of 5 mL enhanced ethanol yield by 28% for 

Figure 2. Influence of plasma treatment time on ethanol yield. Data are expressed as mean ± SES. ‘a’ and ‘b’ indicate 
P < 0.05 and P < 0.01, respectively.
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the plasma pretreated cells over the control. Cell suspension also constitutes a dielectric layer. 
A larger suspension volume means that the thickness of the dielectric layer would increase in a 
Petri dish of 60-mm diameter, and any alteration about dielectric properties would also caused 
a alteration in discharge characteristics, especially for the power voltage [23]. As a result, a 
sample suspension volume of 5 mL could show an impactful augment in ethanol yield.

Figure 3. Influence of power supply voltage on ethanol yield. Data are expressed as mean ± SES. ‘a’ and ‘b’ indicate 
P < 0.05 and P < 0.01, respectively.

Figure 4. Influence of yeast suspension volume on ethanol yield. Data are expressed as mean ± SES. ‘a’ and ‘b’ indicate 
P < 0.05, P < 0.01, respectively.
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2.1.4. Predictive response model

The design matrix and the corresponding experimental data were presented in Table 1. These 
values were fitted to the next second-order polynomial equation and the results were pre-
sented in Table 2.

   
Y = 0.22 − 0.12  X  1   − 0.046  X  2   + 0.11  X  3   − 0.039  X  1    X  2   + 0.044  X  1    X  3   − 0.039  X  2    X  3  

                  + 0.05  X  1    X  1   − 0.04  X  2    X  2   + 0.07  X  3  
    

  
(1)

The adequacy of the model was checked using analysis of variance (ANOVA), which was 
tested using Fisher’s statistical analysis [24]. The Model F-value of 6.09 indicated model sig-
nificance. Value of “Prob > F” less than 0.05 indicated that the model terms were remarkable, 
whereas values greater than 0.10 indicated no significance. ANOVA resulted in a value of 0.85 
for the coefficient of determination (R2) and 0.71 for the adjusted coefficient of determination 

Run X
1

X
2

X
3

Y

1 −1 −1 −1 0.27

2 1 −1 −1 0.04

3 −1 1 −1 0.35

4 1 1 −1 0.03

5 −1 −1 1 0.48

6 1 −1 1 0.49

7 −1 1 1 0.47

8 1 1 1 0.27

9 −1 0 0 0.49

10 1 0 0 0.02

11 0 −1 0 0.31

12 0 1 0 0.02

13 0 0 −1 0.22

14 0 0 1 0.29

15 0 0 0 0.23

16 0 0 0 0.22

17 0 0 0 0.23

18 0 0 0 0.22

19 0 0 0 0.22

20 0 0 0 0.22

Y Observed Ethanol yield (g/g)

Table 1. Experimental design and results for the central composite design.
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(R2
adj). The R2

adj value was close to 1, which indicated a high degree of correlation between 
the observed and predicted values [25]. P-values were used to check the significance of each 
variant. Each of the P-values also indicated the interaction strength between any two of the 
independent variants; the smaller the P-value, the higher the significance of the correspond-
ing variant [26]. As with the interaction between any of the two variants, the smallest P-value 
was seen with X1X3. This suggested that among the three parameters investigated, maximum 
interaction occurred between plasma treatment time and the volume of the induced sample.

2.1.5. Influence of various experimental parameters on ethanol yield

The influences of the independent parameters, including plasma treatment time, power supply 
voltage and induced-sample volume, on ethanol yield were analyzed by three dimensional 
response surface plots (Figure 5). Figure 5(a) presented the ethanol yield based on a combina-
tion of plasma treatment time and power supply voltage. The predicted ethanol yield showed 
to increases at 1 min and from 25 to 27 V. Figure 5 (b) presents the interaction between plasma 
treatment time and sample suspension volume on ethanol yield. The highest ethanol yield 
was achieved when 9-mL sample suspension was treated by dielectric barrier discharge (DBD) 
plasma for 1 min. The predicted ethanol yield of S. cerevisiae reached to a maximum when 9-mL 
sample was treated under the range of the power supply voltage from 22 to 26 V (Figure 5(c)). 
These three-dimensional plots offer a visual interpretation of the interaction between two 
parameters and promote the location of optimum experimental parameters. The optimized 
conditions for the three experimental parameters (as obtained from the maximal point of the 

model) were calculated by the Design expert software to be 1 min, 26 V and 9 mL, respectively, 

corresponding to plasma exposure time, power voltage, and volume of exposed cell suspen-
sion. The model forecasted a highest response of 0.49 g/g ethanol yield for this point.

