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Abstract

Numerous volcanic scoria (VS) cones are found in many places of the world. Many of 
them have not yet been investigated, although few have been used as binders for a very 
long time. The use of natural pozzolans as cement replacement could be considered as a 
common practice in the construction industry due to the related economic, ecologic and 
performance benefits. This chapter highlights the advantages and disadvantages of the 
use of volcanic scoria as cement replacement in concrete mixes in terms of fresh and hard-
ened concrete properties. The chemical and mineralogical composition of volcanic scoria 
samples collected from 36 countries is presented in this chapter, with some further analy-
sis. The effects of using volcanic scoria as cement replacement on some paste, mortar 
and concrete properties, such as the setting times, the heat of hydration, the compressive 
strength, the water permeability and the chloride penetrability, have been studied. The 
improvement in resistance against the chemical attack of volcanic scoria-based cement 
mortar has also been highlighted. Some estimation equations depending on the data 
available in literature have also been derived from the analyzed data. The modification of 
the microstructure of VS-based cement paste has been confirmed, as well.

Keywords: volcanic scoria, blended cement, compressive strength, concrete durability, 
pozzolan

1. Introduction

Concrete is the most widely used construction material around the world, because of the 

economic and widespread availability of its constituents, its versatility, its durability and its 

adaptability [1]. In the year 2000, more than 1.5 billion tons of cement were produced to make, 
on average, nearly 1 m3 of concrete per capita [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Ordinary Portland cement concrete (OPC) is a composite material and its constituents are 

cement mixed with water, fine-grained aggregate (sand) and coarse-grained aggregate consist-
ing of natural gravel or crushed stones [3]. Cement is a finely pulverized, dry material that 
by itself is not a binder but develops the binding property as a result of hydration (i.e., from 

chemical reactions between cement minerals and water) [4]. The considerable amount of car-

bon dioxide (CO
2
) liberated during the production of Portland cement, the most commonly 

used hydraulic cement, is of a greater concern. On average, about 1 ton of CO
2
 is liberated per 

ton of Portland cement produced [1].

The use of mineral admixtures such as pozzolans (materials containing reactive silica) in con-

crete is now widespread due to many economic, ecological and performance-related benefits 
[4, 5]. Pozzolanic material is “a siliceous or siliceous-aluminous material that in itself pos-

sesses little or no cementitious value but will, in finely divided form and in the presence of 
water, chemically react with calcium hydroxide at ordinary temperatures to form compounds 

possessing cementitious properties” [6]. Pozzolanic supplementary cementitious materials 

(SCMs) differ from hydraulic SCMs in that hydraulic SCMs can form cementitious products 
in water, without the presence of calcium hydroxide [6]. The term “pozzolan” comes from 

the town of Pozzuoli, northeast of Naples in Italy, where red pozzolanic deposits from the 

volcano Vesuvius were found [7].

Pozzolanic materials can be divided into natural and artificial pozzolans. Natural pozzolans could 
be considered the first cementing materials used for the production of artificial stones, ancient 
mortars and concretes, 3000 years ago [8]. For example, according to Jackson et al. [9], the binding 

pozzolanic mortars of 2000-year-old concretes in the monuments of imperial age Rome contained 

40–50 vol. % of scoriaceous volcanic ash. The natural pozzolans may be further divided into two 

main groups: (1) those derived from volcanic rocks (volcanic scorias, ashes, tuffs, pumices and 
obsidians) and (2) others derived from rocks and earths, such as the diatomaceous earths (cherts, 
opaline silica), clays which have been naturally calcined by heat from flowing lava [10].

Volcanic scoria is loose, rubbly, basaltic to andesitic (40–60% SiO
2
) ejecta that accumulates 

around Strombolian eruptive volcanic vents, eventually building up as a scoria cone, whose 

height may range from a few tens of meters to 300 m. The scoria clasts range widely in size, 

from millimeters to centimeters in size, and have a light, frothy texture, being full of vesicles 

(Figure 1e). The vesicular nature of scoria is due to the escape of volcanic gases during erup-

tion. Sometimes these vesicles are refilled with minerals like zeolite, calcite and quartz that 
form from hot water-rich fluids. The scoria clasts are mainly dark gray in color, although 
when fresh they may be iridescent, but often the scoria oxidizes by reaction with steam escap-

ing from the vent, when it becomes a deep reddish brown [11–13]. The most economically 

valuable volcanic scoria deposits are late tertiary or quaternary in age [14]. Most of the scorias 

are composed of glassy fragments and may contain phenocrysts. The word scoria comes from 

the Greek skōria, rust. An old name for scoria is cinder [15].

