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Abstract

Investigations have shown that worldwide the vascular diseases are considered inde-
pendent risk factors for an increased mortality. Despite these diseases being related to 
factors such as sedentary lifestyle, poor diet and stress, the oxidative stress been the 
which most strongly explained the genesis of these vascular diseases. In this sense, the 
body of evidence involving an analysis and understanding of the factors and preventive 
variables of these diseases available in the literature is necessary. Considering this, we 
aimed to available information about the role of the oxidants and antioxidants enzymes 
in the prevention or causes of vascular diseases, and how the physical exercise can pre-
vent the development of these vascular diseases. It was observed that endothelin-1 is an 
important oxidant involved in the atherosclerotic process, while the hydrogen sulfide 
and glutathione peroxidase have an antioxidant role. About the physical exercise, there is 
greater production of oxidants, however, as a mechanism of compensation, there is also 
greater production and release of antioxidants such as nitric oxide and glutathiones after 
some sessions when compared with the baseline. We conclude that the stress oxidative is 
involved in the vascular disease and the physical exercise could be used like prevention.

Keywords: vascular disease, oxidant enzyme, antioxidant enzyme, oxidative stress, 
physical exercise
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1. Introduction

Vascular diseases have been reported worldwide as an independent risk factor for premature 

mortality [1]. It is now understood that the point in common of all vascular, cardiovascular 

or chronic non-cardiovascular degenerative diseases is the imbalance between oxidation and 

reduction profile caused by free radicals culminating in a situation denominated oxidative stress 
[1, 2]. This reactive oxygen species are generated from NADPH oxidases (NOx), responsible for 

the bioavailability of nitric oxide (NO) in vascular pathologies, through of a direct inactivation of 

NO, together with a reduction in NO synthesis and in oxidation of your receptor, denominated 

guanylyl cyclase soluble [3]. In this sense, the development of studies about the antioxidant 

action in vascular function are important, considering that alterations in this functions, charac-

terized for one increase in vasoconstrictor responses, decrease in vasodilatory capacity and one 

increase in reactive oxygen species production, and the reduction of the activity of antioxidants 

enzymes are associated with the cardiovascular risk factor, as arterial hypertension and athero-

sclerosis [4–9].

Therefore, researches have analyzed effective therapeutic strategies in the treatment of 
pathologies that affect the vascular musculature. Among them, drug therapy is still the most 
indicated, due to its antithrombotic, vasodilatory and hypocholesterolemic pharmacological 

efficacy, such as statins, capable of improving the endothelial functions, due to yours anti-
oxidants, anti-inflammatories and anti-atherosclerotic properties [10, 11]. Although the drugs 

administered are effective, their clinical utility is limited due to the development of tolerance 
and resistance. For that reason, other therapeutic strategies, with fewer collateral effects, have 
been indicated together with the drug treatment, since they are also able to reduce the del-

eterious vascular effects, such as nutraceutical biology with a diet rich in fruits, vegetables or 
red wine, for example [12, 13]. In the present study, the use of polyphenols in the treatment of 

high levels of polyphenols was studied. Then, it seems plausible to affirm that a better under-

standing of the relationship between oxidants and antioxidants functions in the prevention 

or treatment of vascular diseases should have a body of evidence amply constructed to col-

laborate in the prevention and treatment of diseases.

Physical exercise, in this context, has been presented as one of the elements of a healthy lifestyle 

capable of modulating oxidative stress, by promoting the increase of endothelial nitric oxide 

synthase (eNOS) activity, of the early oncogenesis protein tyrosine kinase (c-Src) [73] and the bio-

availability of NO and antioxidant enzymes, leading to significant vascular protection [12, 13] .

Although to date the investigations have demonstrated the endogenous antioxidant effect 
on the prevention of vascular disease, obtained with or without the contribution of short- or 

long-term physical exercise, other mechanisms are need to be better understood, especially 
with regard to exercise. It is not yet possible to assert the understanding that in addition to 

modulation in the antioxidant action, there is also an action on inflammatory factors, reducing 
the inflammation so present in vascular diseases, if there is modification of the membrane pro-

teins of some vascular cells, or if this regulation also occurs at the downstream level. The col-

lection of the literature regarding these gaps will be best seen in Chapters 2 and 3 of this book.

Considering this, we aimed to avail information about the role of the oxidants and antioxi-

dants enzymes in the prevention or causes of vascular diseases, and how the physical exercise 

can prevent the development of these same diseases.
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2. What is the role of oxidative stress in vascular diseases?

At first, it is necessary to understand that free radicals are molecules that contain one or more 
unpaired electrons, are generated independently, and are considered highly reactive due to their 

ability to accept electrons from other molecules until a terminal reaction occurs [2]. Excessive 

production of these radicals can trigger cumulative cellular damage in proteins, lipids, deoxy-

ribonucleic acid (DNA) and other components, resulting in several pathological processes [1].

