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Abstract

In this chapter are described the characteristics of transport of hydroxide ions through
hydrated polymeric materials with potential application in alkaline fuel cells are
described. First, it is made a brief description of anion-exchange membrane fuel cells
(AEMFCs), their evolution and key characteristics. Then, this chapter presents a detailed
classification of the different types of polymers that have been proposed for AEMFCs and
their state of development. After that, mechanisms involved in the transport of hydroxide
ions through hydrated anion-exchange membranes are described and discussed, making
emphasis in the theoretical approaches applied for their study and their implementation
and representability in global transport models. In the final section, it is summarized the
key features of the chapter and is made a brief discussion about challenges and future
work required for the consolidation of this promising technology.
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1. Introduction

A fuel cell is a device that converts the chemical energy contained in a fuel directly and

efficiently (between 60 and 80% at normal operating conditions) into electrical energy. This is

achieved by the coupling of reduction/oxidation reactions between oxygen and fuel fed respec-

tively to the cathode and anode of the cell, having as by-products water and CO2 in low

amounts when a hydrocarbon (such as methanol or ethanol) is the fuel [1, 2].

The general scheme of an alkaline fuel cell (AFC) is shown in Figure 1. In this device, fuel is

oxidized at the anode and combined with hydroxide ions transported from the cathode

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



through the electrolyte to produce water. Part of water leaves the cell while the rest moves

through the electrolyte to the cathode. There, it is combined with oxygen and electrons coming

from the anode through an external circuit to produce hydroxide ions that are then transported

through the electrolyte to the anode [3–5]. The electrochemical reactions involved if the fuel is

hydrogen are:

Anode : 2H2 þ 4OH
�
! 4H2Oþ 4e� (1)

Cathode : O2 þ 2H2Oþ 4e� ! 4OH
� (2)

Overall : 2H2 þO2 ! 2H2O (3)

The most known types of AFCs use liquid solutions as electrolytes because of their high ionic

conductivity [5, 6]. However, they have as disadvantage their short lifetime under normal

operating conditions mainly due to the formation of carbonates (CO3
2�) between hydroxides of

the electrolyte and CO2 [7–10] and the permeation of liquid electrolyte to electrodes (weeping)

[10]. In consequence, polymer-based membranes for AFCs are developed and implemented [11,

12] following the model of their counterparts, the proton-exchange membrane fuel cells

(PEMFCs). With this, the newly born AEMFCs were made suitable for their use in vehicles and

batteries for mobile devices because of: (a) the conductive species of the electrolyte are integrated

to a rigid polymeric matrix so reactivity and production of carbonates is reduced, (b) there is no

weeping because the electrolyte is a solid whose segregation is minimum, and (c) the versatility

of the fuel cell is better with respect to implementation and handling using the polymeric

electrolyte [3, 6, 13].

Despite this, the polymeric materials used as electrolytes in AEMFCs currently show draw-

backs susceptible of research and development in their ionic conductivity and chemical

Figure 1. General scheme of an AFC.
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stability. Such characteristics limit the efficiency and durability of the fuel cell respectively;

thus, their study is the main focus of research in this area. Most of studies are experimental and

focused on the fabrication and characterization of polymeric materials with potential applica-

tion in AEMFCs. The others are theoretical and seek to represent transport phenomena of

hydroxide ions through anion-exchange membranes to understand their characteristics and

propose how to improve them. Therefore, this chapter is developed as follows: first, it reviews

and discusses the contributions and findings made to date about anion-exchange membranes

for AEMFCs from both experimental (Section 2) and theoretical studies (Section 3). Then, it

addresses the challenges and work required to consolidate the AEMFCs and make them a

feasible energy production technology for the close-future.

