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Abstract

Using discrete wavelet transform (DWT) in high-speed signal-processing applications
imposes a high degree of care to hardware resource availability, latency, and power
consumption. In this chapter, the design aspects and performance of multiplierless DWT
is analyzed. We presented the two key multiplierless approaches, namely the distributed
arithmetic algorithm (DAA) and the residue number system (RNS). We aim to estimate the
performance requirements and hardware resources for each approach, allowing for the
selection of proper algorithm and implementation of multi-level DAA- and RNS-based
DWT. The design has been implemented and synthesized in Xilinx Virtex 6 ML605, taking
advantage of Virtex 6’s embedded block RAMs (BRAMs).

Keywords: discrete wavelet transform (DWT), distributed arithmetic algorithm (DAA),
field programmable gate array (FPGA), residue number system (RNS), multiplierless
implementation

1. Introduction

The architecture of the embedded platform plays a significant role in ensuring that real-time

systems meet the performance requirements. Moreover, software development suffers from

increased implementation complexity and a lack of standard methodology for partitioning the

implementation of signal-processing functionalities to heterogeneous hardware platforms. For

instance, digital signal processor (DSP) is cheaper, consumes less power, and is easy to develop

software applications, but it has a considerable latency and less throughput compared with

field programmable gate arrays (FPGAs) [1]. For high-speed signal-processing (HSP) commu-

nication systems, such as cognitive radio (CR) [2, 3] and software-defined radio (SDR) [4], DSP

may fail to capture and process the received data due to data loss. In addition, implementing
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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applications such as finite impulse response (FIR) filtering, discrete wavelet transform (DWT),

or fast Fourier transform (FFT) by software application limits the throughput, which is not

sufficient to meet the requirements of high-bandwidth and high-performance applications. As

a result, HSP systems are enhanced by off-loading complex signal-processing operations to

hardware platforms.

Although FPGAs exhibit an increased development time and design complexity, they are

preferred to meet high-performance requirements for two reasons. First, they efficiently

address signal-processing tasks that can be pipelined. Second, they have the capacity to

develop a programmable circuit architecture with the flexibility of computational, memory,

speed, and power requirements. However, FPGA has its own resources such as memory,

configurable logic blocks (CLBs), and multipliers that influence on the performance and

selected algorithm. As a consequence, the choice of algorithm is determined by the hardware

resource availability and performance requirements. These factors have an impact on each

other and create many challenges that need to be optimized.

As an example, the discrete wavelet transform (DWT) [5–9], a linear signal-processing tech-

nique that transforms a signal from the time domain to the wavelet domain [10], employs

various techniques for signal decomposing into an orthonormal time series with different

frequency bands. The signal decomposition is performed using a pyramid algorithm (PA) [10,

11] or a recursive pyramid transform (RPT) [12]. While the PA algorithm is based on convolu-

tions with quadrature mirror filters, which is infeasible for HW implementation, RPT decom-

poses the signal x[n] into two parts using high- and low-pass filters, which can be

implemented using FIR filter [13]. Figure 1 shows a four-tap FIR filter with four multipliers,

named as multiplier accumulator (MAC). By using the MAC structure, multipliers are

involved in multiplying an input with filter coefficients, bi. It is clear that the direct implemen-

tation of the N-tap filter requires N multipliers.

This work focuses exclusively on implementing a one-level multiplierless DWT for a pattern-

based cognitive communication system receiver (PBCCS) [8] by means of FPGA. The DWT is

required to extract the received signal’s features. Then, the extracted features are fed into a

multilayer perceptron (MLP) neural network (NN) to identify the received symbol. The most

challenging part is that the NN could consume most of the available multipliers inside the

FPGA. As an example, Ntoune et al. [14] have implemented a real-valued time-delay neural

network (RVTDNN) and real-valued recurrent neural network (RVRNN) architecture with 600

Figure 1. Four-tap finite impulse response filter.
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and 720 multipliers, respectively, while ML605 [15], ZC706 [16], and VC707 [17] have 768, 900,

and 2800 multipliers (DSP48Es), respectively.