Source Sum of squares df Mean square F-value P-value

Model 0.37 9 0.041 6.09 0.005

X1 0.15 1 0.150 21.92 0.001

X2 0.02 1 0.021 3.12 0.108

X3 0.13 1 0.130 18.47 0.002

X1X2 0.01 1 0.012 1.77 0.213

X2X3 0.02 1 0.015 2.26 0.164

X2X3 0.01 1 0.012 1.77 0.213

X1X1 0.006 1 0.007 1.01 0.338

X2X2 0.003 1 0.004 0.65 0.440

X3X3 0.013 1 0.013 1.98 0.189

R2 – – 0.85 – –

Adj-R2 – – 0.71 – –

Table 2. AVOVE for response surface quadratic model for ethanol production.
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2.1.6. Confirmation of optimum parameters

Optimum conditions of the parameters achieved from the above analysis were verified by 
carrying out flask fermentation with S. cerevisiae from 9-mL sample suspension that had been 
exposed with plasma for 1 min and a power supply voltage of 26 V. As shown in Table 3, the 

ethanol yield reached to 0.48 g/g, which was very close to the predicted value of 0.49 g/g, and 
represented a 33% increase compared with the yield of the untreated sample (0.36 g/g). The 
outstanding correlation between the predicted and the measured values confirmed that the 
model was feasible and that an optimal point for increasing ethanol yield could be obtained. 
The ethanol concentration in the fermentation also raised by 42% and the biomass raised by 
24% over those obtained from fermentation by untreated sample (Table 3).

To enhance the concentration of ethanol, different methods have been used to improve the 
productivity of the correlative microorganism strains, including construction of genetic engi-
neering strain [27], mutagenesis and breeding [28], as well as metabolism control by changing 
the osmotolerance of the external environment [29]. Up to now, little study has been reported 
about the application of cold plasma at atmospheric pressure in intensifying ethanol yield of S. 

cerevisiae. It has been early found that growth of K. pneumoniae could be enhanced by air cold 

plasma, causing an increment in productivity of 1,3-propanediol [21]. In addition, the applica-
tion of plasma discharge could also lead to the degradation of the biomacromolecules that con-
stitute the cell-envelope, such as polysaccharides and protein [30]. Cell membrane permeability 
is influenced as a result of alterations in the cell envelope composition. This then leads to altera-
tions in metabolic products as well as in the physiological activity of the cells. Yonson et al. has 
discovered that human hepatocytes (HepG2) cells could become provisionally permeabilized 

Figure 5. (a) Response surface plot of the interaction between plasma-treatment time and power supply voltage on 
ethanol yield; (b) response surface plot of the interaction between plasma-treatment time and induced sample volume on 
ethanol yield; (c) response surface plot of the interaction between power supply voltage and volume of induced sample 
on ethanol yield.

Groups Biomass (g/L) Glucose consumption (g/L) Ethanol (g/L) Ethanol yield (g/g)

Control group 5.4 ± 0.9 132.0 ± 8.3 47.5 ± 2.7 0.36 ± 0.02

Optimized group 6.7 ± 1.1 141.0 ± 10.8 67.5 ± 4.2 0.48 ± 0.03

Table 3. Comparison of flask fermentation by S. cerevisiae under optimized and untreated conditions.
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when they are induced by a miniature atmospheric-pressure glow-discharge plasma torch [31]. 
Therefore it is thought that the permeability of the cell membrane in S. cerevisiae might prob-
ably promote the diffusion of substrates into the cell as well as the export of products out of 
the cells, causing an alteration in the metabolic process. This could also be the reason why the 
improved ethanol yield could be observed with plasma treated S. cerevisiae in this research.

The optimized parameters (1 min, 26 V, 9 mL) achieved by the central composite design 
experiment were different from the optimized parameters (3 min, 26 V, 5 mL) achieved by 
single-factor experiment. This may be due to the following reasons. Firstly, response surface 
methodology reflected the influences of interaction among the three parameters employed 

with the other parameter maintained at its respective zero level on ethanol yield. In this 
research, the dielectric layer became thick when the volume of the test sample was increased 
in an unchanged 60-mm-diameter Petri dish, causing an alteration in the power voltage. 
Therefore, the three parameters (plasma exposure time, test sample volume, power supply 
voltage) underwent a simultaneous alteration. Secondly, the plasma discharge device was 
directly laid in air at room temperature, and the discharge was affected by various environ-
mental factors, such as air humidity and ambient temperature. Finally, experimental errors 
were observed during the operation. For example, the gap distance between electrodes was 
widened again and again for putting the sample on the bottom electrode before every experi-
ment, and then the distance between electrodes was recovered.