2. Experimental studies

The experimental research of anion-exchange membranes for AEMFCs has focused on the

development of materials having: (a) good mechanical and thermal properties at the assembly

and operation conditions of the fuel cell [14–16], (b) chemical stability especially against the

attack of hydroxide ions to the cationic functional groups of the membrane [17–19], (c) high

anionic conductivity (>100 mS/cm) [6, 20, 21], (d) electronic isolation [22], (e) appropriate

thickness (between 50 and 80 μm) [3], (f) low permeability to fuel [9], and (g) low cost

[23, 24]. In order to fulfill them, diverse anion-exchange membranes have been fabricated and

studied. These membranes can be classified according to their structure as: (a) heterogeneous,

subclassified according to the nature of their components, (b) interpenetrated polymer net-

works, and (c) homogeneous, subclassified according to their functionalization method [3].

This is schematically shown in Figure 2.

2.1. Heterogeneous membranes

A heterogeneous membrane is an anion-exchange material embedded in an inert compound.

According to their nature, these membranes are classified into:

2.1.1. Ion solvating polymers

They are composed of a polymeric matrix soluble in water that contains electronegative

heteroatoms (such as oxygen, nitrogen, sulfurs, chlorides or phosphates), a hydroxide (most

of the time potassium hydroxide) and one or more plasticizers. The resultant material has the

mechanic properties of the polymeric matrix and the electrochemical properties of the hydrox-

ide [25, 26]. Among the materials used to fabricate ion solvating polymers, there are the

polyethylene oxide (PEO), polyvinyl alcohol (PVA), chitosan and polybenzimidazole (PBI).

They have good mechanical properties but low ionic conductivity at contact with the fuel cell

electrodes (between 0.1 and 1 mS/cm) [27] because they are usually very thick and have high

electrical resistance. Moreover, their structure is usually not uniform and has areas of high and

low concentrations of exchangeable ionic groups that cause an uneven ionic transport through
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the material. Additionally, the KOH used as a hydroxide is susceptible to leak out the mem-

brane, resulting in continuous conductivity losses during the operation of the fuel cell [20].

2.1.2. Hybrid membranes

They are composed of organic and inorganic segments. Organic segments provide the electro-

chemical properties and the inorganic (usually silica or siloxane), the mechanical properties.

Examples of hybrid membranes are PEO, PVA and polyphenylene oxide (PPO) with silica

(SiO2) and membranes based on PVA with titanium dioxide (TiO2). Although their mechanical

properties are promising due to the incorporation of inorganic components, membranes of this

category have the same nonuniformity problem of ion solvating polymers, thus their ionic

conductivity are similar or even lower [15].

2.2. Interpenetrated polymer networks

These membranes combine two polymeric materials by crosslinking without promoting the

formation of covalent bonds in between. One of the polymers is hydrophobic and has good

chemical, mechanical, and thermal properties, while the other is an ionic conductor. Main

researches for membranes in this category are related with materials based on PVA, PPO,

polyethylene, and polysulfone. They are easy to fabricate, and the range of polymers that can

be used is wide. Additionally, they exhibit low electrical resistance and high mechanical

strength, chemical stability, durability, and can be produced at a reasonable cost. However,

since the constituent materials are not covalently bonded, the conductive polymer slowly

diffuses out of the membrane with time, which causes progressive losses of conductivity and

ion exchange capacity. Furthermore, although these membranes can reach ionic conductivities

Figure 2. Classification of anion-exchange membranes according to their structure and functionalization method.

Reprinted from J. Memb. Sci., 377(1–2), G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel

cells: A review, 1-35, Copyright 2011, with permission from Elsevier.
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higher than heterogeneous membranes (2–5 mS/cm), they are still very low for their use in a

fuel cell [3, 14].

2.3. Homogeneous membranes

They are polymers composed of one type of material that is modified to have ion exchange

capacity. In these materials, the cationic functional groups (usually quaternary amines) are

covalently attached to the polymer backbone to generate ionic sites with an associated mobile

counterion [6, 28]. According to how they are functionalized, homogeneous membranes can be

classified into:

2.3.1. Copolymerization of monomers

Copolymerization is a process in which 2 or more monomers combine into a single polymeric

chain. The most promising membranes produced by this method are based on chloromethyls-

tyrene and divinylbenzene. However, they have as disadvantage the low availability of chlor-

omethylstyrene and high cost of divinylbenzene [3, 28].

