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Abstract

In this work, we apply the method of matched asymptotic expansions to solve the one-
dimensional saturation convection-dispersion equation, a nonlinear pseudo-parabolic
partial differential equation. This equation is one of the governing equations for two-
phase flow in a porous media when including capillary pressure effects, for the specific
initial and boundary conditions arising when injecting water in an infinite radial piece-
wise homogeneous horizontal medium containing oil and water. The method of matched
asymptotic expansions combines inner and outer expansions to construct the global solu-
tion. In here, the outer expansion corresponds to the solution of the nonlinear first-order
hyperbolic equation obtained when the dispersion effects driven by capillary pressure
became negligible. This equation has a monotonic flux function with an inflection point,
and its weak solution can be found by applying the method of characteristics. The inner
expansion corresponds to the shock layer, which is modeled as a traveling wave obtained
by a stretching transformation of the partial differential equation. In the transformed
domain, the traveling wave solution is solved using regular perturbation theory. By
combining the solution for saturation with the so-called Thompson-Reynolds steady-state
theory for obtaining the pressure, one can obtain an approximate analytical solution for
the wellbore pressure, which can be used as the forward solution which analyzes pressure
data by pressure-transient analysis.

Keywords: method of matched asymptotics, boundary layer approximation, nonlinear
pseudo-parabolic partial differential equation, convection-dispersion phenomenon,
multiphase flow in porous media
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1. Introduction

In this chapter, we show how to generate a semi-analytical solution for the wellbore pressure

response during a water injection test. In the petroleum industry, well testing is a common

practice which consists of wellbore pressure and wellbore flow rate data acquisition in order to

estimate parameters that govern flow in the porous media, i.e., the reservoir rock which stores

the hydrocarbons. Well tests give an insight into the oil and gas field production potential and

profitability and allow the estimation of reservoir parameters. Estimated parameters can be

used to calibrate the reservoir numerical simulation model that are used to describe the fluid

flow in these reservoirs and forecast their performance as well as to maximize the productivity

of the wells. Injections are important tests on reservoirs containing high amount of harmful

gases like carbon dioxide and sulfur dissolved in the oil, causing conventional production

testing in the exploratory phase of offshore field development inviable. Multiphase flow is the

norm in petroleum reservoirs, and an injection test consists of a period of water or gas injection

into an oil reservoir (Figure 1), a common technique known as waterflooding or gasflooding

that is used to displace oil to a producing well. Data from an injection test can be used to

estimate the reservoir rock absolute permeability (k), the skin zone permeability (ks), and the

water endpoint relative permeability (aw). The skin zone permeability is the rock permeability

in the zone around the well which was stimulated or damaged during the wellbore drilling

operation, while the water endpoint permeability is a measure of how easy water can flow in a

specific porous media when there is immobile oil present. In the pursuance of modeling the

wellbore pressure response during a water injection test, the Rapport-Leas equation [1], a

nonlinear pseudo-parabolic convection-dispersion equation, is used to determine the water

saturation distribution in the reservoir as a function of time by assuming a one-dimensional

homogeneous medium containing incompressible fluids. Water saturation (Sw) is the fraction

of water in a given pore space, and it is expressed in water volume by pore volume. In [2–4], it

has been shown how to obtain the wellbore pressure response for the case when capillary

Figure 1. Sketch of the injection test. Reservoir is assumed to be at rest at the beginning of the test with constant pressure

and immobile water saturation distribution (a). Water is injected at constant flow rate leading to pressure change that

propagates from the well (b).
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pressure effects are negligible, i.e., when dispersion effects are not significant. In this case, the

Rapport-Leas equation reduces to the Buckley-Leverett [5] equation, a nonlinear hyperbolic

equation. In this work, we have extended their model to include capillary pressure. Although

the wellbore pressure during injection seems to be insensitive to capillarity effects insensitive to

the accuracy of the calculated saturation distribution in the reservoir, knowledge of the correct

saturation profile at the end of injection represents the initial condition and hence is required to

calculate the saturation distribution during subsequent tests as shut-in (falloff) and flowback

(production) test which would allow the estimation of relative permeabilities and capillary

pressure curves. Once the water saturation distribution is determined for each time, the

corresponding pressure solution can be obtained by integrating the expression for the pressure

gradient, given by Darcy’s law, from the wellbore radius to infinity while assuming an infinite-

acting reservoir. Because Darcy’s law does not assume incompressible flow, the pressure solution

is transient and does not need to assume incompressible flow even though the saturation profile

is generated from a incompressible assumption. To actually evaluate this integral which repre-

sents the pressure solution, however, we must assume that the reservoir rate profile becomes

constant in a region from the wellbore to a radius such that all the injected water is contained

within the reservoir volume within this radius (Figure 2); this radius increases with time [6]. The

region within this radius is referred to as the steady-state region or zone. Intuitively, the assump-

tion that this steady-state zone exists appears to be more tenuous as the total compressibility of

the system increases. However, the assumption that this steady-state zone exists has shown to

yield accurate semi-analytical pressure solutions for gas-condensate systems [7].