With respect to pumice, typical scoria has larger and more interconnected vesicles, is character-

ized by lower silica content and displays a darker, brown, reddish or black color [16]. Volcanic 

scoria can be utilized, other than as cement replacement, in several industrial applications 

including the manufacturing of lightweight concrete, as a heat-insulating material, in addition 

to other uses such as fillers, filter materials, absorbents and other architectural applications [17].
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Although there are numerous studies on using natural pozzolan as cement replacement, few 

works on studying volcanic scoria were reported in the literature. The present chapter high-

lights some characteristics of volcanic scoria and their effects on performance-related proper-

ties of paste, mortar and concrete. The importance of this chapter is to encourage countries 

having ample sources of volcanic scoria cones to further investigate the possibility of using it 

as cement replacement and thus making a greener concrete.

2. Chemical and mineralogical composition of volcanic scoria

The chemical composition of volcanic scoria varies within wide ranges and depends on its 

sources. Various scoria cones are abundant in many parts of the world, such as Syria, Turkey, 

Figure 1. (a) Map of African and Arabian plate with a clearer map of Harrat al-Shaam in the upper part of the figure, (b) 
Photo of Syrian volcanic scoria cones, (c) Macrograph of volcanic scoria aggregates, (d) SEM of volcanic scoria particle 

with clear vesicles, (e) Thin section in a Syrian volcanic scoria sample.
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Source SiO
2

Al
2
O

3
Fe

2
O

3
CaO MgO K

2
O Na

2
O TiO

2
P

2
O

5
LOI SO

3
R

1
R

2
Detected phases Ref.

Algeria 45.9–

47.2

16.6–

18.9

8.4–

10.6

9.0–

10.8

2.8–4.4 0.2–1.5 0.8–

4.3

4.1 n.a. 3.9–

5.8

0.4–1.0 63–66.1 72.4–

76.1

Gl, Ca, Pl, Py, Qz, Co, Hm, Ac, 

Ax, Mm, Il

[18–21]

Argentina 47.6 15.4 10.0 10.8 9.8 1.3 3.4 1.4 0.5 n.a. n.a. 63.0 73.0 Gl, Ol, Pl, CPy, Op [22]

Armenia 53.6 19.6 7.5 13 4 n.a. n.a. n.a. n.a. 73.2 80.7 n.a. [23]

Cameroon 41.4–

46.9

15.0–

16.2

12.8–

14.5

7.9–

10.5

5.3–8.7 0.9–1.6 2.2–

4.5

2.1–

3.4

0.4–

0.6

0–9.3 0.01 56.8–

62.3

69.7–

75.9

Gl, Pl, CPy, Py, Ol, Qz, Hm, 

Mg, An, Ma, Mc, SCAS

[24–30]

Canada 45.7–

54.3

12.7–

16.0

11.3–

12.2

7.1–

8.7

4.1–

12.5

1.2–1.9 3.2–

4.0

1.6–

2.2

0.74 0.43 n.a. 58.4–

70.3

70.6–

81.6

Gl, Pl, Ol, CPy [31, 32]

Chile 46.4 18.5 12.9 6.5 3.0 1.1 3.5 1.8 0.4 6.4 n.a. 64.9 77.8 Gl, CPy, Pl, Mn, Kn [33]

China 45.1 14.7 12.4 9.3 9.2 1.8 3.6 2.0 1.8 1.5 n.a. 59.8 72.1 Gl, Ol, Mn, Pl, Py [34]

Congo 46.7 15.3 13.4 11.3 8.1 3.3 2.1 3.5 0.3 n.a. n.a. 62.0 75.1 Gl, Ol, CPy, Pl, Mn, Le [35]

Costa Rica 53.3 19.7 8.1 9.8 5.0 0.6 2.9 0.7 0.2 n.a. n.a. 72.9 81.1 Gl, CPy, Pl, Ho [36]

Ethiopia 47.2–

49.0

16.1–

16.5

12.4–

13.7

8.2–

10.8

5.4–6.2 0.6–0.9 3.0–

3.3

2.4 0.5 0.7 n.a. 63.7–

65.1

76.1–

78.8

n.a. [37, 38]

France 45.1–

56.8

15.2–

17.7

7.0–8.2 7.8–

12.6

3.7–8.8 0.9–1.8 3.2–

3.6

0.7–

3.0

n.a. n.a. 60.3–

74.5

68.5–

81.5

Gl, CPy, Py, Pl, Ol, Mn, Am, [39, 40]