2.2. Mechanism study about enhanced ethanol yield of Saccharomyces cerevisiae 

with cold plasma

2.2.1. Plasma membrane permeability

The alterations in membrane permeability exhibited by S. cerevisiae cells following their 
exposure to plasma and subsequent culturing under fermentation conditions are shown in 
Figure 6. After plasma treatment for 1 min, the membrane permeability reduced compared 
with that of untreated cells, but raised when the samples were treated respectively from 2 to 
4 min, and fell back to the level of untreated cells when the sample was induced for 5 min. The 
membrane permeability of the treated cells reached to a maximum when the sample treated 
for 4 min were cultured for 9 h, producing a 1.2-fold increase over that of untreated cells. As 
for sample that was cultured for 21 h, a significant increase in membrane permeability only 
occurred for those that were derived from samples treated to plasma for 1 and 5 min.

2.2.2. Plasma membrane potential

The membrane potential was measured with the aid of the fluorescence probe Rh123 
(Figure 7). The fluorescence intensity of Rh123 was positively correlated with plasma mem-
brane potential. These data indicated that the plasma membrane permeability was increased 
(20%) when the samples were treated for 1 min, but was decreased when they were treated 
for 2–5 min. When the treated samples were cultured for 9 h, only the membrane poten-
tial of the sample treated for 1 min reduced relative to that of non-treated sample. Other 

Enhanced Ethanol Production of Saccharomyces cerevisiae Induced by Cold Plasma…
http://dx.doi.org/10.5772/intechopen.78019

165



exposure times gave various increases in membrane potential, among which 2 min exposure 
yielded the maximum increase (70%) compared with non-treated sample. In the case of 21-h 
fermentation, 4- and 5-min exposures gave remarkable improvements in membrane potential 
over non-treatment. These data seemed to show that cold air plasma discharge could either 
increase or decrease the plasma membrane potential of S. cerevisiae cells.

Figure 7. Influence of plasma treatment on cell membrane potential before and after fermentation. Data are expressed as 
mean ± SES. ‘a’, ‘b’, and ‘c’ indicate P < 0.05, P < 0.005 and P < 0.001, respectively.

Figure 6. Influence of plasma treatment on cell membrane permeability of S. cerevisiae before and after fermentation. 
Data are expressed as mean ± SES. ‘a’, ‘b’, and ‘c’ indicate P < 0.05, P < 0.005 and P < 0.001, respectively.
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2.2.3. Cytoplasmic calcium concentration

The intracellular calcium concentration of plasma-treated samples was detected using the 
fluorescence probe Fluo-3 AM (Figure 8). The calcium concentrations in the cytoplasm were 
improved with plasma treatment time, with 5 min treatment giving the maximal increase, 
about 36% more than the concentration measured in the non-treated cells. After 9 h of fer-
mentation, cytoplasmic Ca2+ concentrations were significantly increased in the sample of 1- or 
2-min plasma treatment over non-treatment of plasma, but in the samples from 3- to 5-min 
plasma treatment, Ca2+ concentrations were less compared with non-treatment of plasma.

2.2.4. Extracellular ATP concentration

The influence of plasma treatment on extracellular ATP concentration was most significant 
prior to fermentation (0 h) and at the 9-h stage of fermentation following plasma exposure 
(Figure 9). Prior to fermentation, some significant reductions in extracellular ATP concen-
tration were measured when S. cerevisiae cells were treated by plasma for 1 and 2 min, but 
the remarkable increases in ATP concentration happened when the samples were treated by 
plasma for 3–5 min over non-treated sample. At the 21-h period of fermentation, however, the 
extracellular ATP concentrations in 1- and 5-min treatments appeared to be somewhat lower 
than that of non-treated cells. Thus the data showed that the plasma treatment might change 
the concentration of extracellular ATP either immediately after treatment or when the treated 
samples were permitted to reproduce for a moderate stage of time under normal fermentation 
conditions.