2. Mathematical model

The solutions presented assume infinite-acting one-dimensional radial flow from and to a fully

penetrating vertical well with no gravity effects. We apply the method of matched asymptotic

expansions to solve the one-dimensional saturation convection-dispersion equation, a

nonlinear pseudo-parabolic partial differential equation. This equation is one of the governing

equations for two-phase flow in a porous media when including capillary pressure effects, for

Figure 2. Relationship between the water saturation (Sw), solid blue curve, the dimensionless total flow rate profile (qD),

and dotted red curve, during injection.
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the specific initial and boundary conditions arising when injecting water in an infinite radial

piecewise homogeneous horizontal medium containing oil and water. The method of matched

asymptotic expansions combines inner and outer expansions to construct the global solution.

In here, the outer expansion corresponds to the solution of the nonlinear first-order hyperbolic

equation obtained when the dispersion effects driven by capillary pressure became negligible.

This equation has a monotonic flux function with an inflection point, and its weak solution can

be found by applying the method of characteristics. The inner expansion corresponds to the

shock layer, which is modeled as a traveling wave obtained by a stretching transformation of

the partial differential equation. By combining the solution for saturation with the so-called

Thompson-Reynolds steady-state theory, one can obtain an approximate analytical solution for

the wellbore pressure, which can be used as the forward solution which analyzes pressure data

by pressure-transient analysis. Let us start by finding the saturation distribution in the reser-

voir during injection and show how to find pressure.

2.1. Saturation

The water mass balance equation, in radial coordinates, leads to the following nonlinear partial

differential equation [5]:

∂Sw
∂t

þ
θqt

2πrhϕ

∂Fw Swð Þ

∂r
¼ 0, (1)

where throughout we assume that porosity (ϕ) is homogeneous; qt is the total liquid rate in

RB/D; θ represents in general a unit conversion factor where in the oil field units used here,

θ =5.6146/24; the reservoir thickness, h, and the radius, r, are in ft; and time, t, is in hours. Let us

use Darcy’s equation in radial coordinates without gravity for the oil (o) and water (w) flow

rate in RB/D given by

qp ¼ �
k rð Þhλp Swð Þ

α
r
∂pp

∂r

� �

, for p ¼ o, w: (2)

For field units used throughout, α = 141.2. pp, is the phase p pressure. The λp is the phase p

mobility, given by the ratio of the phase permeability (krw or kro), which are functions of the

water saturation, by the phase viscosity (μw or μo). To find the water fractional flow (Fw), we

can subtract Eq. (2) for water from Eq. (2) for oil, to get

αqo
k rð Þhλo Swð Þ

�
αqw

k rð Þhλw Swð Þ
¼ � r

∂po
∂r

� r
∂pw
∂r

� �

: (3)

Rearranging Eq. (3), substituting the capillary pressure pc given by the difference of the oil

pressure (po) and the water pressure (pw), and dividing the resulting equation by the total flow

rate, qt, yield

Fo �
Fwλo Swð Þ

λw Swð Þ
¼ �

k rð Þhλo Swð Þ

αqt
r
∂pc Swð Þ

∂r

� �

, (4)
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where Fo and Fw are the oil and water fractional flow given by qo and qw, respectively. We

assume throughout that water is the wetting phase. Finally, substituting Fo ¼ 1� Fw in Eq. (4)

and solving for Fw, we have the following expression for the water fractional flow including

capillary pressure effects

Fw Swð Þ ¼
1þ k rð Þhλo Swð Þ

αqt
r
∂pc
∂r

� �

1þ λo Swð Þ
λw Swð Þ

¼
1

1þ λo Swð Þ
λw Swð Þ

þ

k rð Þhkro
αqtμo

r
∂pc
∂r

� �

1þ λo Swð Þ
λw Swð Þ

¼ f w þ erk rð Þf w Swð Þkro Swð Þ
∂pc Swð Þ

∂r
,

(5)

where f w is the water mobility ratio (Figure 3), i.e., the ratio of water mobility and the total

mobility (λt), given by

f w Swð Þ ¼
1

1þ λo Swð Þ
λw Swð Þ

¼
λw Swð Þ

λo Swð Þ þ λw Swð Þ

λw Swð Þ

λo Swð Þ þ λw Swð Þ
, (6)

which usually assumes an S-shape. e is the perturbation parameter, defined by

e ¼
h

αqtμo

(7)

and the permeability is a function of radius because we consider a skin-damaged zone:

k rð Þ ¼
ks, rw ≤ r < rskin

k, r ≥ rskin,

�

(8)

where rw is the wellbore radius, rskin is the radius of the damaged zone, and ks is the perme-

ability in the skin zone. Grouping all the parameters that are the function of water saturation,

we can define (Figure 4)

dΨ

dSw
Swð Þ ¼ �f w Swð Þkro Swð Þ

dpc
dSw

Swð Þ, (9)