Germany 45.5–

47.9

6.4–

15.4

7.4–

14.8

8.2–

23.7

6.5–

12.6

0.03–

0.5

0.6–

1.2

3.0–

3.1

1.2 6.05 n.a. 51.9–

63.3

59.2–

78.1

Gl, Ol, Pl, CPy, Py, Am, Mi [41, 42]

Indonesia 55.1–

56.7

18.0–

18.5

8.2–8.8 8.1–

9.2

3.7 0.8–1.4 2.9–

3.1

0.6–

0.8

0.2 0.0–

0.3

n.a. 73.6–

74.7

82.4–

82.9

Gl, Pl, Py, CPy, Mn [43, 44]

Iran 48.0–

48.3

12.3–

16.4

9.4–

11.4

9.6–

9.8

4.4–7.7 1.3–2.7 3.3–

5.6

1.8–

2.6

1.1–

1.6

1.1 n.a. 60.3–

64.7

69.7–

76.1

Gl, Py, Ol, Mn, CPy [45, 46]

Italy 50.6 19.7 9.1 6.2 3.8 2.3 0.7 1.0 0.3 7.2 n.a. 70.3 79.3 n.a. [47]

Japan 54.3 15.6 13.7 9.5 3.9 0.5 2.0 1.2 0.1 n.a. n.a. 70.0 83.7 Gl, Ol, CPy, Pl [48]

Jordan 41.7 10.6 8.9 12.8 6.3 1.4 1.1 2.3 0.4 n.a. n.a. 52.3 61.2 n.a. [49]

Madagascar 44.6 13.0 12.5 12.1 9.6 1.3 2.4 2.3 0.7 n.a. 0.02 57.7 70.2 Gl, Pl, Mn, CPy, Ol [50]

Mexico 54.2–

56.0

15.5–

18.0

7.1–

14.7

7.1–

7.7

5.3–9.5 0.9–1.1 3.4–

4.8

0.8–

1.0

0.2–

0.3

0.01 n.a. 69.7–

73.9

81.0–

84.5

Gl, Pl, Ol, Py, CPy [51, 52]
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Source SiO
2

Al
2
O

3
Fe

2
O

3
CaO MgO K

2
O Na

2
O TiO

2
P

2
O

5
LOI SO

3
R

1
R

2
Detected phases Ref.

New Zealand 46.3–

47.3

11.5–

13.7

10.8–

13.0

8.4–

9.4

9.2–

16.7

0.8–1.3 2.9–

3.3

2.8 0.6 n.a. n.a. 58.8–

59.9

69.6–

73.0

Gl, Ol, CPy, Pl, Fe-Ti oxides [53, 54]

Nicaragua 56.4 18.0 7.8 7.3 2.2 1.2 3.0 0.8 0.6 n.a. n.a. 74.5 82.3 Gl, Pl, Ol, CPy, Mn [55]

Papua New 

Guinea

47.5 14 3.5 6.5 5 5.0 n.a. n.a. 1.4 0.02 61.5 65.0 n.a. [56]

Peru 57.4 17.9 6.2 4.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 75.3 81.5 n.a. [57]

Philippines 53.2 18.5 8.9 8.5 4.4 0.95 3.4 0.7 0.3 0.2 n.a. 71.7 80.6 n.a. [58]

Romania 46.1 18.8 9.9 10.4 7.2 1.7 3.2 1.6 1.1 n.a. n.a. 64.9 74.8 n.a. [59]

Russia 52.6 14.4 9.7 8.0 4.2 2.1 3.7 1.5 0.5 n.a. n.a. 70.0 79.7 Gl, Ol, Py, Pl [60]

Saudi Arabia 42.0–

46.5

13.1–

16.6

11.1–

15.8

7.8–

10.0

2.5–

11.4

0.6–1.5 0.2–

3.5

2.1–

2.8

0.3–

0.6

0.9–

4.9

0.02–

0.27

58.0–

61.2

69.4–

74.4

Gl, Pl, Ol, CPy, Py, Qz [61–65]

Southern 

Pacific Ocean
43.9 10.8 12.6 13.1 12.9 1.5 1.4 3.1 0.5 n.a. n.a. 54.7 67.3 n.a. [66]

South Africa 47.3 15.7 13.1 8.7 5.5 1.0 4.2 3.7 0.7 n.a. n.a. 62.9 76.0 Gl, Ol, CPy, Pl [67]

Spain 44.3–

46.3

14.2–

17.1

10.0–

12.2

8.8–

9.5

4.5–9.0 1.7–2.1 2.7–

4.9

2.4–

3.3

0.7–

1.3

n.a. n.a. 59.2–

63.4

70.9–

73.4

Gl, Ol, CPy, Mn, Pl, Le [68–70]