Thus, in vitro studies have demonstrated that these molecules are important intracellular 

signaling factors that contribute to vascular remodeling, modulating vascular contraction/

dilatation, migration, apoptosis and protein turnover of the extracellular matrix [14]. Thus, 

increased reactive oxygen species (ROS) formation is identified in vascular diseases such as 
hypertension, atherosclerosis and stroke, and is associated with a reduction in levels of nitric 

oxide (NO) and other vasodilators, endothelial tissue damage, protein oxidation, DNA dam-

age and increased proinflammatory responses [14].

There are two types of reactive species, one of which is called the reactive oxygen species, a 

general term that refers not only to radicals derived from superoxide (O
2
) metabolism, but also 

includes non-radical O
2
-reactive derivative (e.g., hydrogen—H

2
O

2
) [15]. Similarly, the other 

class is known as nitrogen reactive species (RNS), it refers to nitrogen radicals reactive with 

other molecules in which the reactive center is nitrogen [15]. The most common ROS and RNS 

are shown in Table 1 in an order of the ones that are the most to the least reactive in the cell [15].

A variety of enzymatic and non-enzymatic processes can generate the reactive species in 

mammalian cells [1]. The primary sources are: mitochondrial respiratory chain, nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, dissociated nitric 

Oxigen-reactive species

Singlet oxygen 1O
2

Superoxide anion O
2

−•

Hydrogen peroxide H
2
O

2

Hydroxyl radical HO•

Perhydroxyl radical HO
2

•

Alcoxila radical RO•

Peroxyl radical ROO•

Hydroperoxyl radical ROOH•

Hypochlorous acid HCLO

Ozone O
3

Nitrogen reactive species

Nitric oxide NO

Nitric oxide NO
2

Peroxynitrite ONO
2

−

Table 1. Reactive oxygen and nitrogen species.
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oxide synthase (NOS), lipoxygenase and myeloperoxidase (MPO), the first four of which are 
responsible for aggravating the vascular diseases [1].

The mitochondrial respiratory chain is the main pathway for radical generation in biologi-

cal systems involving the transport of mitochondrial electrons, where oxygen is used for the 

production of ATP. Under physiological conditions, most of the oxygen consumed by cells is 

reduced to water in the mitochondria by serial oxy-reduction reactions through the action of 

the cytochrome oxidase complex. The reduction of oxygen to water takes place inside it in a 

way that leaves no intermediates. In fact, it is necessary to receive the oxygen atom to form 

two molecules of H
2
O and this is done when it receives four electrons (H+) and, upon receiv-

ing them, the oxygen goes through intermediate stages: superoxide, hydrogen peroxide, radi-

cal hydroxyl and finally water. All this happens inside the cytochrome oxidase complex and 
it does not let these intermediates leak. However, if there is an accumulation of electron flow 
in the chain, this increases the probability that some electron will leak out of the chain. From 1 

to 5% of the passage of oxygen along the respiratory chain may give rise to O
2
•−, which results 

in other non-radical species (H
2
O

2
) and radicals (HO•). This may result from the reduction 

of an ubiquinone (coenzyme Q) electron, generating ubisemiquinone, which then binds its 

unpaired electron to O
2
 to form O

2
•−. However, there may be other free radical generation 

sites in the electron transport chain [2]. Mitochondria also generate NO, which can react with 

O
2
•− to form peroxynitrite (ONOO−), a very potent oxidant [16].

Nicotinamides adenine dinucleotide phosphate oxidases (NADPH) are a family of enzymes with 

multiple complex subunits that generate O
2
•− by reducing one of electron oxygen using NADPH 

as the source of electrons [17]. They comprise a cytochrome b558 that crosses the plasma mem-

brane, is composed of a large catalytic subunit, gp91phox (nox2), and a small subunit, p22phox (the 

term “phox” is derived from “phagocytic oxidase”) together with cytosolic regulatory subunits 

p47phox, p67phox, p40phox and the small GTPase Rac [14, 18]. Activation of NADPH oxidase is initi-

ated by phosphorylation (in serine) of the p47phox cytoplasmic subunit, triggering its migration to 

the membrane, where, along with Rac, it associates with cytochrome b558, initiating the catalytic 

activity of the enzyme. The identification of subunits homologous to gp91phox resulted in the for-

mation of the Nox family (of “Nonphagocytic NADPH Oxidase”) (Nox1, Nox2 [formally known 

as gp91phox], Nox3, Nox4, Nox5, Duox1 and Duox2 [Dual oxidase]). The main components of the 

complex enzymatic are nox1, nox2 and nox4 being the major catalytic subunits in vascular endo-

thelial cells, smooth muscle cells, fibroblasts and cardiomyocytes. In the large arteries, p22phox, 
p47phox and Rac subunits are found. While in cells of small arteries of resistance, gp91phox (nox2), 

p22phox, p47phox and e p67phox, were identified as the main responsible for the formation of intracel-
lular ROS [19]. In cell stimulation, p47phox becomes phosphorylated and the cytosolic subunits 

form a complex, which then migrates to the membrane, where it associates with cytochrome 

b558 to leave the active oxidase, which transfers electrons from the O
2
 substrate, leading to for-

mation of de O
2
•− [18]. In vascular cells, nox4 is abundantly expressed and plays an important 

role in the production of de O
2
•− and has been associated with vascular pathophysiology [17].