2.2.5. Extracellular NADH concentration

Differences in extracellular NADH concentrations between non-treated and plasma-treated 
S. cerevisiae samples were less uniform for all the three periods of measuring. The differences 
were more noticeable between non-treated sample and treated samples before fermentation 
or at the 21-h stage of fermentation (Figure 10). Before fermentation, 1-min treatment induced 
a decrease of 60%, but 2- and 3-min treatments led to 0.8- and 1.8-fold increases, respectively, 
in extracellular NADH concentration. At the 9-h fermentation stage, the extracellular NADH 
concentrations of treated samples were either similar to or significantly lower than those of 
non-treated sample. However, the sample that were treated with plasma for 1 min repre-
sented a noticeably higher extracellular NADH concentration than that of non-treated sample 
at the 21-h fermentation stage, although it remained much lower than that of non-treated 
sample in the other two stages (0 and 9 h). In addition, the samples treated for 2 to 5 min also 

showed remarkably higher extracellular NADH concentration than non-treated sample at the 
21-h fermentation stage. Taken together, these results indicated that plasma treatment can 
change the extracellular NADH concentration, either quickly after treatment or in subsequent 
fermentation, depending on the exposure time.

In this research, we have proved that remarkable decrease in membrane permeability of live 

cells were distinct after the sample was treated by plasma for 1 min (Figure 6). At the 21-h 
periods of fermentation, the membrane permeability was increased showing that the effect 
of air cold plasma on membrane permeabilization was temporary and non-inheritable. This 
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result was in accordance with the study of Yonson et al., who reported that cell membrane 
permeability is temporarily improved by a miniature atmospheric pressure glow discharge 
plasma torch [31].

Membrane potential is an important factor in cellular functions such as signaling and trans-
port, which can eventually affect cell metabolism [32]. An alteration in membrane potential 
can be positively detected by an alteration in fluorescence intensity of Rh123. When discharge 

Figure 8. Influence of plasma treatment on [Ca2+]
cyt

 before and after fermentation. Data are expressed as mean ± SES. 
‘a’, ‘b’, and ‘c’ indicate P < 0.05, P < 0.005 and P < 0.001, respectively.

Figure 9. Influence of plasma treatment on extracellular ATP before and after fermentation. Data are expressed as 
mean ± SES. ‘a’, ‘b’, and ‘c’ indicate P < 0.05, P < 0.005 and P < 0.001, respectively.
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plasma occurs over the solution surface, a variety of physical and/or chemical processes are 
activated. Many active species such as oxygen, hydrogen, hydroxyl and hydroperoxyl radi-
cals are produced. These reactive species can diffuse in the surrounding liquid and induce the 
redistribution of charges on the inner and outer surfaces of the cell membrane, leading to an 

increase or reduction of membrane potential. Such change of the membrane potential would 
directly affect the plasma membrane permeability. After S. cerevisiae cells were treated by air 
cold plasma, the change in the membrane potential quickly contrasted with the change in 
membrane penetrability (Figure 7 versus Figure 6). The cell membrane was depolarized due 
to the lowered potential, finally improving the permeability of the membrane. More inorganic 
and organic ions can then pass freely through the cell membrane as a result of this enhanced 

permeability [33]. After the 9- and 21-h stages of fermentation, the increase in membrane 
potential led to membrane hyperpolarization, and accordingly enhanced the membrane 
permeability.

The change of cell membrane potential could activate the voltage-dependent Cch1p channel, 
causing more influx of Ca2+ from the extracellular environment into the cytoplasm (Figure 1). 
Therefore, the calcium level in the cytoplasm of treated cells was enhanced after plasma treat-
ment. Air cold plasma slightly improved the cytoplasmic calcium concentration of the sample 
following treatment for 1 min. This might result from the increase in plasma membrane 
potential (Figure 7 versus Figure 8, at 0-h culture), causing cell membrane hyperpolarization 
and opening of Ca2+ channels. But the opening of Ca2+ channels did not cause an increase in 

cell membrane permeability (Figure 6). This result suggests that the increment in cell mem-
brane permeability might be controlled by more than one channel modulator.