Syria 44.9–

46.5

13.0–

17.0

8.6–

11.4

9.4–

10.1

8.9–9.1 0.8–1.8 2.1–

2.8

0.9 n.a. 0.4–

2.6

0.01–

0.27

59.5–

61.9

70.5–

70.9

Gl, Ol, Pl, Ca, CPy, Fu [71, 72]

Tanzania 40.0 13.0 13.9 9.6 4.6 n.a. n.a. n.a. n.a. 10.8 n.a. 53 66.9 n.a [73]

Taiwan 51.5 18.8 11.1 10.0 4.7 0.4 2.8 0.9 0.1 1.4 n.a. n.a. n.a. Gl, Ol, Pl, Py [74]

Turkey 54.9–

55.6

16.9–

17.7

6.6–

10.3

6.5–

8.1

2.0–5.1 1.2–1.9 2.2–

3.5

1.1–

2.6

0.3–

0.4

0.3–

0.9

0.29 71.8–

73.2

79.8–

82.2

Gl, Pl, Py, CPy, Qz, Ho, [75–77]

USA 48.0 16.7 11.8 8.6 5.9 1.8 3.5 2.0 1.2 n.a. n.a. 64.8 76.6 Gl, Ol, Pl [78]

Yemen 48.5 16.5 12.2 8.6 5.7 1.0 3.6 1.9 0.4 1.8 n.a. 65.1 77.3 n.a. [79]

LOI: Loss On Ignition; n.a.: Not available.

Gl: Glass; Pl: Plagioclase; Ol: Olivine; Py: Pyroxene; CPy: Clinopyroxene, Mu: Muscovite; Qz: Quartz; Ma: Managocalcite; An: Anatase; Mc: Microcline, SCAS: Sodium 
calcium aluminum silicate; Co: Cordierite; Ac: Analcime; Ax: Axinite; Mn: Magnetite; Ca: Calcite; Hm: Hematite; Il: Illite; Mm: Montmorillonite; Ho: Hornblend; Mg: 

Maghemite; Fu: Fujasite; Am: Amphibole; OP: Opaque minerals; Mi: Mica; Kn: Kaolinite; Le: Leucite

Table 1. Chemical composition of some different scoria samples quarried from 36 countries.
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Saudi Arabia, Cameroon, Ethiopia, Jordan, Libya, Algeria, Spain and others [18–79]. Harrat 

Al-Shaam volcanic field, for example (Figure 1a), is a basaltic province, extends widely at the 

Arabian plate (over 50,000 km2), covers the south of Syria, northeast of Jordan, north of Saudi 

Arabia and contains hundreds of volcanic scoria cones [80, 81]. The chemical analysis of some 

volcanic scoria reported for 36 countries [18–79] is presented in Table 1.

Figure 2. Different oxides versus silica content in the volcanic scoria (R
1
: sum of SiO

2
 and Al

2
O

3
; R

2
: sum of SiO

2
, Al

2
O

3
 

and Fe
2
O

3
) [18–79].
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Table 1 shows that most of the volcanic scoria samples are relatively rich in silica (40–60%) 

and alumina (10–20%). The next oxides are iron (5–16%), calcium (5–13%) and magnesium 

(2–13%) oxides. The alkali content is not high but may vary between 1 and 7%. Loss on ignition 
is generally low but may reach 10% in some pozzolans. Harker variation diagrams (Figure 2), 

using SiO
2,
 show a general increase of Al

2
O

3
 and alkalis with increasing SiO

2
. However, the 

elements such as Fe
2
O

3
, MgO, CaO and TiO

2
 display inverse relationships with SiO

2
. The 

author attempted to derive an equation in order to estimate R
1
 (sum of SiO

2
, Al

2
O

3
 and Fe

2
O

3
) 

and R
2
 (sum of SiO

2
, Al

2
O

3
 and Fe

2
O

3
) from the knowledge of SiO

2
 content (Figure 2).

The mineralogical composition of volcanic scoria also varies depending upon their sources. 

Owing to their formation process, volcanic scoria consists of crystalline and noncrystalline 

particles as glassy particles. The most detected minerals are plagioclase, olivine, pyroxene 

and clinopyroxene.

3. Reactivity of volcanic scoria

Volcanic scoria as a pozzolanic material has high silica (SiO
2
) and alumina (Al

2
O

3
) content 

with a glassy/amorphous structure for reactivity with lime or cement [82]. Reactive silica con-

tent can react with portlandite (CH) liberated from the hydration of C
3
S and C

2
S in cement. 

This reaction forms additional calcium silicate hydrates (C-S-H). The principal reaction is.