There are three isoforms of nitric oxide synthase (NOS) decoupling enzymes that are termed: 

neuronal nitric oxide synthase (nNOS) expressed in most neural tissues, endothelial nitric 

oxide synthase (eNOS) expressed in cardiovascular tissues and inducible iNOS), induced 

by pro-inflammatory mediators [20]. NO synthesizing enzymes catalyze the conversion of 
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l-arginine to l-citrulline and NO. The production of NO via eNOS involves the transfer of 

electrons from the NADPH cofactor to adenine and flavin dinucleotide and the mononucleo-

tide of adenine and flavin to heme [20]. All can generate O
2
•− under substrate (arginine) or 

cofactor (tetrahydrobiopterin—BH4) conditions. The BH4 enzyme is highly susceptible to 

oxidative degradation, and the initial oxidative loss of BH4 in response to increased EROS 

production by NADPH oxidases amplifies oxidative stress through the resulting loss in NO 
production and an increase in the generation of O

2
•− dependent of us. Most of the evidence 

linking NOS to EROS production belongs to the eNOS isoform [20].

The coupling of the electron flow through the eNOS to l-arginine is dependent on adequate 

levels of cofactors and under specific circumstances, eNOS can become “decoupled” and 
reduces the oxygen molecule rather than transfer electrons to l-arginine, generating O

2
•−. 

Thus, the impact of eNOS on vasculature may depend on adequate levels of cofactors to sup-

port endothelial function. In fact, studies have shown the decoupling of eNOS from the arter-

ies of individuals with diabetes [21] or atherosclerosis [22].

Xanthine and xanthine dehydrogenase are forms of the same enzyme, known as xanthine oxi-

doreductase. This enzyme is widely expressed in the capillary endothelium and catalyzes the 

conversion of hypoxanthine to xanthine and xanthine to uric acid, however, only the oxidase 

form generates O
2
•− and H

2
O

2
. The enzyme typically exists in the form of dehydrogenase, but 

under conditions of stress or, for example, in hypoxia induced by a process of atherosclero-

sis, the oxidase isoform predominates. Therefore, xanthine oxidase has been implicated as a 

source of EROS after reperfusion of ischemic tissue in various organs [2], and its expression is 

upregulated by NADPH oxidase [23].

The development of vascular disease originates from an initial injury to the vessel wall by bio-

logical or mechanical factors. Both produced in response to injury can stimulate ROS production 

in macrophages, endothelial cells, smooth muscle cells and adventitial layer. These then impair 

vessel tone through endothelial dysfunction, which is characterized by inflammatory response, 
pro-constrictive response, increased migration of smooth muscle cells, proliferation and apopto-

sis (Figure 1), contributing to diseases such as stroke, atherosclerosis and hypertension [5–8, 24].

Figure 1. Role of reactive oxygen species in response to an injury.
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During vascular injury, when oxidative stress is greatest, there is vessel remodeling, where 

agonists such as angiotensin II, platelet growth factor, cytokines/chemokines, IL-6 and IL-8, 

thrombin and endothelin stimulate increased activity of NADPH oxidase and its p22phox 

domain, increased proliferation, migration and adhesion activity of vascular smooth muscle 

cells and reduced NO bioavailability [4, 14, 20].

In this sense, it has been observed in diseases, such as hypertension, that in the aorta and 

mesenteric arteries there is an increase in vascular activation of NADPH oxidase, xanthine 

oxidase and decoupling of eNOS resulting in an increase in O
2

•− generation, whereas lev-

els of glutathione antioxidant and activity of the endotoxin superoxide dismutase (SOD) are 

reduced [25]. An increase in the local and systemic vascular inflammatory process (C-reactive 
protein) is also observed [26]. Activation of the renin-angiotensin system stimulates NADPH 

oxidase activation and production of O
2

•− [27]. Vecchione et al. [28] in 2009 have shown that the 

reduction in endothelium-dependent vasodilation in rat arteries is associated with vascular 

increase in superoxide production and increased NADPH oxidase activity. However, trans-

genic mice with overexpression of thioredoxin 2, peroxidase that helps conversion of hydro-

gen peroxide into water, are resistant to hypertension induced by angiotensin II, oxidative 

stress and endothelial dysfunction [29]. In this sense, the present chapter aims to present the 

main vascular diseases, the role of the redox balance and physical exercise, in its prevention.

3. Prevention of vascular diseases

3.1. What is the role of antioxidants?

A vascular inflammation, risk of vascular disease development and oxidative stress have been 
widely discussed in the literature [30]. In general, oxidative stress and the inflammatory pro-

cess are closely related to vascular diseases such as atherosclerosis, peripheral obstructive 

arterial disease, stroke, coronary artery disease and abdominal aneurysm [31].

Vascular diseases are chronic, progressive and multifactorial inflammation in which, at present, 
the immunological disorder, more precisely inflammatory, is perceived as a factor that plays 
an important role in the onset and maintenance of diseases [32, 33]. Already, oxidative stress 

is defined as the state of unbalance without qualifying favoring of oxidants at the expense of 
antioxidants that culminate in damaging effects on cells and membranes [34]. Oxidants may be 

referred to as reactive oxygen species, and free radicals such as superoxide (O
2
•−), peroxynitrite 

(ONOO•−) and hydroxyl (OH•), in addition to non-radicals such as hydrogen peroxide (H
2
O

2
).