Figure 3. Water fractional flow curve (dark solid curve) and its derivative (dotted curve).
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and rewrite Eq. (10) as

Fw Swð Þ ¼ f w Swð Þ � erk rð Þ
dΨ Swð Þ

dSw

∂Sw
∂r

: (10)

For simplicity, we use the Brooks and Corey model [8] given by

pc Swð Þ ¼ pt svþ
Sw � Swi

1� Swi � Sor

� ��1
λ

, (11)

to represent capillary pressure. Here, Siw is the immobile water saturation and Sor is the

residual oil saturation. λ, where 0:4 ≤λ ≤ 4:0, is a measure of the pore size distribution (the

greater the λ value, the more uniform is the pore size distribution), and pt is the threshold

pressure. The threshold pressure is a measure of the maximum pore size [9], i.e., the minimum

capillary pressure at which a continuous nonwetting phase exists in the imbibition case and a

continuous wetting phase exists in the drainage case [10]. The greater is the maximum pore

size, the smaller is the pressure threshold. According to [11], the extrapolation of the capillary

pressure curve obtained from experimental data to Sw ¼ 1 yields the correct threshold value.

In practice, we introduce a small variable, sv, to limit the maximum value of pc to a finite value.

We can relate the relative permeabilities and the capillary pressure through λ by using the [12]

model for the water phase (wetting phase)

krw ¼ aw
Sw � Siw

1� Siw � Sor

� �2þλ
λ

, (12)

and the [8] model for the oil phase (nonwetting phase) [13]

kro ¼ 1�
Sw � Siw

1� Siw � Sor

� �2

1�
Sw � Siw

1� Siw � Sor

� �2þλ
λ

 !

: (13)

Figure 4. dΨ
dSw

versus water saturation for a partially water wet reservoir (b). For a strong water, we reservoir, dΨ
dSw

! ∞ at

Sw ¼ Siw.
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Now that we have defined the fractional flow rate and its parameters, let us go back to our

governing equation for saturation (Eq. (1)). Inserting Eq. (10) into Eq. (1) and defining

C ¼
θqt
πhϕ

, (14)

yields

∂Sw
∂t

þ
C

2r

∂f w
∂r

� e

C

2r

∂

∂r
rk rð Þ

∂Ψ

∂r

� �

¼ 0, (15)

which is the nonlinear “pseudo-parabolic” governing equation for saturation. If we insert same

common values for the parameters in Eq. (7) to have an idea of its order of magnitude, we can

see that epsilon is a very small number. This suggests that the effect of the third term in Eq. (15)

may be treated as a perturbation to the first-order hyperbolic equation [5], given by

∂Sw
∂t

þ
C

2r

∂f w
∂r

¼ 0, (16)

where f w is considered to be an S-shaped function along this chapter. During injection, for a

partially water wet reservoir, the capillary pressure dispersive effect will be non-negligible

only in a small region around the water front (hypodispersion phenomenon) [14, 15] where the

capillary pressure derivative and the saturation gradient are significant (Figure 5). The capil-

lary pressure smears the water front during injection balancing the self-sharpening tendency of

the shock. [16] have developed an exact analytical solution for linear waterflood including the

effects of capillary pressure, but their solution is limited to a particular functional form to

represent relative permeabilities and capillary pressure curves and does not consider radial

flow, which makes their solution very restrictive. As done by [17, 18] for Cartesian coordinates

and by [19] for streamlines and streamtubes, the perturbation caused by the capillary pressure

effects can be modeled as a shock layer (water front) which moves with the same speed as the

shock wave. By applying the method of matched asymptotic expansions [20, 21], we can

Figure 5. Capillary pressure curve (a) and saturation profile at a time t during water injection (b). The dashed green lines

represent the capillary pressure derivative (a) and the saturation gradient (b) at the water front.

Application of the Method of Matched Asymptotic Expansions to Solve a Nonlinear Pseudo-Parabolic Equation…
http://dx.doi.org/10.5772/intechopen.76828

123



combine the solution of the Buckley-Leverett equation (Eq. (16)) with this steady traveling

wave to generate an approximate solution of the Rappaport and Leas equation, i.e., the

solution of the convection–dispersion saturation equation. In order to solve the [1] equation

for the injection period, with the following initial and boundary conditions

Sw r; 0ð Þ ¼ Siw, (17)

Fw rw; tð Þ ¼ 1, (18)

lim
r!∞

Sw ¼ Siw: (19)

we divide the domain into two regions, outer and inner regions (Figure 6), where the inner

region, the region around the water front, is modeled as a shock layer which propagates with

the same speed as the shock would be obtained when e ! 0, i.e., when the capillary pressure

effects are null. The combination of the self-sharpening tendency of the shock (Swf > Siw) with

the dispersive effect from the capillary pressure balance against each other leads to the shock

layer [22]. Note: in order to guarantee pressure continuity, we have assumed that the capillary

pressure gradient is zero at the wellbore, which means that Fw ¼ f w ¼ 1 is the wellbore, so