  CH  (Portlanite)  + S  (reactive silica)  + H  (Water)  → C − S − H  (Calcium silicate hydrates)   (1)

The composition of C-S-H is not very different from that formed in regular hydration, although 
generally the C/S molar ratio is slightly lower [83]. Analogously to reactive silica, reactive alumina 

present in volcanic scoria can react with CH to form calcium aluminate hydrates (C-A-H) [83]. 

This reaction which is frequently called the pozzolanic reaction is slow, portlandite consuming 

and very efficient in filling up capillary spaces [4]. It depends on several factors, such as the glassy 

phase content in volcanic scoria and the fineness of volcanic scoria.

3.1. Glassy phase in volcanic scoria

ASTM designation C618 (2012) [84] requires that for a material to be accepted as a natural 

pozzolan, the sum of SiO
2
, Al

2
O

3
 and Fe

2
O

3
 should have a minimum value of 70% and the 

strength activity index should exceed 75% of the control mortar’s compressive strength at 

either 7 or 28 days. The strength activity index (SAI) gives an indication of the reactivity of 

volcanic scoria by comparing the compressive strength of mortar cubes made with 80 wt.% 

cement and 20 wt.% volcanic scoria to the compressive strength of the control mortar cubes 

made with only cement. In addition, EN 197–1(2000) [85] requires a reactive silica content of 

more than 25% for volcanic scoria to be accepted as natural pozzolan.

3.2. Fineness of volcanic scoria

An increase in fineness that exposes more surface area of the volcanic scoria may accelerate the 
early pozzolanic reactivity [86, 87]. The specific surface area of volcanic scoria, which is the area 
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Figure 3. Effect of fineness on compressive strength of VS-based cement mortars cured for 2 (a) and 7 (b) days [89].

of a unit mass, is measurable by different techniques. The most common is the Blaine-specific 
surface area technique, which measures the resistance of compacted particles to an air flow. A 
laser particle size analyzer can also be used for the determination of the specific surface area of 
volcanic scoria [88, 89]. Al-Swaidani et al. [89] reported an increase of about 145% in the early 

compressive strength when the Blaine fineness of 2-day-cured volcanic scoria (VS)-based cement 
increased from 240 to 510 m2/kg at replacement levels ranging from 25 to 35% by mass, as shown 
in Figure 3. The authors also concluded that an increase of about 5 MPa can be expected for 

every 1000 cm2/g increase in Blaine fineness for VS-based binder mortars at all curing times [89]. 

Similar results were obtained by other researchers [90, 91]. This reactivity enhancement was 

explained by the effect of grinding which breaks the vitreous body, decreases the particle size 
and increases dissolution rate and solubility of volcanic scoria, which will accelerate pozzolanic 

reaction rate and the strength development of mortar containing volcanic scoria [89, 90, 92].

4. Properties of VS-based cement paste

4.1. Setting times

Most of the studied scoria samples showed an increase, ranging from slight to significant, in 
setting times of the VS-based cement paste with the increase in volcanic scoria content. This 
can be explained by the reduction of hydration heat on the binder system with the presence of 

VS [91]. A significant relationship (R2 ≈ 0.9) between initial and final setting times was obtained 
by the author depending on data collected from other papers [20, 62, 71, 72, 75, 79, 89, 91], as 

clearly shown in Figure 4. So, knowing initial setting time, the final setting time of the VS-based 
cement paste can be predicted by using the equation shown in Figure 4. It is worth to note that 

among all the investigated volcanic scoria compiled with the standard requirements in terms 

of the initial setting time, most of them met the requirements in terms of final setting times (i.e., 
initial setting time ≥ 45 min and final setting time ≤ 420 min), according to ASTM C595 [93].
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4.2. Heat of hydration

The hydration of cement paste is accompanied by the liberation of heat that raises the temper-

ature of the concrete mix. Because of the slower pozzolanic reaction, the partial replacement of 
cement by volcanic action results in a release of heat over a longer period of time enabling the 

heat to dissipate and the overall concrete temperature to remain lower. This is of great impor-

tance in mass concrete where cooling, following a large temperature rise, can lead to cracking. 
As shown in Figure 5, a volcanic scoria from Syria reduced the heat of hydration [94]. Similar 

results were also reported by Alhozaimy et al. [95] who concluded that the heat of hydration 

of VS-based cement pastes liberated in the first 72 h was, on average, 85% of the control mix.