Antioxidant defenses consistently protect tissues and body fluids from injury caused by free 
radicals produced by normal metabolism, disease response or from external sources [15]. 

For this, they are strategically arranged throughout the cytoplasm, within several organelles, 

extracellular space and vascular [15].

The first defense mechanism against free radicals is to prevent their formation, mainly by 
inhibiting chain reactions with iron and copper. A second mechanism is through the inter-

ception of free radicals, preventing the attack on the lipids of the cell membrane causing 
lipid peroxidation, protein amino acids, the double bond of polyunsaturated fatty acids and 
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DNA bases [18]. Antioxidants obtained from the diet are extremely important in interception. 

Another mechanism is the repair of the lesions by removing damages of the DNA molecule 

and the reconstitution of damaged cell membranes [2].

Antioxidant defense mechanisms are grouped into enzymatic systems (are the first to act) and 
non-enzymatic [17]. Important antioxidant enzymes include superoxide dismutase (SOD), 

 catalase (CAT) and glutathione-dependent enzymes, such as glutathione peroxidase (GSH-Px), 

glutathione S-transferase (GST), glutathione reductase (GSH) and glutathione synthetase [17].

There are three types of SOD: SOD-1, found in the cytosol and in the nucleus, dependent on 

zinc and copper; SOD-2, present in the inner mitochondria, dependent on manganese and 

SOD-3, found in the extracellular medium. All require a transitional redox active metal in the 

active site to perform the catalytic decomposition of the superoxide anion.

Physiologically, our body adapts daily so that the concentration of antioxidant/antioxidant 

substances is balanced. However, in pathological conditions, such as in the development and 

maintenance of vascular diseases, antioxidant defenses are unable to maintain the oxidore-

duction balance, causing higher levels of active reactive oxygen species which have the need 

of interaction with other cells, substances or membranes [34–37].

In a vicious cycle and difficult to break, oxidative stress can generate an inflammatory process 
and vice versa, so that there is the progression to an inflamed environment being it internal or 
external to the cell, resulting in an increase in the concentration of adhesion molecules vascu-

lar wall, endothelial dysfunction and onset of atherosclerosis, progressing to stroke, peripheral 

obstructive arterial disease, diabetic foot, coronary artery disease or abdominal aneurysm [34–37].

One of the oxidizing mechanisms that may explain the onset of vascular diseases such as 

atherosclerosis and peripheral arterial obstructive disease [38, 39] refers to the exacerbated 

concentrations of endothelin-1 (ET-1). ET-1 is a peptide with pro-inflammatory and pro-oxi-
dant properties commonly secreted when there is damage to the endothelium as a signaling 

medium for tissue repair mechanisms. ET-1 directly causes increased NADPH activity and 

consequent increase in the concentration of reactive oxygen species. This is only the begin-

ning of a reaction cascade that leads to an increase in the activity of adhesion molecules in the 

vascular cell (VCAM-1), with a consequent increase in macrophage and monocyte infiltration, 
calcium influx and vasoconstriction. Already indirectly, ET-1 participates in the generational 
process of atherosclerosis since it decreases the vasodilatory property of the arteries consid-

ering that there is redistribution of the eNOS to the mitochondria, thus decreasing the NO 

bioavailability [38]. In Figure 2, we observe the above-mentioned effects of ET-1.

For the antioxidant processes of prevention or deceleration of vascular diseases, proteins, 

enzymes or transmitting gases are involved [39–43]. In view of this, hydrogen sulfide (H
2
S), 

paraoxonase and glutathione peroxidase (GSH-PX) are reported in the literature as the main 

antioxidant sources capable of preventing or treating vascular diseases, especially atheroscle-

rosis and obstructive arterial disease peripheral [39–43].

H
2
S is currently considered the third gas transmitter after NO and carbon monoxide (CO) [40, 41]. 

It is known that due to its interaction with ion channels [44], second messengers [45–47], post-trans-

lational modification [44, 48, 49] and antioxidant defense [50], this compound plays an important 

role in the prevention of vascular diseases.
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Vasoprotection promoted by H
2
S involves a cascade of effects that culminate in the prevention 

or deceleration of the atherosclerotic process once it has been initiated. Thus, the effects cascade 
is composed of: (1) inhibition of atherogenesis by modifying low density lipoprotein (LDL) 

molecules [51]; (2) inhibition of monocyte aggregation in endothelium [1, 52]; (3)  inhibition 

of proliferation and migration of vascular smooth muscle cells in the  atherosclerotic process 

once it is established in the vascular wall [53, 54]; (4) inhibition of the formation of spongy 

cells [55]; (5) angiogenesis [56]; (6) improvement of vasorelaxative mechanisms [57]; (7) reduc-

tion of vascular wall stiffening or calcification [58] and (8) prevention of platelet aggregation 

and thrombogenesis [59, 60]. Some of these effects can be visualized in Figure 3.