Although the modern FPGAs come with a reasonable number of multipliers, designers prefer

to implement multiplier-free DWT architecture for many reasons. First, a partial number of

multipliers can be preserved for tasks, such as pulse shape filter, digital-up and digital-down

converter that are used at SDR front-ends. Second, in contrast to DWT, the MLP weights

depend on the learning step. Third, MLP weights could be frequently changed at runtime in

an adaptive manner, whereas the DWT coefficients are fixed and known. Therefore, the

multiplier-free DWT architecture could simplify the design process and allow the designers to

focus on the MLP design.

In this work, we present the 1-D DWT implementation on FPGA by means of memory-based

approaches. The aim is to compare different implementations in terms of system performance

and resource consumption. We demonstrate the implementation of Daubechies wavelets (DB2,

DB4, and DB5) using DAA and RNS approaches. These approaches do not employ explicit

multipliers in the design. Because the main focus of this work is on extracting the key features

of a signal via DWT, the inverse DWT (IDWT) and high-pass filter coefficients are not consid-

ered in this work.

1.1. Related work

Implementations of 1-D DWT for signal de-noising, feature extraction, and pattern recognition

and compression can be found in [8, 9, 18, 19]. The conventional convolution-based DWT

requires massive computations and consumes much area and power, which could be over-

come by using the lifting-based scheme for the DWT, which is introduced by Sweldens [20].

Although, the lifting scheme is used to compute the output of low- and high-pass using fewer

components, it may not be well suited to our application, owing to the PBCCS’s nature, where

the low-frequency components are much important than the higher ones. Therefore, in this

study, 1-D DWTdecomposition, which is implemented by means of filter banks, is considered.

Another advantage of using convolution-based DWT over lifting approach is that they do not

require temporary registers to store the intermediate results, and with an appropriate design

strategy, they could have better area and power efficiency [21].

Rather than the simplest implementation of FIR filter via multipliers and an adder tree, a

multiplier-free architecture is used because they result in low-complexity systems and for their

high-throughput-processing capability [22]. Fundamentally, there are two techniques for facil-

itating parallel processing. They are the distributed arithmetic algorithm (DAA) and the

residue number system (RNS). DAA is an algorithm that performs the inner product in a bit

serial with the assist of a lookup table (LUT) scheme followed by shift accumulation operations

[23, 24]. Several techniques have been proposed to improve the design, such as the partial sum

technique [25], a multiple memory bank technique [26, 27], and an LUT-less adder-based [28].

The DAA approach has been adapted in many applications, such as least mean square (LMS)

adaptive filter [29] and square-root-raised cosine filter [30].
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On the other hand, RNS is an integer number system, in which the operations are performed

based on the residue of division operation [31–33]. Eventually, the RNS-based results are

converted back to the equivalent binary number format using a Chinese reminder theorem

(CRT) [34]. The key advantage of RNS is gained by reducing an arithmetic operation to a set of

concurrent, but simple, operations. Several applications, such as digital filters, benefit from the

RNS implementation, for example, [35–37]. In addition, RNS was combined with DAA in one

architecture, called RNS-DA [38, 39], which benefits from the advantages of both approaches.

In this chapter, three major 1-D DWT approaches are implemented on FPGA-based platforms

and compared in terms of performance and energy requirements. The implementations are

compared for different number of, multipliers, memory consumptions, number of taps (N),

and levels (L) of the transform to show their advantages. To the best of our knowledge, no

detailed comparisons of hardware implementations of the three major 1-D DWT designs exist

in the study. This comparison will give significant insight on which implementation is the most

suitable for given values of relevant algorithmic parameters. Although there are many efficient

designs in the study, we did not optimize the number of memories in any approach, so that we

have a fair comparison.

The remainder of this chapter is organized as follows. Section 2 presents the preliminaries

information to understand DWT. It also reviews the theoretical background of DAA and RNS.

Section 3 describes the implementation of discrete wavelet transform. We further show an

analytical comparison between these approaches. Section 4 presents the performance results.

Finally, this chapter concludes in Section 5.

2. Fundamentals and basic concepts

2.1. Discrete wavelet transform

The wavelet decomposition mainly depends on the orthonormal filter banks. Figure 2 shows a

two-channel wavelet structure for decomposition, where x[n] is the input signal, g[n] is the

Figure 2. Multi-resolution wavelet decomposition. The block diagram of the two-channel four-level discrete wavelet

transform decomposition (J = 3) that decomposes a discrete signal into two parts. Note that ↓2 is maintaining one sample

out of two, ai and di are the approximation and details at level i, respectively.
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high-pass filter, h[n] is the low-pass filter, and ↓2 is the down-sampling by a factor of two. The

output of each low-pass filter is fed to the next level, so that each filter creates a series of

coefficients (ai and di), which represent and compact the original signal information.