Sw rw; tð Þ ¼ 1� Sor. This boundary condition will be used for both the Buckley-Leverett and the

Rapoport-Leas solutions. Ref. [23] presented the idea of using the method of matched asymp-

totic equations to solve the Rapoport-Leas equation, while [18, 24, 19] showed how the mass

balance could be used to present a closed solution for the saturation distribution. Ref. [24]

derived an approximate solution for the [1] in Cartesian coordinates for both water and oil

injections into a core considering end effects by also applying the method of matched asymp-

totic expansions. The method of asymptotic expansions uses the inner and outer saturation

solutions combined with a matching function in order to obtain a composite solution which

avoids abruptly switching from the outer to the inner solution or vice versa. The inner and

outer solutions are each capable of representing the real solution in two distinct regions—the

“inner region” and the “outer region” of the boundary layer (Figure 6). Similarly, we approx-

imate the saturation solution of Rapoport-Leas equation by forming a composite solution

Figure 6. True saturation distribution in the reservoir (Sw) compared with the outer solution (SBLw ) and the inner solution

(SSLw ). The dashed square shows the saturation transition zone between the outer and the inner solution where none of

these two are capable of approximate Sw.
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given by the combination of three saturations: SBLw , the solution obtained when the capillary

pressure effects are neglected; SSLw , the saturation distribution in the shock layer obtained by

magnifying the dispersion effects in the saturation governing equation; and SSHw , the shock

wave represented by a Heaviside function:

Sw r; tð Þ≃SBLw r; tð Þ þ SSLw r; tð Þ � SSHw r; tð Þ, (20)

where BL stands for Buckley-Leverett, SL for shock layer, and SH for shock function.

2.1.1. Outer solution (SBLw )

The outer solution, SBLw , is obtained by letting e ! 0 in Eq. (15):

SBLw r; tð Þ ¼ lim
e!0, r;tð Þ fixed

Sw r; t; eð Þ: (21)

That is the nonlinear hyperbolic convection equation known as the Buckley-Leverett saturation

equation given by Eq. (16) which is obtained when capillary and gravity effects are neglected.

The well-known unique admissible weak solution of this Riemann problem, with the following

initial condition

SBLw r; 0ð Þ ¼
1� Sor, for r ≤ rw

Siw, for r > rw,

�

(22)

can be obtained by the application of the method of characteristics and is given by [5].

SBLw r; tð Þ ¼

1� Sor, r2 ⩽ r2w

df w
dSw

� ��1 1

C

r2 � r2w
� �

t

� �

, r2w < r2 ⩽ r2w þDt

Siw, r2 > Dtþ r2w,

8

>

>

>

<

>

>

>

:

(23)

that is, by a family of rarefaction waves, a semi-shock wave, and a constant saturation zone

where water is immobile. The shock jump is caused by the S-shaped form of the fractional flow

curve, which leads to a gradient catastrophe and consequently a shock solution. This semi-

shock has a constant speed, satisfying the Rankine-Hugoniot condition [25]:

D ¼ C
f w Swf
� �

� f w Siwð Þ
	 


Swf � Siw
	 
 , (24)

where Swf and Siw are the shock saturations. In this case, in order to satisfy the conservation of

mass, the shock speed should correspond to the slope of a tangent line to the water fractional

flow curve, i.e.,

f w Swf
� �

� f w Siwð Þ

Swf � Siw
¼

df w Swf
� �

dSw
: (25)
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The details of this solution can be found in [5]. Figure 7 shows the shock jump slope tangent to

the fractional flow curve at Sw ¼ Swf and the saturation distribution in the reservoir at a time t.

The rarefaction wave family spans from 1� Sor to Swf from rw to r ¼ 25 ft, the water front

position, i.e., the shock front position, rs. Ahead of the water front position, there is an

immobile water. Figure 8 compares this solution, the outer solution, with the true solution;

there is the convection-dispersion saturation profile. Here, we call the true solution the solu-

tion obtained from a numerical simulator.

2.1.2. Inner solution (SSLw )

As mentioned, the inner solution intends to represent the saturation profile in the “inner” region

around the water front, which is a shock layer (a boundary layer) around the shock traveling

Figure 7. The shock jump slope tangent (blue curve) to the S-shaped fractional flow curve at Sw ¼ Swf (a) and the saturation

profile in the reservoir at a time t (b). The rarefaction waves family spans from 1� Sor 1 to Swf and from rw to r = 25 ft, the

water front position, i.e., the shock front position, rf , inj . Ahead of the water front position, there is immobile water.