The alteration trend of ATP concentration was different from the alteration tend in membrane 
permeability with plasma discharge. This shows that change of extracellular ATP concen-
tration is a direct consequence of alterations in intracellular ATP. Before fermentation, the 

Figure 10. Influence of plasma treatment on extracellular NADH before and after fermentation. Data are expressed as 
mean ± SES. ‘a’, ‘b’, and ‘c’ indicate P < 0.05, P < 0.005 and P < 0.001, respectively.
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lower concentrations of ATP at 1 and 2 min plasma treatment might be due to 6.8 and 10% 
increments in calcium concentration, respectively. The increased calcium concentration pro-
moted the hydrolysis of ATP to adenosine diphosphate (ADP) (Figure 9). A Ca2+ concentra-
tion gradient from 1 to 10 μM, could improve the cell function that regulates cell growth and 
metabolism to eventually enhance microbial productivity. However, the high concentrations 
of intracellular Ca2+ can induce cell injury or death [34, 35]. The higher concentrations of ATP 
in the samples treated by plasma for 3–5 min might be due to an inhibition of ATP hydrolysis 
caused by the higher cytoplasmic calcium concentration (Figures 8 and 9). In addition, any 
disturbance in environmental conditions would influence the activities of catabolic enzymes, 
thereby accelerating the accumulation of ATP or ADP [35]. Air cold plasma might lead to 
the accumulation of ADP in the treated samples within 1–2 min of treatment, and of ATP 
in the treated samples within 3–5 min of treatment, as suggested by the data in Figure 9. 
The accumulation of ATP or ADP might have immediately affected the glycolysis rate [36], 

producing different ATP concentrations at the 9- or 21-h period of fermentation, depending 
on the plasma treatment time (Figure 9).

Air cold plasma produces different reactive species in the gas phase [37]. These active species 
further react with water and produce a variety of biologically active reactive species (RS) 
in the liquid phase, including long-lifetime RS (ozone, hydrogen peroxide and nitrate ions) 
and short-lived RS (superoxide, hydroxyl radicals and singlet oxygen) [38]. In our research, 
these reactive species could increase or decrease the cell membrane potential and open Ca2+ 

channels, consequently improving [Ca2+]
cyt

 (Figures 7 and 8, at the beginning of culture). Ca2+ 

supplementations of 0.5 and 1.5 mM have been shown to induce the increment in ATPase 
activity [29]. The enhanced ATPase activity would then promote the generation of proton 
motive force through hydrolysis of ATP [29, 39]. A reduction in the intracellular ATP level 
can result in the up-regulation of the activities of phosphofructokinase (PFK) and pyruvate 
kinase (PK) [40]. This would accelerate the glycolytic flux and enhance the NADH level in the 
central metabolic pathway [41]. At the same time, NADH-dependent alcohol dehydrogenase 
(ADH) activity might be improved, leading to up-control of the oxidation of NADH to NAD+ 

[40, 42] (Figure 1). Therefore, the NADH concentration obtained from 1 min treatment was 
reduced over the control because of the lower level of ATP (Figure 10 1 min versus Figure 9 

1 min). The oxidation of NADH to NAD+ would lower the activity of NADH-dependent glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH), causing decreased glycerol production 
and ultimately causing more carbon flux from glycolysis being funneled to ethanol [42–44].

3. Conclusion

Experimental parameters associated with cold plasma discharge at atmospheric air pressure 
for enhancing ethanol yield of S. cerevisiae has been successfully optimized in this research. 
The maximum theoretical ethanol yield of 0.49 g/g was predicted by the response model 
under three optimized parameters (1 min of exposure time, 26 V of power voltage and 9 mL of 
test sample volume), which was closely consistent with the experimental yield of 0.48 g/g. The 
model may be used as a reference for modulating the experimental parameters related with 
dielectric barrier discharge at air atmospheric pressure and a novel approach for improving 

ethanol yield in bio-manufacturing industry.
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Furthermore, the potential mechanism that air cold plasma alters the cofactor metabolism of 
S. cerevisiae was explored by analyzing the changes in plasma membrane potential, cytoplas-
mic calcium concentration and the two cofactors of ATP and NADH. The sample of 1-min 

treatment presented a notable increment in plasma membrane potential, whereas the sample 
of 2-min treatment presented a distinct reduction in plasma membrane potential. In addition, 
the calcium concentrations for the samples treated by plasma for 1–5 min were remarkably 
improved prior to the beginning of the fermentation compared with that for the untreated 
sample. An increase of 7.0% in calcium concentration led to the remarkable reductions of 40% 
in ATP and 60% in NADH in the sample of 1-min treatment. At 9-h culture, the ATP concentra-
tion of treated sample for 1 min increased by 72%, whereas NADH concentration decreased 
by 88% relative to those of the control. Briefly, the mechanism that plasma promoted altera-
tions in cofactor level in S. cerevisiae showed to be by improving the cell membrane potential, 
which then caused increases in cytosolic free Ca2+ concentrations within the cells, eventually 
enhancing microbial productivity. This may a potential and broad application in intensifying 
the biotransformation capability of microorganisms in the future.
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