Mathematically, a signal y[n] consists of high- and low-frequency components, as shown in

Eq. (1). It shows that the obtained signal can be represented by using half of the coefficients,

because they are decimated by 2

y n½ � ¼ yhigh n� 1½ � þ ylow n� 1½ � (1)

The decimated low-pass-filtered output is recursively passed through identical filter banks to

add the dimension of varying resolution at every stage. Eqs. (2) and (3) represent the filtering

process through a digital low-pass filter h[k] and high-pass filter g[k], corresponding to a

convolution with an impulse response of k-tap filters

ylow n½ � ¼
X

k

h k½ �:x 2n� k½ � (2)

ylow n½ � ¼
X

k

g k½ �:x 2n� k½ � (3)

where 2n is the down-sampling process. The outputs ylow [n] and yhigh [n] provide an approx-

imation signal and of the detailed signal, respectively [40].

2.2. Distributed arithmetic algorithm

The distributed arithmetic algorithm (DAA) gets rid of multipliers by performing the arith-

metic operations in a bit-serial computation [13]. Because the down-sampling process follows

each filter (as shown in Figure 2), Eq. (2) can be rewritten without the decimation factor as

ylow n½ � ¼
X

N�1

k¼0

x k½ � : h k½ � (4)

Obviously, Eq. (4) requires an intensive operation due to multiplication of the real input values

with the filter coefficients. Eq. (3) can be simplified by representing x[k] as a fixed point

arithmetic of length L:

x k½ � ¼ � x k½ �0 þ
X

L�1

l¼1

x k½ �l:2
�l (5)

where x[k]l is the lth bit of x[k] and x[k]0 is the sign bit. Substituting Eq. (5) into Eq. (4), the

output of the filter becomes

y n½ � ¼
X

L�1

l¼1

2�l
:

X

N� 1

k¼0

h k½ �:x k½ �l

" #

þ
X

N� 1

k¼0

h k½ � �x k½ �0
� �

(6)
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Since x[k]l takes the value of either 0 or 1,
PN�1

k¼0 h k½ �:x k½ �l may have only 2N possible values.

That is, rather than computing the summation at each iteration online, it is possible to pre-

compute and store these values in a ROM, indexed by x[k]l. In other words, Eq. (6) simply

realizes the sum of product computation by memory (LUT), adders, and shift register.

2.3. Residue number system

The RNS is a non-weighted number system that performs parallel carry-free addition and

multiplication arithmetic. In DSP applications, which require intensive computations, the

carry-free propagation allows for a concurrent computation in each residue channel. The RNS

moduli set, P = {m1, m2,…, mq}, consists of q channels. Each mi represents a positive relatively

prime integer; the greatest common divisor (GCD) (mi, mj) = 1 for i 6¼ j.

Any number, X ∈ ZM = 0, 1, …, M - 1, is uniquely represented in RNS by its residues Xj jmi
,

which is the remainder of division X by mi and M is defined in Eq. (7) as

M ¼ Π
q
i¼1mi ¼ m1

∗ m2
∗
…

∗ mq (7)

where M determines the range of unsigned numbers in [0, M - 1], and should be greater than

the largest performed results. In addition, M uniquely represents any signed numbers. The

implementation of RNS-based DWT obtained from Eq. (4) is given by Eq. (8) as follows:

y n½ �mi
¼ ymi

¼

�

�

�

�

�

X

N�1

k¼0

∣h k½ �mi
:x n� k½ �mi mi

�

�

�

�

�

!�

�

�

�

�

:

mi

0

@ (8)

for each mi ∈ P. This implies that a q-channel DWT is implemented by q FIR filters that work

in parallel.

Mapping from the RNS system to integers is performed by the Chinese reminder theorem

(CRT) [34, 41, 42]. The CRT states that binary/decimal representation of a number can be

obtained from its RNS if all elements of the moduli set are pairwise relatively prime.

Designing a robust RNS-based DWT requires selecting a moduli set and implementing the

hardware design of residue to binary conversion. Most widely studied moduli sets are given as

a power of two due to the attractive arithmetic properties of these modulo sets. For example,

2n � 1 ; 2n; 2nþ1 � 1
� �

[43], 2n � 1 ; 2n; 2n þ 1f g [39], and 2n; 22n � 1; 22n þ 1
� �

[44]

have been investigated.