Figure 8. Saturation distribution during the injection period for the outer solution (SBLw ), without capillary pressure, and

for the true solution (Sw), with capillary pressure. Both profiles agree in the region far from the water front, the region

outside the dashed square.
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with the same speed as the shock itself (Figure 9). In order to find SSLw , we magnify the shock

layer by using a stretching traveling wave coordinate. Similarly, as defined in [24, 18, 19]

w ¼ w r; tð Þ ¼
r2 � r2s tð Þ

e

, (26)

where rs is the shock front position:

r2s tð Þ ¼ r2w þ CDt, (27)

w is zero at r ¼ rs and goes to�∞ as e ! 0. We rewrite Eq. (15) in terms of moving coordinates,

r; tð Þ ! w; τð Þ, where τ ¼ τ tð Þ ¼ t. Using Eq. (26) in the transformed equation and multiplying

the resulting equation by e yield

e

C

∂Sw
∂τ

�D
∂Sw
∂w

þ
∂f w
∂w

�
∂

∂w
2 ewþ r2s τð Þ
� �

k ewþ r2s τð Þ
� � ∂Ψ

∂w

� �

¼ 0: (28)

The inner solution is obtained by letting e ! 0 in Eq. (28):

SSLw w; τð Þ ¼ lim
e!0, w;τð Þ fixed

Sw ewþ r2s τð Þ; τ; e

� �

, (29)

as presented in [26]. Therefore, neglecting the terms of order e in Eq. (28), we have

�D
∂SSLw
∂w

þ
∂f w
∂w

�
∂

∂w
2r2s τð Þk r2s τð Þ

� � ∂Ψ

∂w

� �

¼ 0: (30)

Note that here we are treating the permeability k as function of the shock position radius, rs,

only, by assuming that in the limit of the inner solution, e r ! rs τð Þð Þ. Intuitively, this assump-

tion does not seem valid when the shock layer is crossing heterogeneity interfaces, i.e., inter-

faces between two different permeability zones. However, for the water injection in a field

Figure 9. Saturation distribution during the injection period for the inner solution (SSLw ) and for the true solution (Sw),

with capillary pressure. Both profiles agree in the region around the water front, i.e., in the shock boundary layer which

we have defined as the inner region.
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scale, the skin zone will be crossed by the water front in a very short time, and we will only

need to use the pseudo-parabolic equation (Eq. (15)) to find saturation for the end of injection

period (to be used as initial condition for falloff and flowback tests, as mentioned in the

introduction). Consequently, we can simplify the problem as shown above. Integrating the

ordinary differential equation given by Eq. (30) with respect to w for any fixed time τ and

applying the chain rule gives

�DSSLw þ f w SSLw
� �

� 2r2s τð Þk r2s τð Þ
� � dΨ SSLw

� �

dSw

∂SSLw w; τð Þ

∂w
¼ a τð Þ, (31)

where a τð Þ is constant for the injection case, as we will show later. As mentioned, the inner

solution is modeled as a traveling wave with a constant speed—the shock speed—and the

boundary conditions (for the inner solution) given by

w ! ∞ : SSLw ¼ Siw,
∂SSLw
∂w

¼ 0,

w ! �∞ : SSLw ¼ Swf ,
∂SSLw
∂w

¼ 0,

8

>

>

<

>

>

:

(32)

as the inner solution goes asymptotically to the shock saturations. This necessity of this

behavior will be clearer very soon when we compare the inner solution with the matching

saturation solution. Using the first boundary condition given by Eq. (32) in Eq. (31) leads to

a τð Þ ¼ �DSiw, (33)

while using the second boundary condition given by Eq. (32) yields

a τð Þ ¼ �DSwf þ f w Swf
� �

; (34)

implying that �D S_ iwf g � S_ wff gð Þ � f _w S_ wff gð Þ ¼ 0, which it is indeed correct from the

definition of D in Eq. (24). As we can see from Eqs. (33) and (34), a τð Þ is a constant and it will be

called simply by a from now on. Substituting the constant a (Eq. (33)) in Eq. (31) and dividing it

by D Siw � SSLw
� �

þ f w SSLw
� �

yield

2r2s τð Þk r2s τð Þ
� �

dΨ SSLwð Þ
dSw

D Siw � SSLw
� �

þ f w SSLw
� �

∂SSLw w; τð Þ

∂w
¼ 1: (35)

Integrating Eq. (35) from wwell ¼ w rw; τð Þ to any w at any time τ gives us the relationship

between any SSLw and w:

2r2s k r2s
� �

ðSSLw

SSLw wwellð Þ

dΨ SSLwð Þ
dSw

D Siw � SSLw
� �

þ f w SSLw
� � dSSLw ¼

ðw

wwell

dw: (36)

At SSLw ¼ Swf , the integral in the left side of Eq. (36) diverges as the integrand denominator goes

to 0. This behavior is consistent with our boundary condition assumptions for SSLw (Eq. (32)). At
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SSLw ¼ Siw, the integral in the left side of Eq. (36) does converge when the integrand numerator

also goes to zero (Figure 4), a behavior which is consistent when trying to model a

hypodispersion phenomenon (for a partially water wet reservoir). In another reservoir wetta-

bility scenario, e.g., a strong water wet rock, the capillary pressure would not be bounded at

Siw, and the integral in the left side of Eq. (36) would diverge. Note: we still do not know the

value of SSLw at w well. In order to find a closed form for this problem, mass balance can be

used, but first let us present the matching saturation, since this solution will be necessary for

the mass balance.