2.3.2. Radiation grafting

These membranes are conformed by a hydrophobic polymer backbone to which cationic func-

tional groups are grafted by irradiation, UV, or plasma methods [3]. As the most important

materials in this category are the poly(fluorinated ethylene-propylene) (FEP) and poly(ethylene-

co-tetrafluoroethylene) (ETFE) membranes, both functionalized with polyvinylbenzene (PVB)

and trimethylammonium hydroxide groups. They have a very high ionic conductivity with

respect to other types of membranes (between 10 and 45 mS/cm) and excellent mechanical

properties. However, they are currently impractical for massive production because of the high

cost of their constituent components (especially for fluorinated membrane) and the grafting

processes [6, 20].

2.3.3. Chemical modification

These membranes are the most researched due to they can reach high ionic conductivities at a

lower fabrication cost than membranes produced by copolymerization and radiation grafting.

However, chemical modification methods are difficult to control and reproduce. In conse-

quence, the resulting quality of the membranes is highly dependent on the rigor of the fabrica-

tion procedure. Some of the anion-exchange membranes of this category are based on

polystyrene, PVA, PVB, epichlorohydrin, polyethylene glycol, ethers, aromatic esters, guani-

dine, polysulfone, and polypropylene [3, 6].

Homogeneous membranes are to date the most efficient and promising electrolytes for

AEMFCs because of their superior ionic conductivity and durability with respect to the other

membrane categories. However, yet there is no a consolidated material that fulfills the condi-

tions required to achieve an optimal operation in an AEMFC, despite the fact that significant

advances have been made in the last years with respect to the quality of their fabrication and

properties. For that reason, it is essential not only to improve them from the experimental
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work, but also with theoretical studies to understand the characteristics of the transport

mechanisms of hydroxide ions through anion-exchange membranes and how they influence

their ionic conductivity and chemical stability as it is shown below.

3. Theoretical studies

As was introduced in previous sections, a good alternative to design efficient anion-exchange

membranes is the implementation of theoretical models to identify, analyze, and complement

the experimental findings about transport phenomena within them. However, studies of this

type are few, and the characteristics of such transport phenomena are not well known and are

still in discussion to date [29]. In order to identify them, studies for transport of hydronium

ions (H3O
+) in hydrated proton-exchange membranes have been taken as a starting point

under the premise that the characteristics of ionic transport for both anionic and protonic

membranes could be similar (which is not strictly true) [30, 31]. Thus, in Figure 3 are schemat-

ically shown the main transport mechanisms for hydroxide ions through anion-exchange

membranes that have been proposed in the literature. These include diffusion, which consist

of molecular or en masse diffusion, structural diffusion or Grotthuss mechanism and surface

site hopping; migration and convection.

3.1. Diffusion

It is defined as the transport of molecules due to a chemical potential gradient of one or more

components in the absence of an electric field [32]. Within a hydrated anion-exchange mem-

brane, hydroxide ions can diffuse by three modalities: the traditional en masse diffusion,

Grotthuss mechanism, and surface site hopping. The first two mechanisms take place at the

Figure 3. Transport mechanisms proposed for hydroxide ions in anion-exchange membranes. Reprinted with permission

from J. Electrochem. Soc., 2010; 157(3): B327. Copyright 2010, The Electrochemical Society.
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bulk of water molecules (usually in the middle region of the membrane pores and far from its

backbone and side chains), while the latter takes place on the surface of the polymer cationic

functional chains [33]. A visualization of the way hydroxide ions can diffuse by these mecha-

nisms is depicted as an electric circuit in Figure 4.

In which NOH� is the total flux of hydroxide ions transported through the membrane, N
Surf
OH� is

the flux of hydroxide ions transported through the surface of the polymer chains and NBulk
OH� is

the flux of hydroxide ions transported through the region of bulk water. Additionally, D
Surf
OH�

and DGrott
OH� are the contributions to total diffusion coefficient from surface site hopping and

Grotthuss mechanisms, while DM
OH� ,W and DM

W ,OH� are respectively the contributions from en

masse diffusion of hydroxide ions and water molecules.