For the purpose of illustrating, the moduli set Pn ¼ 2n � 1; 2n; 2nþ1 � 1
� �

is used for three

reasons. First, the multiplicative adder (MA) is simple and identical for m1 ¼ 2n � 1 and

m3 ¼ 2nþ1 � 1. Second, for small (n = 7), the dynamic range of P7 is large, M = 4,145,280, which

could efficiently express real numbers in the range [�2.5, 2.5] using a 16-bit fixed-point

representation, provided scaling and rounding are done properly. We assume that this interval

is sufficient to map the input values, which does not exceed �2. Third, the reverse converter

unit is simple and regular [42] due to using simple circuits design.
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3. DWT implementation methodology

3.1. DWT implementation using DA

DAA hides the explicit multiplications with a ROM lookup table. The memory stores all

possible values of the inner product of a fixed w-bit with any possible combination of the

DWT filter coefficients. The input data, x[n], are signed fixed-point of a 22-bit width, with 16

binary-point bits (Q5,16). We assumed that the memory contents have the same precision as the

input, which is reasonable to give high enough accuracy for the fixed-point implementation.

As a consequence, 22 ROMs, each consisting of 16 words, are required. Each ROM stores any

possible combination of the four DWT filter coefficients, where the final result is a 22-bit signed

fixed-point (Q5,16). In order to decrease the number of memory, the width should be reduced,

which will have an impact on the output precision.

Figure 3 shows the block diagram of 1-bit DAA at position l. This block contains one ROM

(4 � 22) and one shift register. Because the word’s length w of the input x is 22 bits, the actual

design contains 22 memory blocks and 21 adders for summing up the partial results.

3.2. DWT implementation using RNS

The RNS-based DWT implementation has mainly three components. They are the forward

converter, the modulo adders (MAs), and the reverse converter. The forward converter, which

is also known as the binary-to-residue converter (BRC), is used to convert a binary input

number to residue numbers. By contrast, the reverse converter or the residue-to-binary con-

verter (RBC) is used to obtain the result in a binary format from the residue numbers. We refer

to the RNS system, which does not include RBC, as a forward converter and modular-adders

(FCMA), as illustrated in Figure 4.

3.2.1. The forward converter

The forward converter is used to convert the result of multiplying an input number by a

wavelet coefficient to q residue numbers via LUT, shift, and modulo adders, where q is the

number of channels.

Figure 3. The block diagram of DAA-based architecture of the DB2. For simplicity, we showed one ROM and one shift

register. In the actual design, there are 22 ROMs and shift registers. >> is a 16� l shift operation, where 16 is the number of

the binary point.
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3.2.2. RNS-system number conversion

The received samples and wavelet coefficients span the real number and might take small

values. One of the main drawbacks of RNS-number representation is that it only operates with

positive integer numbers from [0,M – 1]. The DWTcoefficients are generally between 1 and� 1.

As a possible solution, we have divided the range of RNS, [0,M – 1], to handle those numbers.

In addition, the received sample X[i] is scaled up by shifting y positions to the left (multiplying

by 2y), which ensures that X[i] is a y-bit fixed point integer. In a similar manner, the wavelet

coefficients are scaled by shifting its z positions to the left. In our design, we set the filter

scaling factor z to 11. Table 1 presents the low-pass filter of DB2 before and after scaling.

3.2.3. Modulo mi multiplier

The multiplication of the received sample, X[i], by the filter coefficients, which are constants, is

performed by indexing the ROM. As the word length, w, of the received sample X[i] is

increased, the memory size becomes 2w. In addition, q ROMs are required to perform the

modulo multiplication.

We propose few improvements to this design. First, instead of preserving a dedicated memory

for each modulo mi, a ROM that contains all module results is used. Thus, each word at

location j contains the q modules of hk
∗ j∗ 211. Figure 5 shows the internal BRC block design

of the three-channel moduli set P7 = {127, 128, 255} with its memory map at the right top

corner. It shows that, for a location j, the least significant 8 bit contains hk
∗xj jm3

, the next 7 bit

Figure 4. The block diagram of DB2 RNS-based architecture. BRC is an abbreviation for binary-to-residue converter, RBC

for residue-to-binary converter, and MA for modulo adder.