4.3. Microstructure

The presence of volcanic scoria leads to the disappearance of portlandite crystals and the 

appearance of the condensed type of C-S-H crystals, as shown in Figure 6. This type of con-

densed C-S-H results from the interaction of pozzolanic material with portlandite. Condensed 

Figure 4. Relationship between initial and final setting times.

Figure 5. Influence of different SCMs on the heat of hydration of the mixtures [94].
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C-S-H fills the micropores, reduces the porosity and consequently improves the impermeabil-
ity and the compressive strength. The enhancement in the microstructure in the mixtures with 

volcanic scoria can be attributed to the formation of additional C-S-H, which generally fills in 
the pores, creates denser hydration products and accordingly reduces the permeability [63]. 

Similar observations were also reported in the literature [71, 72].

5. Properties of VS-based cement mortar/concrete

5.1. Compressive and flexural strength

All the results reported in the literature [18–20, 30, 56, 62, 63, 71, 72, 75, 79, 89, 91, 96, 97] show 

that the compressive strength of VS-based cement mortars/concretes increases with the curing 

age and decreases with the replacement level of volcanic scoria content (Figure 7). This reduc-

tion in the compressive strength is attributed mainly to slower pozzolanic activity at room 
temperature of volcanic scoria as natural pozzolan [71, 83]. This ascertainment is explained 

by the interaction between the reactive silica which is in the glassy portion of the addition and 

the Ca(OH)
2
 released by the hydration of the cement. It has also been noted that the mortars 

containing volcanic scorias exhibit compressive strength comparable to those of the control 

mortar starting from the period of 90 days.

The author attempted to derive an equation in order to reasonably estimate the relative com-

pressive strength of VS-based mortars. This prediction equation could be written as follows:

  RCS =  (0.176lnt – 1.343)  VS + 1.01  ( R   2 =0.81)   (2)

where RCS is the relative compressive strength, t is the curing age (day) and VS is the volcanic 

scoria content (%). This prediction equation having a relatively high coefficient of determina-

tion (R2 = 0.81) was obtained through the regression analysis of literature data (Figure 8). The 

variants in the equation are the curing age and the volcanic scoria content. So, knowing the 

Figure 6. SEM of (a) control cement paste; (b) 20% VS-based cement paste [63].

Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to
Industry and Their Impact on the Human Health

220



curing age and the volcanic scoria content and the compressive strength of the control sample 

(i.e., without volcanic scoria), the compressive strength of VS-based cement and mortar could 

be reasonably estimated.

It is worth to mention that, in contrast to previous literature, studying the effect of total alkali 
content (Na

2
O and K

2
O) and K

2
O on the compressive strength of VS-based cement mortars 

did not give definite correlations (Figure 9).

A similar behavior was observed by many researchers in terms of flexural tensile strength of 
VS-based cement mortars. An attempt to predict the flexural strength based on the compressive 
strength, with a reasonable coefficient of determination (R2 = 0.83), is clearly shown in Figure 10.

5.2. Drying shrinkage

Drying shrinkage represents the strain caused by the loss of water from the hardened mate-

rial. The shrinkage is believed to originate in the C-S-H and its associated porosity [83].

Figure 7. Compressive strength of VS-based cement concrete at different curing times [98].

Figure 8. Experimental results versus calculated values for relative compressive strength of volcanic scoria cement-based 

mortars.
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Figure 9. Effect of total alkali content (a and b) and K
2
O content (c and d) on compressive strength of VS-based cement 

mortars at 7 and 28 days curing.

Figure 10. Relationship between compressive and flexural strengths of VS-based cement mortars.

Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to
Industry and Their Impact on the Human Health

222



The increase of drying shrinkage with the cement replacement level [99] might be due to: (1) 
the pozzolanic reaction, generating an additional CSH, resulting in the decrease in spacing 
of CSH particles; (2) the transportation of large pores into fine pores (pore size refinement) 
increasing capillary tension [99–103]; (3) the higher water demand of scoria-based cements 
[99, 102]; (4) the porous microstructure of scoria [104] (Figure 1d). However, this increase was 
lower than the maximum 0.03% allowed by ASTM C618 (Figure 11) [99].

Figure 11 shows the results of drying shrinkage of VS-based cement mortars.

5.3. Sulfate attack

The sulfate attack on the cement mortar is a complex process involving the hydration prod-
ucts produced by Portland cement. The damage caused by sulfate attack may involve crack-
ing and expansion of mortar as a whole, as well as softening and disintegration of cement 
paste [83]. Cements with a high C3A content will be subject to sulfoaluminate corrosion in 
which ettringite is formed, as displayed in Eq. (3) [83, 105].