Contributions of each mechanism to total diffusion are strongly influenced by the nanostruc-

ture and water content of the anion-exchange membrane [33, 34]. On the one hand, at low

hydration levels, pores of the polymer are narrow and cationic side chains are very close to

each other. In consequence, solvation of water molecules and interaction between them and

hydroxide ions via hydrogen bonding are very low with respect to the electrostatic forces

exerted by the cationic chains on the latters. Therefore, transport of hydroxide ions is more

likely to take place on the surface of the polymeric chains by surface site hopping and molec-

ular diffusion at low rates. In addition, ionic conductivity of the anion-exchange membrane

will be very low. On the other hand, at high hydration levels, the pores of the polymer swell

and give place to wide continuous channels where regions of bulk water can be formed.

Cationic functional chains will be more separated, thus their influence on hydroxide ions is

reduced and dissociation from solvation of water molecules will be more likely. Therefore,

transport of hydroxide ions takes place mostly by charge defect transfer (Grotthuss mecha-

nism) in the bulk water region at high rates: the ionic conductivity of the anion-exchange

membrane under that condition will reach its highest values [34].

Figure 4. Electric circuit analogy of the transport mechanisms by which hydroxide ions can diffuse through anion

exchange membranes. Reprinted with permission from J. Electrochem. Soc., 2005; 152(3): E123. Copyright 2005, The

Electrochemical Society.
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In order to gain deeper understanding of the mentioned diffusion mechanisms, a general

description for each one and their implementation in mathematical models is given in the next

subsections.

3.1.1. en masse diffusion

The molecular movement of hydroxide ions due to concentration (or activity) gradients can be

described according to Fick’s law:

NM
OH� ¼ �DM

OH� ,W∇cOH� (4)

in whichNM
OH� is the flux of hydroxide ions due to en mass diffusion and cOH� their corresponding

concentration. However, since water molecules are also diffusing by their own gradient and

there are also frictional interactions with the membrane, it is more rigorous to use the

multicomponent Stefan-Maxwell equation to take into account those effects in the mass diffusion

of hydroxide ions [29, 32]:

∇xi ¼
X

n

j 6¼i

xiNj � xjNi

cTD
M
i, j

�
Ni

cTD
M
i,AEM

(5)

in which xi is the mole fraction of specie i, cT the total concentration of all species, DM
i, j the mass

diffusion coefficient between species i and j and DM
i,AEM the mass diffusion coefficient between

specie i and the membrane structure. Expressing Eq. (5) for hydroxide ions in a hydrated

membrane, it becomes:

∇xOH� ¼
xOH�NW � xWNOH�

cTD
M
OH�,W

�
NOH�

cTD
M
OH� ,AEM

(6)

The first term of the right side of Eq. (6) corresponds to the interactions between water

molecules and hydroxide ions and the other represents the frictional effects of the membrane.

In addition, to account for Knudsen diffusion, binary diffusion coefficients can be expressed as

a parallel resistance with the following form [32]:

D
M, eff
i, j ¼

1
1

DM
i, j
þ 1

DKi

(7)

The Knudsen diffusion coefficient (DKi) can be approximated from the kinetic theory of gases [32]:

DKi ¼
d

3

ffiffiffiffiffiffiffiffiffi

8RT

πMi

s

(8)

in which d is the pore diameter of the membrane, R the ideal gas constant, T the temperature,

and Mi the molecular weight of specie i. Alternatively, effective diffusion coefficient of Eq. (7)

can be expressed in terms of porosity (ε) and tortuosity (τ) by the following relation [35]:
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D
M, eff
i, j ¼

ε

τ

DM
i, j (9)

or by using the Bruggeman percolation model, initially used for hydronium ions in proton-

exchange membranes but later extended to hydroxide ions in anion-exchange membranes [29]:

D
M, eff
i, j ¼ vw � vw,oð ÞqDM

i, j (10)

in which vw is the volume fraction in the membrane, vw,o the volume fraction of water at

percolation limit (minimumwater content required to allow transport of hydroxide ions through

the membrane) and q the Bruggeman constant.