Coefficient(hk) Real value RNS-system value

h0 �0.129409522550921 �266

h1 0.224143868041857 459

h2 0.836516303737469 1713

h3 0.482962913144690 989

Table 1. The DB2 low-pass real and RNS-system number equivalent, multiplied by 211.
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contains hk
∗xj jm2

and the most significant 7 bit contains hk
∗xj jm1

, which is generalized by Eq. (9).

The advantage of this method is that no extra hardware is required to separate each module

value.

ROM jð Þ ¼ ∣hk
∗ j∗211∣m1

∗ 22nþ1 þ ∣hk
∗j∗211∣m2

∗ 2nþ1 þ hk
∗j∗ 211

�

�

�

�

m3
, j ¼ 0; 2w½ � (9)

As with DAA-based approach, if the input word length is 16 bits, the ROM should contain 216

locations. One way to reduce the size of the memory is to divide it into four ROMs of 4 � 22.

Figure 4 shows the block diagram of the binary-to-residue converter with four ROMs; each is

indexed by four bits of x. However, the output of each ROM should be combined, so that the

final result can be corrected. It is worth noting that this division comes with a cost in terms of

adders and registers.

According to the previous improvements, the RNS-based works are as follows. The input

X16�bit ¼ x1; x2; x3; x4ð Þ is divided into four segments. Each of the 4-bit segment is fed into one

ROM, so that three outputs, corresponding to hk
∗xl∗2

11
�

�

�

�

mi
, are produced.

To obtain the final multiplications’ result, each mi output should be shifted by l positions,

where l is the index of the lowest input bit (4, 8, or 12). The modular multiplication and shift for

(2n – 1) and (2n + 1
–1) can be achieved by a left circular shift (left rotate) for l positions, whereas

the modular multiplication and shift for 2n can be achieved by a left shift for l positions [17].

Finally, the modulo adder adds the corresponding output (Figure 6).

Figure 5. The block diagram of the binary-to-residue converter for the three-channel RNS-based DWT, P7 = {127, 128,

255}. Four identical memories are used for each tap. The upper corner shows the memory content at location j ∈ [0, 15].

Figure 6. The block diagram of (2n – 1) modulo adder.
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3.2.4. Modulo adder (MA)

The modulo adders are required for adding the results from a modular multiplier as well as for

a reverse converter. In this work, we have twoMAs—that is, one is based on 2n and the other is

based on 2n – 1. Modulo 2n adder is just the lowest n bits of adding two integer numbers,

where the carry is ignored. Figure 7 shows the block diagram of the 2n – 1 modulo adder.

3.2.5. The reverse converter

The Chinese remainder theorem (CRT) [34] provides the theoretical basis for converting a

residue number into a natural integer. The moduli set Pn ¼ 2n � 1; 2n; 2nþ1 � 1
� �

can be

efficiently implemented by four modulo adders and two multiplexers [42]. The output of the

RBC is unsigned (3 * n + 1)-bits integer number. The actual signed number can be found by

shifting the result y + z positions to the left, which is equivalent to dividing by 2(y + z). y and z

are the scaled values of the input and wavelet coefficients, respectively. Generally, the word

length of one-level DWT is bounded by Eq. (10) and should not exceed (3 * n – 2) bits

3∗ n þ 1 ≥ y þ z þ 3 (10)

As a consequence, the range of the moduli set should be greater than the maximum output, tho,

which can be computed as follows:

tho ¼
X

k

hk

 !2

∗max x n½ �ð Þ ∗ 2zð Þ2 ∗ 2y ≤M� 1 (11)

where hk is the kth filter coefficient, x[n] is the input, y and z are the input and filter scaling

factors, respectively, and M is the maximum range.

3.3. Two-level DWT implementation

The two-level discrete wavelet transform compromises two one-level DWTs, where the output

of the first level is fed into the second level (as shown in Figure 7). The one-level DWT at each

level is identical, but the output of each level is halved. For example, if a signal of 1800 samples

is applied to the input, then 900 and 450 samples are produced by the first and second levels,

respectively.

Figure 7 shows the design of two-level RNS-based DWT, which involves two FCMA blocks

and two RBC blocks. Each FCMA requires converting the result of the first stage to binary,

shifting the number by 11 and converting it to residue number again.