2.1.3. Matching solution (SSHw )

The matching saturation SSHw is defined using the matching principle by applying Prandtl’s

technique [26]:

lim
r2!r2wþCDt

SBLw r; tð Þ ¼ lim
w!�∞

SSLw w; tð Þ; (37)

and in the injection case is given by

SSHw r; tð Þ ¼
Siw, r2 ≥ r2s tð Þ ¼ r2w þ CDt,

Swf , r2w ≤ r2s tð Þ:

(

(38)

which is plotted in Figure 10 against the outer and inner solutions. As we were searching for,

SSHw matches with the outer solution in the inner region and with the inner solution in the outer

region, being able to subtract their effect in the composite solution in their “non-

correspondent” zones. Figure 11 compares the saturation distribution during the injection

period for the true solution obtained from the numerical simulator IMEX with the outer, inner,

and matching saturation solutions.

2.1.4. Mass balance

Now that we have defined all the three saturations that are composed of the approximate

solution for the convection dispersion saturation equation, let us try to find a closed form for

Figure 10. The matching saturation function (SSHw ) compared with the outer solution (SBLw ) (a) and with the inner solution

(SSHw ) (b). SSHw matches with the outer solution in the inner region and with the inner solution in the outer region, as desired.
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the saturation distribution based in the mass balance. Since both the Buckley-Leverett (SBLw )

solution and the composite solution (Sw) must obey material balance, the following equality

qtt ¼

ð

∞

r2w

Sw r; tð Þ � Siwð Þπhdr2 ¼

ð

∞

r2w

SBLw r; tð Þ � Siw
� �

πhdr2: (39)

must hold. From Eq. (20) and Eq. (39), it follows that

ð

∞

r2w

SBLw þ SSLw � SSHw � Siw
� �

πhdr2 ¼

ð

∞

r2w

SBLw r; tð Þ � Siw
� �

πhdr2, (40)

which, upon simplification, gives

ð

∞

r2w

SSLw � SSHw
� �

dr2 ¼ 0: (41)

Rearranging Eq. (41) using Eq. (38) for SSHw gives

ð

∞

r2w

SSLw dr2 ¼

ðr2s

r2w

Swf dr
2 þ

ð

∞

r2s

Siwdr
2 ¼ Swf r2s � r2w

� �

þ Siw

ð

∞

r2w

dr2 � Siw

ðr2s

r2w

dr2

 !

: (42)

Using Eq. (27) in Eq. (42), it follows that

ð

∞

r2w

SSLw dr2 ¼ Swf � Siw
� �

CDtþ Siw

ð

∞

r2w

dr2: (43)

Transforming Eq. (43) from r; tð Þ ! w; τð Þ and using Eq. (26), Eq. (43) becomes

e

ð

∞

�CDτ

e

SSLw wð Þdw ¼ Swf � Siw
� �

CDτþ eSiw

ð

∞

�CDτ

e

dw: (44)

Figure 11. Saturation distribution during the injection period with (true solution) and without capillary pressure (outer

solution), the traveling wave (inner solution), and the matching saturation (a). SSHw matches with the region inner solution

in the outer region, the region far from the water front.
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From Eq. (35),

dw ¼ 2r2s k r2s
� �

dΨ
dSw

D Siw � SSLw
� �

þ f w
dSSLw : (45)

Substituting Eq. (45) in Eq. (44) and solving the resulting equation divided by eSiw for

ð

∞

�CDτ

e

dw ¼
2r2s k r2s

� �

Siw

ðSiw

SSLw �CDτ

e
ð Þ

SSLw

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �

þ f w SSLw
� � dSSLw �

Swf � Siw
� �

CDτ

eSiw
: (46)

Setting Sw ¼ Siw in the upper limits of the integrals of Eq. (36) and exchanging the two sides of

the equation yield

ð

∞

�CDτ

e

dw ¼ 2r2s k r2s
� �

ðSiw

SSLw �CDτ

e
ð Þ

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �

þ f w SSLw
� � dSSLw : (47)

As the left sides of Eqs. (46) and (47) are the same, the right sides of these two equations must

be equal which gives

2r2s k r2s
� �

ðSiw

SSLw �CDτ

e
ð Þ

dΨ
dSw

SSLw
� �

dSSLw

D Siw � SSLw
� �

þ f w SSLw
� � ¼

2r2s k r2s
� �

Siw

ðSiw

SSLw �CDτ

e
ð Þ

SSLw dΨ
dSw

SSLw
� �

dSSLw

D Siw � SSLw
� �

þ f w SSLw
� ��

Swf � Siw
� �

CDτ

eSiw
:

(48)

Multiplying Eq. (48) by eSiw and rearranging the resulting equation give

2r2s k r2s
� �

e

ðSiw

SSLw �CDτ

e
ð Þ

SSLw � Siw
� �

dΨ
dSw

SSLw
� �

D Siw � SSLw
� �

þ f w SSLw
� � dSSLw ¼ Swf � Siw

� �

CDτ: (49)

Once the value SSLw � CDτ

e

� �

(i.e., the inner solution saturation in the wellbore SSLw wwellð Þ) is

determined numerically by solving Eq. (49) using the bisection method at each time τ,

Eq. (36) is used to determine the saturation profile in the stabilized zone. It is important to

note that, as SSLw should reach Swf and Siw asymptotically as w ! �∞, here we did not have to

fix a finite distance in which the traveling wave would reach its open bounds as done by

[18, 19, 24]. With our approach, as shown in the validation section (Figure 12), we can obtain

essentially a perfect match with the numerical solution, with a “smoother” water front, which

is expected from the dispersive effect of capillary pressure, contrary to the sharp transition

between the saturation at the water front foot (rwf ) which is the finite position at which water

can be considered immobile—and the initial water saturation in the oil zone exhibited by

solutions of previous authors.
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2.2. Wellbore pressure

As mentioned previously, after finding the saturation distribution, we can obtain the wellbore

pressure by applying the pressure solutions presented by [2]. During injection at a constant

flow rate, qt rw; tð Þ RB/D, where t ¼ 0 at the beginning of the water injection, by integrating

Darcy’s law as in [6, 2], given by

qt ¼ �
k rð Þhr

α
λt

∂po
∂r

� λw
∂pc
∂r

� �

, (50)

where pw ¼ po � pc. Eq. (50) can be solved for the oil pressure gradient by integrating it from

the wellbore radius to infinite, assuming an infinite-acting reservoir. The bottom hole pressure

difference from the reservoir initial pressure (poi) can then be expressed as

Δpwf tð Þ ¼ pwf tð Þ � poi ¼

ð

∞

rw

αqt r; tð Þ

hλt r; tð Þk rð Þ

dr

r
�

ð

∞

rw

f w
dpc
dSw

∂Sw
∂r

dr, (51)

where it is assumed that po rw; tð Þ ¼ pw rw; tð Þ, i.e., pc ¼ 0 at r ¼ rw, in order to satisfy the

compatibility condition [27], i.e., to guarantee phase pressure continuity at the wellbore.

Eq. (51) can be rewritten as

Δpwf tð Þ ¼

ð

∞

rw

αqt r; tð Þ

hλt r; tð Þk rð Þ

dr

r
�

ð

rwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr, (52)

by assuming that the second term in the right-hand side of Eq. (52) is zero from rwf to ∞,

considering f w Siwð Þ ¼ 0 and ∂Sw
∂r ¼ 0 for r > rwf tð Þ, since the water in the region ahead of the

water front foot is assumed immobile. rwf can be defined as the position at which

Sw � Siwð Þ < δ, where δ is a very small number. For the hypodispersion phenomenon, we can

find a finite rwf where δ ! 0, i.e., at which Sw ¼ Siw. Using the [6] steady-state theory, which

assumes that, qt r; tð Þ ¼ qt rw; tð Þ, for r ≤ rwf tð Þ, Eq. (52) becomes

Figure 12. Comparison of the saturation distribution from analytical solution and IMEX during the injection period with

capillary pressure.
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Δpwf tð Þ ¼
αqt rw; tð Þ

h

ðrwf tð Þ

rw

1

λt r;Δtprod
� �

k rð Þ

dr

r
þ
α

h

ð∞

rwf tð Þ

qt r; tð Þ

λt r; tð Þk rð Þ

dr

r
�

ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr, (53)

where for any practical set of values of physical properties [28] indicate that this assumption is

valid. Adding and subtracting the term α
h

Ðrwf tð Þ

rw

qt rw ;tð Þ

bλok rð Þ

dr
r , where bλo ¼

kro Swið Þ
μo

is the endpoint oil

mobility at Sw ¼ Swi, Eq. (53) can be rewritten as

Δpwf tð Þ ¼
α

h

ð∞

rw

qt r; tð Þ

bλo

r; tð Þk rð Þ
dr

r
þ
αqt rw; tð Þ

h

ðrwf tð Þ

rw

1

λt r; tð Þ
�

1

bλo

 !
dr

k rð Þr
�

ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr

¼ Δbpo tð Þ þ
αqt rw; tð Þ

hbλo

ðrwf tð Þ

rw

bλo

λt r; tð Þ
� 1

 !
1

k rð Þ

dr

r
�

ðrwf tð Þ

rw

f w
dpc
dSw

∂Sw
∂r

dr: (54)

Δbpo tð Þ is the single-phase oil transient pressure drop, the known pressure drop solution that is

obtained if we inject oil into an oil reservoir (injection period), whose well-known approximate

solution can be approximated as

Δbpo tð Þ ¼ pwf ,o tð Þ � pi ¼
αqt

khbλo

1

2
ln

βkbλot

ϕbctor2w

 !