H
2
S demonstrates its antioxidant and, consequently, vasoprotective action when it reduces 

pexonitrite (ONOO−) molecules to nitrous acid (HSNO
2
) and hydroxyl radical (OH−) in a 

chemical representation, proposed by Filipovic et al. [61], as described below:

   H  
2
   S +  ONOO   −    HSNO  

2
   +  OH   −   (1)

Carballal et al. [62] in 2011 proposed that the antioxidant action of H
2
S is minimal, or of no 

physiological significance. However, Filipovic et al. [61] demonstrated that, unlike the initial 

hypothesis, H
2
S has a potent antioxidant and vasoprotective effect and is similar to glutathione.

It is also emphasized that all cells are susceptible to the action of reactive oxygen species, how-

ever, the lipid matrix of cell membranes is one of the most affected sites of these active species 
causing lipid peroxidation [63]. In this sense, although H

2
S is able to reduce peroxynitrite 

molecules, its main and vasoprotective antioxidant action is to reduce lipid hydroperoxides 

by limiting the pathobiological potential for the development of vascular diseases through 

lipid peroxidation. The chemical representation can be seen below:

  LOOH +  H  
2
   S +  O  

2
    LOH +  SO  

2
   +  H  

2
   O  (2)

Figure 2. Principal effects of ET-1 on the vascular system and surrounding tissues. VCAM-1, vascular cell adhesion 
molecule 1.
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Another proposed antioxidant and vasoprotective mechanism involves the action of paraox-

onases, universally accepted proteins as capable of protecting cells from oxidative stress [4]. 

The paraoxonase family includes paraoxonase-1, 2 and 3 (PON-1, PON-2 and PON-3), with 

PON-1 and PON-3 being found in plasma and directly associated with high density  lipoprotein 

fractions (HDL) promoting action against the formation of reactive oxygen species, oxidation 

of low density lipoprotein (LDL) and macrophages leading to blockage or reduction of athero-

sclerotic lesions [4]. As for PON-2, it is a cell-associated complex, it is not found free in plasma, 

but in some tissues, especially in the kidneys, in which its antioxidant and anti-inflammatory 
effects are more evident [42].

In recent years, it has been observed that glutathione peroxidase (GSH-PX), an endogenous 

antioxidant enzyme, attenuates the development of atherosclerosis in a similar action to H
2
S, 

that is, reducing hydroperoxides [64]. In fact, when blocked, GSH-Px elevates oxidative stress 

in macrophages and increases ox-LDL activity. In addition, some elements when in non-phys-

iological concentrations decrease GSH-PX activity, such as homocysteine [64]. Porter et al. 

[65] and Blann et al. [66] demonstrated that volunteers affected by atherosclerotic disease 
showed a reduction of approximately 29% of the peroxidase activity compared to healthy 

volunteers, demonstrating that the performance of this enzyme may be more related to pre-

vention than to the repair process after vascular disease.

3.2. Effects of physical activity and physical exercise on oxidative stress: molecular 
mechanisms and antioxidant effect of physical exercise

The antioxidant defense system has the function of inhibiting and/or reducing the damage 

caused by the action of free radicals. For this, the mechanisms of action may be the impediment 

in formation of free radicals or non-radical species (prevention systems), preventing the action 

of these molecules (sweep systems) or favoring the repair and reconstitution of damaged bio-

logical structures [67].

In response to the increased oxygen consumption that occurs in intense physical exercise, the 

reactive oxygen species (ROS) are generated by activating at least three main mechanisms: mito-

chondrial, cytoplasmic and favored production by iron and copper ions [68]. At the same time, 

Figure 3. Main effects of hydrogen sulfide (H2S) in vascular system. 1—inhibition oxidation of low density lipoprotein; 
2—diminution of monocyte aggregation in tunica intima; 3—inhibition of formation of spongy cells; 4—inhibition 

of proliferation and migration of vascular smooth muscular cells. The order of these effects was adopted for didactic 
purposes. LDL, low density lipoprotein; LDL-ox, oxidized low density lipoprotein.
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physical exercise may also promote adaptation able to reduces the oxidative damage caused by 

the action of such agents. One such mechanism is the increased expression of the enzyme nitric 

oxide synthase (eNOS), through phosphorylation of residues by the proto-oncogenesis protein 

tyrosine kinase (c-SRC) and the activation of eNOS induced by other ROS in response by shear 

stress; while other mechanisms are triggered by oxidative stress, such as concomitant produc-

tion of the enzyme superoxide dismutase (SOD), increased glutathione dismutase (GPx) activ-

ity, increased NO production induced by adenosine and the NO signaling pathway dependent 

on cyclic guanosine monophosphate (cGMP) (Figure 4). In addition, there is reduced mRNA 

expression and activity of pro-oxidant enzymes such as NADPH oxidase, angiotensin II recep-

tor type I and increased expression of angiotensin II receptor type II in mammalian arteries [69].

Exercise-induced cardioprotection is probably a multifaceted phenomenon, with potential 

effector tissues including the myocardium, endothelial cells, inflammatory cells and coronary 
smooth muscle (CSM) [70]. Several mechanisms explain the positive effects of physical train-

ing regarding vascular adaptations [71].