Figure 7. The block diagram of two-level RNS-based DWT design, and FCMA represents FIR-filtering process in RNS.
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3.4. Hardware complexity

3.4.1. Memory usage

DAA and RNS techniques employ the memory as a key resource to avoid multiplying two

input variables. In each approach, as the number of filter taps increases, both the size and the

number of memories change. Assuming that the length of the received word isw-bit and there

are N filter taps, the size of a memory element can be considered as a � b, where a and b are

the word length in bits of the input and output, respectively. The value of a determines the size

of the memory, 2a.

The total number of memory elements that are occupied by the DAA-based filter is w *

(N � 22). The output is a fixed 16-bit fixed point and the word length is 22 bits. The number

of memory elements remains constant as the filter taps increase, whereas the size of the

memory exponentially increases to 2N.

On the other hand, the total number of memory elements occupied by an RNS-based filter is

N∗ log2 wð Þ
� �

∗ 4� 22ð Þ. This equation shows that the number of memory elements increases

linearly with the number of filter taps, while the memory size remains constant (4 � 22).

Table 2 shows a comparison of the memory usage with w = 16 for different DWT families.

3.4.2. Shift register and adder counts

DAA-based implementation employs shift registers and adders to sum the result at each bit

level (Figure 3). For a word lengthwwithmmagnitude bits, we need (w – 1) shift registers and

(w – 1) 2-input adders (data combined by a tree adder architecture). To handle the negative

numbers, the two’s complement operation requires additional (m – 1) shift registers and (m – 1)

adders. Thus, for l-level DA-based implementation, a total of l * (w – m – 2) shift registers and

two-input adders is required.

On the other hand, for a word length w and N-tap filter, the q-channel FCMA implementation

requires N BRC blocks and (q*(N – 1)) MA blocks to compute the final result. Each BRC block

has log2w
� �� �

� 1, log2n
� �

� 1
� �

, and log2w
� �� �

� 1 MA blocks for 2n – 1, 2n, and 2n + 1
–1

modulo, respectively. The modulo 2n requires log2(n) because shifting operations is not circular

and shifting n-bit numbers to the left by n positions or more is always zero. Likewise, the RBC

has four MA blocks (for 2n + 1
–1), two multiplexers, and two subtractors. Thus, the total

number of MA blocks at one-level RNS-based is

DB2 DB4 DB5

Number of filter taps 4 8 10

DA memory usage 22*(4 � 22) 22*(8 � 22) 22*(10 � 22)

RNS memory usage 16*(4 � 22) 32*(4 � 22) 40*(4 � 22)

Table 2. Occupied memories when DA- and RNS-based approaches are used. The word length, w, is 22 and 16 bits for

DA- and RNS-based, respectively.
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MAt ¼ 2N ∗ log2w
� �

� 1
� �

2n�1

� �

þ log2n
� �

� 1
� �

2n
þ q ∗ N � 1ð Þ þ 4 (12)

For instance, three-channel DB2 implementation requires nine MA blocks to sum the result,

and P7 RNS-based implementation has a total of 45 MA blocks when w = 16.

Meanwhile, the number of RNS-based adders depends on the design of the MA block. For

example, each MA block of (2n – 1) and (2n + 1
–1) requires two adders, while each MA block of

2n requires one adder. Thus, at ¼ 12 N þ N log2n
� �

� 1
� �

þ 5∗ N � 1ð Þ þ 10 adders are

required, which can be simplified as follows (summarized in Table 3):

at ¼ 17 N þ N log2n
� �

� 1
� �

þ 10 (13)

4. Performance analysis and validation

Hardware analysis was carried out by using a Xilinx System Generator for DSP (SysGen) [45],

which is a high-level software tool that enables the use of MATLAB/Simulink environment to

create and verify hardware designs for Xilinx FPGAs. It enables the use of the MathWorks

model-based Simulink design environment for FPGA design. Furthermore, the hardware-

software co-simulation design was synthesized and implemented onML605 Xilinx Vertex 6 [15].

The implementation of RNS and DA is compared with the multiplier-accumulate-based DWT

structure (MAC), as shown in Figure 8. We also consider the direct DWT implementation

using an IP FIR Compiler 6.3 (FIR6.3) block [46], which provides a common interface to

generate highly area-efficient and high-performance FIR filters (Figure 9).