   C  4   AŠH  12    (Monosulfate)  +  2CŠH  2    (Gypsum)  + 16H  (Water)  →  C  6   AŠ  3   H  32    (Ettringite)   (3)

This type of corrosion is initiated by the reaction between sulfate ions and calcium hydroxide 
(CH):

  CH  (Calcium hydroxide)  +   SO  4     
2−  (aq)   (Sulfate ion)  →  CŠH  2    (Gypsum)  +  2OH   −   (aq)   (4)

This reaction can be described as gypsum corrosion. Both reactions are accompanied by an 
expansion in solid volume causing internal stresses and ultimately lead to cracking [83].

Figure 11. Drying shrinkage values of prismatic mortar specimens [99].
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The beneficial effects of using volcanic scoria on the sulfate resistance of mortar as reported 
by many authors [5], Figure 12, may be ascribed to a number of mechanisms [5, 106–108], 

including:

• reduced permeability,

• dilution of the C
3
A phases and CH (both participants in reactions with sulfates) as a result 

of the partial replacement of Portland cement,

• consumption of CH by pozzolanic reaction and

• alteration of hydrated aluminate phases, making them more resistant, for example, the 
presence of reactive silica may favor the formation of strätlingite (C-A-S-H).

5.4. Acidic attack

Sulfuric acid, among other aggressive acids such as HCl, HNO
3
 and CH

3
COOH, is very dam-

aging to mortar as it combines an acid attack and a sulfate attack [109]. At the first stage, 
deterioration of Ca(OH)

2
 results in an expansive gypsum formation. The gypsum then reacts 

with C
3
A in the aqueous environment and forms a more expansive product called ettringite. 

These very expansive compounds cause internal pressure in the mortar, which leads to the 

formation of cracks [110] and the transformation of the mortar into a mushy or a noncohesive 

mass [111]. Sulfuric acid may also cause the decalcification of calcium silicate hydrates C-S-H 
and will ultimately transform the C-S-H into amorphous hydrous silica. The following equa-

tions express these reactions [110]:

  Ca   (OH)   
2
   +  H  

2
   SO  

4
   →  CaSO  

4
   .  2H  

2
  O  (Gypsum)   (5)

 3 ( CaSO  
4
   .  2H  

2
  O)  + 3CaO .  Al  

2
   O  

3
   . 12  H  

2
  O + 14  H  

2
  O  

→ 3CaO .  Al  
2
   O  

3
   .  3CaSO  

4
   . 32  H  

2
   O  

3
    (Ettringite)   (6)

  CaO .  SiO  
2
   .  2H  

2
  O +  H  

2
   SO  

4
   →  CaSO  

4
   + Si   (OH)   

4
    (Hydrous silica)  +  H  

2
  O  (7)

The white gypsum, which covers the surface of mortar, can potentially lead to the blocking of 
pores on the surface, leading to a slower rate of attack initially. However, this effect lasts only 
temporarily [112].

The better performance of VS-based cement mortars in terms of the acid attack, as shown in 
Figure 13 [99], can be due to the pozzolanic reaction [5, 113, 114]. This reaction between scoria 

and calcium hydroxide liberated during the hydration of cement [5, 114] leads to a refine-

ment of the pore structure resulting in a highly impermeable matrix [5, 113]. The pozzolanic 

reaction also fixes Ca(OH)
2
, which is usually the most vulnerable product of the hydration of 

cement insofar as the acid attack is concerned [115]. In the study by al-Swaidani and Aliyan [5],  
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the number of days needed to register a 10% loss in weight was considered in their evalu-

ation. As shown in Table 2, the 10% weight loss was obtained with 35% VS-based cement 

mortars up to 6.2 and 6.70 days of exposure to sulfuric acid and 4.6 and 5.2 days of exposure 

to hydrochloric acid at 28 and 90 days curing, respectively. In addition, none of the mixtures 

containing 25% volcanic scoria and more lost 10% weight even after 100 days of exposure to 

nitric and acetic acids.

Figure 12. Length changes over time of prismatic mortars immersed in 5% Na
2
SO

4
 [5].

Figure 13. Weight losses over time of 90 days-cured mortars exposed to 5% H
2
SO

4
 [99].
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5.5. Permeability

Permeability of concrete to water is closely related to the durability of concrete. Permeability 

is the rate at which aggressive agents penetrate through concrete [115].