The improvement of endothelial function by physical exercise is dependent on factors such as 

frequency and magnitude of physical exercise, which can cause shear stress and autoregula-

tion of eNOS expression in endothelial cells [72]. Physical exercise results in increased heart 

rate and, consequently, increased blood flow and shear stress, which increases the activity of 
the early oncogenesis protein tyrosine kinase (c-Src) and increased eNOS production.

In the same sense, apparently the adaptations to physical exercise also occur in those vessels 

where there is no change in perfusion/blood flow during exercise [73]. It is important to highlight 

that, during exercise, the signal triggering endothelial adaptations in blood vessels perfusing tis-

sues outside actively contracting muscle may not only be increased mean shear stress but also 

the alteration in shear profiles [74] that result from hemodynamic changes (e.g., heart rate and 

pressure) during exercise. It is suggested that alterations in the frequency of cyclic shear, and 

Figure 4. Possible pathways of antioxidant effect occurring as a result of physical exercise.
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hence the profile of the shear waveform, may activate highly different signaling pathways than 
do increases in average shear stress. More research is warranted to isolate the influence of shear 
patterns from other exercise-related signals to fully evaluate the hypothesis that exercise-induced 
acute changes in shear waveforms modulate endothelial health systemically with training [75].

Several considerations should be taken into account when viewing the hypothesis that shear 

stress is an exercise-induced signal for endothelial adaptations in nonworking tissues. Shear 

stress is directly related to blood flow and viscosity but inversely related to arterial diameter [76]. 

Given vascular tone (and hence diameter) is constantly regulated by central and local factors 

(e.g., shear stress), changes in blood flow through a given vessel do not always correspond with 
alterations in shear stress. In this regard, the extent to which enhanced blood flow or viscosity 
results in increased shear stress may be dependent on the caliber of the vessel and/or its abil-

ity to dilate in response to shear. Contrary to conduit arteries, given the remarkable capacity of 

arterioles to dilate and constrict, it is unclear to what degree changes in blood flow in the micro-

vasculature translate into alterations in shear [75].

Moreover, shear stress may not be the only hemodynamic exercise-induced signal for sys-

temic endothelial adaptations. Endothelial cells are also exposed to stress from distention of 

arteries caused by relaxation of smooth muscle in the wall or by increased transmural pres-

sure across the arterial wall. Since endothelial cells are exposed to cyclic distention within 

each cardiac cycle and during exercise the frequency and magnitude of this distention is 

augmented, cyclic strain should be considered as a potential exercise-induced signal. In this 

regard, Awolesi et al. [77] have shown that cyclic strain increases transcription of eNOS in 

cultured endothelial cells. Similarly, it is demonstrated that distention of isolated arteries is a 

stimulus for increased expression of the eNOS gene [78].

However, it is important to note that cyclic strain has also been associated with increased pro-

duction of ROS and expression of adhesion molecules including vascular cell adhesion protein 

1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin and monocyte chemoat-

tractant protein-1 (MCP-1) [79]. Although chronic exposure of endothelial cells increasing 

cyclic strain (as occurs with hypertension) may produce negative adaptations, based on the 

classical physiological concept of hormesis, it is plausible that recurring periods of exercise-

induced cyclic strain and consequent oxidative stress may increase the tolerance of endothe-

lial cells to withstand subsequent doses and hence stimulate a long-term protective effect [75].

In addition to evidence in the literature that exercise-induced adaptations of the endothelium 

result from increases in shear stress and/or cyclic strain [80], there is also growing evidence  

suggesting that changes in chemical signaling (i.e., hormones, cytokines and adipokines) may 

contribute to systemic benefits of chronic exercise on endothelial cells. Hemodynamic forces may 
interact with anti-atherogenic mediators such as insulin, adiponectin and IL-6 and with inflam-

matory cytokines (pro-atherogenic mediators) in the determination of endothelial cell pheno-

type/function. It appears that substances such as signal remodeling and altered phenotype of 

endothelial and smooth muscle cells are also released in response to increased shear stress [71].

Regarding the positive adaptations on coronary smooth muscle (CSM) by physical training, 

some other points need discussion. The beneficial adaptations of physical training can occur 
both at the sarcoplasmic level (rianodine-sensitive Ca2+ channels—RyR-) and sarcolemma 

(voltage-dependent Ca2+ channels and K+ channels) [70].
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A study by Newcomer et al. [78] demonstrated a postdepolarization, time-dependent decline 

in the caffeine-releasable SR Ca2+ store in cells from exercise-trained animals, but not sedentary 

control subjects. This phenomenon (termed SR Ca2+ unloading) was further determined to result 

from a slow release of SR Ca2+ via RyR. Of noteworth is that the Ca2+ released through SR Ca2+ 

unloading seems to be extruded from the cell, not resequestered by the SR or other organelles, 

and was demonstrated to occur with no increase in bulk Ca
m

 (myoplasmic free Ca2+ concentra-

tion) [81]. It was concluded that the net effect of this training-induced SR Ca2+ unloading would 

be a lower SR Ca2+ content and an increased subsarcolemmal Ca2+ gradient, with no effect on 
bulk Ca

m
. In this way, it was proposed that a lower SR Ca2+ content caused by SR Ca2+ unloading 

may contribute to attenuated contractile responses to vasoactive agonists in the exercise trained 
state because of both diminished SR Ca2+ release and increased SR buffering of influx Ca2+.