DA-based RNS-based

Memory usage

Number of adders

Table 3. Memory usage and adders for 1-L N-tap DA and RNS-based approaches DWT.

Figure 8. The Simulink model of MAC-based one-level DB2 discrete wavelet transform. Filter coefficients are stored as

constants.
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For RNS implementation, the moduli sets of P7 = {127, 128, 255} and P10 = {1023, 1024, 2047}

were used. The dynamic ranges of these sets are M = 4,161,536 and 2,144,338,944, respectively.

The moduli set of P10 is selected because its dynamic range is greater than tho (Eq. (11) with

y = 6, z = 11 and ∑(hi) = 1.5436). In all RNS-based implementations, the word length was set to

16 bits.

4.1. Resource utilization and system performance

Table 4 summarizes the resource use by RNS-based components—that is, FCMA and reverse

converter (RBC). The RBC consumes fewer resources and less power. However, the operating

frequency is equal in all models and greater than the entire RNS-based filter.

Table 5 summarizes the resource consumption of each filter implementation. It shows that the

MAC and IP FIR-based implementations have four multiplier units (DSP48E1s) with maxi-

mum frequencies of 296 and 472 MHz, respectively. By contrast, the proposed approaches are

more complex than MAC. However; DAA- and RNS-based implementations has 22 and 16

memory blocks (BRAMs) used to store the pre-calculated wavelet coefficients. It also shows

that the number of slice registers, slice LUTs, and occupied slices of P10 RNS-based is greater

than one of P7 because the former has 31 output signals, while the latter has 22 output signals.

As a result, the number of flip-flops is increased and the number of resources is approximately

Figure 9. The Simulink model of FIR-based one-level DB2 discrete wavelet transform. The IP FIR compiler 6.3 of the

system generator is used.

Resources RNS-based (n = 7) RNS-based (n = 10)

FCMA RBC FCMA RBC

Number of slice registers 656 157 883 190

Number of slice LUTs 591 138 854 180

Number of RAMB18E1 16 0 16 0

Max. operating freq. (MHz) 291.2 311.62 283.85 298.67

Min. period (ns) 3.434 3.21 3.523 3.348

Estimated total power (mW) 40.5 6.59 43.08 7.33

Latency (clock cycle (CC)) 6 6 6 6

Table 4. The resource use and system performance of the RNS components—that is, FCMA.
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increased by one-third, while the maximum frequency in both designs is greater than

235 MHz.

Table 6 shows a comparison between the DA- and RNS-based one-level DWT implementations

when using larger filter banks—that is, DB4 and DB5. It shows that DAA-based implementation

occupies a fixed number of RAMB18E1. The number of memory elements of DAA-based imple-

mentation is fixed and depends on the word length (Table 2).

However, as the number of filter taps increases, the memory size is exponentially increased to

2N. By contrast, the number of memory elements that are used in RNS-based implementation

is linearly increased as the number of filter taps is increased. Similarly, the number of memo-

ries that are used at multilevel DAA-based and RNS-based implementations with the l-level

would be an aggregate of levels 1 through l.

4.2. Functionality verification

The discrete wavelet transform was simulated by means of ModelSim simulator. Figure 10

shows that the MAC and DAA have lower latency than other approaches. It depicts that the

FIR- and RNS-based of P7 and P10 implementations lag behind MAC and DAA by four clock

cycles.

Resources MAC DA FIR RNS (n = 7) RNS (n = 10)

Number of slice registers 282 661 167 767 1089

Number of slice LUTs 128 520 71 721 1055

Number of occupied slices 58 188 60 240 358

Number of DSP48E1s 4 0 4 0 0

Number of RAMB18E1 0 22 0 16 16

Max. operating freq. (MHz) 296.38 229.83 472.59 258.86 261.028

Min. period (ns) 3.374 4.351 2.030 3.863 3.831

Estimated total power (mW) 8.44 66.54 9.05 56.22 53.05

Table 5. The resource use and system performance of the DWT implementation for one-level DB2 implementation.