5.5.1. Water permeability

Water penetration depth can be considered as an indication of permeable and impermeable 

concrete [115]. A depth of less than 50 mm classifies the concrete as impermeable and a 
depth of less than 30 mm as impermeable under aggressive conditions [115]. The water pen-

etration depth test results for concretes containing VS-based cement concretes show their 

lower permeability when compared with plain Portland cement, particularly at late ages 

(Figure 14) [98].

5.5.2. Chloride penetrability

Although chloride ions in concrete do not directly cause severe damage to the concrete, they 

contribute to the corrosion of steel bars embedded in concrete that is considered as the fac-

tor causing most premature deterioration of reinforced concrete (RC) structures worldwide, 

especially in the marine environments. Therefore, the study of chloride penetrability is impor-

tant for evaluating reinforcing steel corrosion in RC structures. This has prompted the search 

for economic methods of extending the service life of structures. One of these methods was 

the use of pozzolan such as volcanic scoria [5].

The improvement in resistance of volcanic scoria-based cement concretes to chloride penetra-

tion which was frequently noted in the literature may be related to their refined pore structure 
and their reduced electrical conductivity [71]. This refinement in pore structure is due to the 

Cement type Number of days to register 10% weight loss

5% H
2
SO

4
10% HCl 5% HNO

3
10% CH

3
COOH

28 days 

curing

90 days 

curing

28 days 

curing

90 days 

curing

28 days 

curing

90 days 

curing

28 days 

curing

90 days 

curing

C1/CEMI 3.5 3.5 3.7 3.2 22.5 25.9 NR NR

C2/10% 3.7 3.7 3.7 3.1 25.4 22.8 NR NR

C3/15% 3.8 3.8 3.8 3.6 55.5 48.9 NR NR

C4/20% 4.0 4.1 3.9 3.7 79.1 97.3 NR NR

C5/25% 4.7 5.1 4.1 4.3 NR NR NR NR

C6/30% 5.2 5.8 4.4 4.9 NR NR NR NR

C7/35% 6.2 6.7 4.6 5.2 NR NR NR NR

C8/SRPC 3.0 3.0 3.2 2.9 20.1 18.8 NR NR

NR 10% weight loss was not reached.

Table 2. Number of days needed to register a 10% weight loss of mortar cubes [5].
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secondary-contributing pozzolanic reaction that makes the microstructure of concrete denser 
[71]. Figure 15 clearly shows such improvement with the increase of volcanic scoria content 

and curing age.

Analyzing the results of chloride penetrability gathered from different works [19, 62, 63, 98, 

116, 117], an estimation equation with strong correlation (R2 ≈ 0.86) can be derived (Figure 16). 

The estimation equation is.

  RCP =  (− 0 . 3lnt – 0.68)  × VS + 1.06  (8)

Figure 14. Water penetration depths of VS-based cement concretes prepared with different w/c ratios and cured for 
different ages [98].

Figure 15. Chloride ion penetrability of VS-based cement concretes as reported by al-Swaidani [98].
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where, RCP is relative chloride penetrability, t is curing age and VS is volcanic scoria content 

(% by mass). So, the chloride penetrability of VS-based cement concrete can be predicted from 

knowledge of curing time and volcanic scoria content.

6. Conclusion

• Volcanic scoria has been used in construction since ancient times in pozzolan-lime concrete 

providing durable structures that survived over 2000 years.

• The SiO
2
 content for all sources are within the range of 40–60%; Al

2
O

3
 and Fe

2
O

3
 are within 

the ranges from 10 to 20% and from 5 to 16%, respectively.

• Incorporation of volcanic scoria in concrete has significant effects on the properties of con-

crete, particularly durability-related properties.

• The chloride permeability of VS-based cement concrete demonstrated better performance 
as compared to plain concrete, especially at the curing age of 28 days and longer.

• The wide availability of volcanic scoria in many countries, its low cost and the drive toward 

more sustainable construction have resulted in renewed interest in volcanic scoria as natu-

ral pozzolan for concrete. Historically, various types of volcanic scoria were successfully 

used in dams and aqueducts, where the strength demand is not high but the durability and 

thermal cracking control are of major concerns.

• Estimation equations for predicting the investigated concrete properties (i.e., compressive 

strength, water penetration depth and chloride penetration) incorporating the effect of cur-

ing time and the replacement level of volcanic scoria were derived. These equations permit 

the concrete properties of VS-based cement concretes to be predicted with a relatively high 

degree of accuracy (R2 ≥ 0.8).

• Investigating the volcanic scoria cones that have not been yet invested is highly recom-

mended. In addition, making more sustainable and durable concrete using volcanic scoria 
is highly encouraged.

Figure 16. Experimental results versus calculated values of chloride penetrability.
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