L-type Ca2+ channels are associated with endothelin response, so they may be associated 

with changes due to physical exercise. It is known that endurance training increases L-type 

Ca2+ channel current density approximately twofold in all three arterial sizes, with no effect 
on voltage-dependent activation or inactivation characteristics [81]. Additionally, a signifi-

cant correlation between treadmill endurance time and peak L type Ca2+ current density was 

demonstrated in all three arterial sizes, supporting a direct association between endurance 

capacity and coronary smooth muscle L-type Ca2+ current density. The increase in L-type Ca2+ 

current density could result from an increase in the number of L-type Ca2+ channels in the 

sarcolemmal membrane and/or increased activity of existing channels. Future studies will be 

necessary to determine the basis for this training-induced adaptation.

Another channels that plays major role in control of smooth muscle tone are K+ channels, 

by determining Ca
m

, through regulation of membrane potential (V
m

) and voltage-gated Ca2+ 

channel activity. Activation of K+ channels produces membrane hyperpolarization, acting as 

a negative feedback on voltage-gated Ca2+ channel activation to limit contraction or produce 

vasodilation. Various K+ channels are expressed in vascular smooth muscle, including large-

conductance, Ca2+-activated K+ channels (K
Ca

), voltage-dependent K+ channels (K
v
), inward 

rectifier K+ channels (K
ir
) and ATP sensitive K+ channels (K

ATP
).

Preliminary research [82] indicates that exercise training increases the relative contribution of both 

K
Ca

 and K
v
 channels to regulate basal tone of coronary arteries. Thus, K+ channels play a greater 

role in regulating basal coronary tone in the exercise-trained state. Interestingly, it is concluded  

that stretch is a requisite factor for expression of this training-induced adaptation because K
Ca

 

and K
v
, currents, determined by voltage-clamp in enzymatically isolated smooth muscle cells, 

exhibited no difference in current density in cells from exercise trained and sedentary groups.

An intense physical exercise session can generate large amounts of reactive oxygen species, 

which increases oxidative stress and superoxide production (O
2
•−) [83]. The superoxide radi-

cal is highly reactive, however, it crosses with difficulty the plasma membrane, being con-

verted quickly to hydrogen peroxide (H
2
O

2
) by the enzyme superoxide dismutase (SOD), 

whose concentration also increases with physical exercise [84]. Hydrogen peroxide (H
2
O

2
) 

is catalyzed by the enzyme glutathione oxidase (GPX), which reduces it to two molecules of 

water, reducing the oxidant damage of the superoxide radical.

The antioxidant mechanisms induced by shear stress are not yet completely clarified by the litera-

ture, so other mechanisms are studied [83]. The mechanism of NO signaling dependent on cyclic 
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guanosine monophosphate (cGMP), refers to endothelial cells that present  mechanoreceptors. 

These receptors directly activate G-proteins, enzymes and other protein kinases that generate a 

second messenger, such as cGMP, which leads to vasodilation. Another mechanism increased 

NO production stimulated by adenosine. Studies have shown that erythrocyte membranes tend 

to release ATP in response to shear stress and that during the strenuous physical exercise in the 

cincunflex artery, there is NO production stimulated by adenosine [84].

Despite the exhaustive studies, there are controversies regarding the antioxidant effect of 
physical exercise related to issues such as eNOS measurement after a training period, eNOS 

status in the animal and human baseline, and the existence of polymorphisms in the gene 

promoter of eNOS [83]. It has been shown that eNOS activation induced by shear stress does 

not depend on the increase of intracellular calcium, but on enzyme phosphorylation [85]. This 

post-transcription modification occurs at serine 1177 and is mediated by the serine/threonine 
protein kinase Akt (protein kinase B) [86]. This alters the sensitivity of the enzyme to Ca2+, 

making its activity maximal at subphysiological concentrations of Ca2+. In the presence of 

Ca2+/calmodulin, the serine 1177-mediated eNOS phosphorylation occurs in the skeletal and 

cardiac muscle of rats by the activation of AMPK (activated protein kinase), an enzyme acti-

vated by vigorous exercise and ischemic stress [87]. Boo et al. [88] suggested that a coordinated 

interaction between Akt and PKA may be an important mechanism by regulating eNOS activ-

ity in response to shear stress. These results are confirmed in humans with coronary artery 
disease who underwent 4 weeks of supervised physical exercise training lasting 60 min/day. 

The increase in the levels of phosphorylation of eNOS-mediated enzyme ser-1177 increased 

fourfold in the left mammary artery region. This was associated with a two-fold increase in 

eNOS and a significant increase in endothelium-dependent vasodilation in this artery [89]. 

Together, the current evidence suggests that phosphorylation induced by shear stress caused 

by physical exercise contributes to the improvement of endothelium-dependent vasodilation.