Resources DA-based RNS (n = 7)

DB2 DB4 DB5 DB2 DB4 DB5

Number of slice registers 650 737 780 767 1441 1898

Number of slice LUTs 521 539 568 721 132 1677

Number of RAMB18E1 22 22 22 16 32 40

Max. operating freq. (MHz) 232.72 205.55 223.31 258.87 265.32 258.80

Table 6. Resource use for the DWT implementation of DB2, DB4, and DB5.
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4.3. Precision analysis

We carried out the precision analysis for the first and DWT levels, and the result is presented in

Table 7. The output bit precision is set to Q5,16 for all implementations. Table 7 shows the

maximum performance based on the signal-to-noise-ratio (SNR) and peak-signal-to-noise-

ratio (PSNR). For P7, we could not achieve a better accuracy with the specified scaling factors

because y + z = 19 < (3 ∗ 7) + 1 = 22. However, both DAA- and RNS-based approaches offer

high-signal quality with a peak signal-to-noise ratio (PSNR) of 73.5 and 56.5 dB, respectively.

Figure 11 shows the effect of changing the scaling factors of P10 for DB2 RNS-based approach.

The input scaling factor is increased from 8 to 13 bit and the filter scaling factor is increased

from 11 to 18. As expected, lower scaler factors produce PSNR equal to 56 dB, whereas the

maximum PSNR equal to 84 is obtained when y = 12 and z = 16.

4.4. Discussion

Hardware availability and system performance requirements are critical for selecting the

appropriate architecture of the embedded platform. The number of DWT levels, filter taps,

and word length has a substantial influence on the performance of the design and complexity.

Increasing the number of DWT levels has roughly the same effect on the operating frequency.

Because the only change between the RNS-based with P7 or P10 implementations is the output

signal width, and the maximum operating frequencies slightly change. Furthermore, the one-

level DB2 filter bankwas designedwith maximum operating frequencies of 232 and 258MHz for

Figure 10. The output and latency of one-level DWTusing a ModelSim simulator when a sin wave is applied. Each clock

cycle is 10 ns.

Resources FIR MAC DAA-based RNS-based

P7 P7

Input precision Q5,16 Q5,16 Q5,16 y = 8 y = 8

Coefficients precision Q0,12 Q1,15 Q0,15 z = 11 z = 11

Internal word length 22 bit 22 bit NA 22 bit 31 bit

SNR (dB) 83.2 78.7 70.4 53.41 54.78

PSNR (dB) 86.3 81.8 73.5 56.5 57.9

Table 7. The SNR and PSNR values of different DWT implementations.
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DAA- and RNS-based approaches, respectively. However, all high-frequency implementations

introduce a latency of at least 10 clock cycles for one-level DA-based DWT.

Another critical parameter that affects the DWT performance is the filter order. DAA-based

implementation outperforms the RNS-based with at most 10 taps. When the number of taps

increases, the number of memory units and binary adders within the RNS-based implementa-

tion constantly increases, and the size is not affected as shown in Table 2. The memory

requirement for DAA-based implementation is exponentially increased as the number of filter

taps increases.

In addition, the two approaches have different memory content. Whereas the memory content

of DAA-based implementation is consistent and identical, the memory content of RNS-based

varies from tap to tap. This is obvious because each memory 590 stores the multiplication

values of each filter coefficient by the moduli set.

The word length determines the number of occupied memory in both implementations. As the

word length increases, the number of memory within the DAA- and RNS-based approaches

increases linearly by w and w∗log2(w), respectively. Furthermore, we could not neglect the

effect of output word length on the accuracy and the internal structure. The DAA-based

approach requires large memories to have high precision. By contrast, RNS-based approach

could achieve high precision with adopting the scaling factors, which do not require any

change to the design, except updating memory contents.

5. Conclusion

In this chapter, we addressed the effect of multiplierless DWT implementations, which have a

substantial impact on the overall performance of the design and resource availability. We

presented DAA- and RNS-based implementations of DWT and compared them with the

Figure 11. The impact of input and wavelet filter scaling factors of one-level RNS-based implementation with respect to

P10 and P13 moduli sets on PSNR.
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MAC-based approach. The former approaches are multiplierless architectures that intensively
use memory to speed up the entire processing time.

Given implementation examples for experimental verifications and analysis, the approaches
were simulated using Simulink and validated on a Xilinx Virtex 6 FPGA platform. The co-
simulation results have also been verified and compared with the simulation environment. The
complexity and optimization of multi-level DWTwith respect to hardware structure provides
a foundation for employing an appropriate algorithm for high-performance applications, such
as in cognitive communication when combining the DWT analysis with machine-learning
algorithms.
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