þ 0:4045þ s

" #

: (55)

Here, β is a unit conversion factor in which oil field unit is 0.0002637 and the single-phase total

compressibility is

bcto ¼ co 1� Swið Þ þ cwSwi þ cr: (56)

3. Validation

We have compared our pressure and saturation solution including capillary pressure effects with

the commercial numerical simulator IMEX, using the properties shown in Table 1. Figure 12

compares the saturation distribution obtained from our analytical solution with the one obtained

with IMEX, while Figure 13 shows the comparison of the wellbore pressure response from our

analytical solution and IMEX during injection test. In order to be able to match saturation and

pressure obtained from our solution with IMEX, we have to use a very refined grid (0.01 ft)

around the wellbore in the zone invaded by water and then increase it exponentially to a very

large external radius (10,000 times the wellbore radius) in order to reproduce an infinite acting

reservoir. In addition, we have to start with very short time steps, 10�7 day. Figure 14 presents

the log-log diagnostic plots of injection. We can see that at early times of injection, there is a

plateau (stabilization) in the wellbore pressure derivative plot, which by inspection reflects the

original total mobility (endpoint oil mobility), while, at late times, we find that the derivative

shows stabilized radial flow, which by inspection reflects the endpoint water mobility.
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Property Value Unit Property Value Unit

qt 3000 RB/DAY Bo 1.003 RB/STB

h 60 ft Bw 1.002 RB/STB

rw 0.35 ft co 8� 10�6 1/psi

re 6800 ft cw 3:02� 10�6 1/psi

k 300 ft cr 5� 10�6 1/psi

s 0 mD μo 3.0 cp

Siw 0.10 μw 0.5 cp

Sor 0.25 λ 2

pi 2500 psi pt 0.5 psi

ϕ 0.22

Table 1. Reservoir, rock, and fluid properties for simulation and analytical solution.

Figure 13. Comparison of the wellbore pressure response from analytical solution and IMEX during water injection test

with capillary pressure (a).

Figure 14. The log-log diagnostic plots for wellbore pressure data (blue curve) and its derivative with respect to time (red

curve) during water injection (b).
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4. Conclusions

In this work, an accurate approximate analytical solution was constructed for wellbore pres-

sure during water injection test in a reservoir containing oil and immobile water. Our solution

was validated by comparing the bottom hole pressure calculated from the analytical model

with the data obtained from a commercial numerical simulator. Our solution presented here

for water injection together with the wellbore pressure and flow rate history for subsequent

tests as shut-in and flowback can be used as forward model in a nonlinear regression in order

to estimate relative permeabilities and capillary pressure curves in addition to the rock abso-

lute permeability, the skin zone permeability, and the water endpoint relative permeability.

Acknowledgements

This research was conducted under the auspices of TUPREP, the Tulsa University Petroleum

Reservoir Exploitation Projects, and it was prepared with financial support from the Coordi-

nation for the Improvement of Higher Education Personnel (CAPES) within the Brazilian

Ministry of Education.

Conflict of interest

The authors declare that there is no conflict of interest.

Nomenclature

β Unit conversion factor (0.0002637)

Δpo Single-phase oil pressure drop (psi)

λo Oil mobility (1/cp)

λt Total mobility (1/cp)

λw Water mobility (1/cp)

μo Oil viscosity (cp)

μw Water viscosity (cp)

aw Water endpoint relative permeability

Fo Oil fractional flow

Fw Water fractional flow

f w Water mobility ratio
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k Absolute permeability (mD)

ks Skin permeability (mD)

kro Oil relative permeability (mD)

krw Water relative permeability (mD)

pc Capillary pressure (psi)

pi Reservoir initial pressure (psi)

po Oil pressure (psi)

pt Pressure threshold (psi)

pw Water pressure (psi)

qo Oil flow rate (RB/D)

qt Total liquid rate (RB/D)

rs Shock front position (ft)

rskin Skin zone radius (ft)

rw Wellbore radius (ft)

Sw Water saturation

Siw Immobile water saturation

Sor Residual oil saturation

t Time (h)

C Constant given by
θqt
πhϕ

D Shock speed

h Reservoir thickness (ft)

r Radius (ft)

w Traveling wave coordinate

α Unit conversion factor (141.2)

e Perturbation parameter

λ Pore size distribution index

ϕ Porosity

θ Unit conversion factor (5.6146/24)

co Oil compressibility (1/psi)
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cr Rock compressibility (1/psi)

cw Water compressibility (1/psi)

cto Single-phase total compressibility (1/psi)
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