The acute effects of aerobic and anaerobic physical exercise are related to the increase of vas-

cular oxidative stress and damages to lipid cells, nucleic acids and the glutathione system 

(GSH). Very intense physical exercise for 4 weeks may induce increased plasmatic activity 

of the glutathione peroxidase enzyme (GPx) and decrease of antioxidant substances in the 

resting plasma, in the pre-exercise period, and mainly, in the post-exercise period and accom-

panied by a reduced glutathione (GSH) and oxidized glutathione (GSSG, GSH/GSSG) and an 

increase in plasma thiobarbituric acid reactive substances (TBARS) [90]. Thus, acute periods 

of exhaustive training may decrease the antioxidative capacity of tissues, such as skeletal 

muscle and vascular cells [83]. On the other hand, adaptations to moderate exercise appear 

to occur after a few weeks of training; in fact, endurance training has been shown to be able 

to reduce oxidative stress, such as lipid peroxidation in membrane erythrocytes, when com-

pared to exhaustive exercise in young men trained [91]. The increase in eNOS expression by 

physical exercise is followed by increased expression of SOD3 [84]. Self-regulation of SOD 

by physical exercise not only provides efficient detoxification of superoxide but also reduces 
the generation of peroxynitrite, a strong oxidant with important pathophysiological effects 
[92]. While manganese protein levels, superoxide dismutase (SOD2) was not altered, levels of 

the p67phox protein, a subunit of the pro-oxidant enzyme NADPH oxidase, were reduced by 

physical training [93]. These observations demonstrate that the antioxidant effects of physical 
exercise can not only be mediated by increased expression of antioxidant enzymes, but also 

by reduced expression of pro-oxidant enzymes [83].
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Table 2. Review of articles about effects of physical exercise and oxidative stress in humans and animals.
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A review with studies that verified the influence of physical exercise on oxidative stress is 
presented in Table 2. Overall, human studies with interventions ranging from 4 weeks to 

12 months, either with strength training [91, 94, 95] or aerobic training of moderate to vigorous 

intensity [94, 96–99] have demonstrated an improvement in antioxidant capacity by increas-

ing SOD, CAT, GPx, total antioxidant capacity (TAC) and/or decrease of  malondialdehyde 

(MDA). Only one study that demonstrated the acute effect of horse racing did not show sig-

nificant changes in GPx, SOD, GSSG and glutathione redox ratio (GRR) [100]. In diabetic 

rats that performed moderate intensity exercise also did not significantly alter SOD, GPx and 
oxygen radical absorbance capacity (ORAC) [101] or increased MDA [102].

Considering that the acute effects of vigorous physical exercise are related to the increase in 
oxidative stress, while the chronic effects of training with moderate exercise can favor changes 
in gene expression and increase of the antioxidant effect, it is possible to speculate that the 
antioxidant effect of physical exercise is dependent of the occurrence of oxidative stress in an 
intermittent way [83]. Briefly, physical exercise may, in the medium term (about 3 weeks, for 
example) increase vascular hydrogen peroxide and, consequently, eNOS expression [83, 87]. 

It is possible that physical exercise training in the medium term reduces oxidative stress by 

the measurement of lipid peroxidation in the erythrocyte membrane in response to strenu-

ous exercise in young, untrained males [91]. Furthermore, eNOS activity was shown to be a 

crucial factor for vascular expression of the antioxidant enzyme SOD3, and 4 weeks of physi-

cal training reduced the expression of potentially pro-oxidant proteins, such as NADPH oxi-

dase and type 1 angiotensin II receptor, while the expression of vascular antioxidant proteins 

such as angiotensin II receptor type 2 is reduced [104]. Additionally, the potentially beneficial 
effects of exercise and/or regular physical activity as increased eNOS expression is reversible 
by a sedentary lifestyle as induced by forced physical inactivity [105].

Thus, regular physical exercise becomes beneficial for healthy people and patients with car-

diovascular disease. While exercise training may hinder the development of pro-oxidative 

vascular gene expression associated with endothelial dysfunction in individuals, it corrects 

and/or improves already established endothelial dysfunction and increased vascular oxida-

tive stress in cardiovascular diseases such as hypertension, diabetes, encephalic stroke, coro-

nary artery disease and heart failure [83, 103, 106].

4. Conclusion

The present chapter demonstrates that the oxidative stress is heavily involved in most of vas-

cular diseases considering your effect for elevated the aggregation of monocytes in endothe-

lium, low density lipoprotein oxidation, proliferation of vascular smooth muscular cell, among 

others. On the other hand, endogenous enzymes or compounds like glutathione  peroxidase 

and sulfide hydrogen have the antagonistic effects like inhibition of the pathophysiological 
processes involved in vascular diseases. Therefore, although the physical exercise be able to 

elevated the concentration of reactive oxygen species after your practice, is be able to pro-

moted the elevation in the production and secretion of antioxidants like superoxide dis-

mutase, resulting in scavenging effects, responsible for the defenses against the development 
of the atherosclerotic process, present in the most of the vascular diseases can be observed.
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