Binary diffusion coefficients (DM
i, j and DM

i,AEM) must be obtained either from experimental

measurements or empirical correlations. By including effective diffusion coefficients in Eq. (6),

it gets the following form:

∇xOH� ¼
xOH�NW � xWNOH�

cTD
M, eff
OH�,W

�
NOH�

cTD
M, eff
OH� ,AEM

(11)

In order to obtain the flux and mole fraction profiles for hydroxide ions from Eq. (11), it must

be solved simultaneously with the Stefan-Maxwell equation for water:

∇xW ¼
xWNOH� � xOH�NW

cTD
M, eff
W ,OH�

�
NW

cTD
M, eff
W ,AEM

(12)

In addition, appropriate boundary conditions must be established. These can be obtained by

coupling the transport model of Eqs. (11) and (12) with a global model for the AEMFC.

3.1.2. Grotthuss mechanism

Also known as structural diffusion and proton hopping, it is a transport mechanism by which

a protonic excess (hydronium (H3O
+) for instance) or defect (hydroxide (OH�) for instance) of

an ionic specie diffuses through the hydrogen bond network of water molecules by means of a

reactive process caused by fluctuations in the coordination bonds between ions and water that

involve the formation and cleavage of hydrogen bonds [36–39].

Currently, the exact description of Grotthuss mechanism for hydroxide ions is still in discus-

sion, and different theories have been proposed. Among them, the dynamic hypercoordination

theory is considered the most accurate description to date. However, it is postulated for pure

aqueous medium and has not been extended to consider the presence of an anion-exchange

membrane.

The steps involved in the Grotthuss mechanism according to dynamic hypercoordination theory

are shown in Figure 5. It is based on the presolvation concept, which establishes that species with

charge defects must be first solvated by water molecules to perform the charge defect transfer

[38, 40]. For just water, its molecules form tetrahedral hypercoordinated complexes with adjacent
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molecules by donating and receiving two hydrogen bonds, respectively [41, 42] as shown in

Figure 6. According to the hypercoordination theory, when a hydroxide ion goes into the water

network, it adopts a square-planar topology (Figure 5a) in which its oxygen atom accepts four

hydrogen bonds from neighboring water molecules (forming the anion H9O5
�). In addition, the

hydrogen atom of the hydroxide ion is delocalized around the oxygen atom and stays without

establishing coordination bonds. To carry out the charge defect transfer, hydroxide ion must first

reduce its coordination number by breaking one of the hydrogen bonds received from a water

molecule and then establishing bonding between its hydrogen atom and another nearby water

molecule. This allows the ion to take the topology of a fully coordinated water molecule,

promoting the transfer of the anionic defect to an adjacent molecule in a process in which the

complex H3O2
� is temporarily formed (Figure 5b). When the transfer is finished, the receiving

molecule rearranges to take the preferential square-planar configuration of a hydroxide ion,

thereby completing the transport process (Figure 5c) [36–38, 40].

It is considered that Grotthuss mechanism has a predominant contribution to hydroxide

mobility through hydrated membranes according to: (a) experimental studies about hydroxide

mobility in pure aqueous medium [43, 44], (b) theoretical studies about hydroxide mobility in

Figure 5. Grotthuss mechanism for hydroxide ions in pure water is according to the dynamic hypercoordination theory.

Colors code: oxygen of water molecules is in red, oxygen of molecules with charge defects is in yellow, and hydrogen is in

gray. Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature, The nature and transport

mechanism of hydrated hydroxide ions in aqueous solution, M.E. Tuckerman, D. Marx, Copyright 2002.

Figure 6. Left: connectivity of a water molecule with four adjacent water molecules. Electronic clouds are indicated in

green. Right: tetrahedral representation of the water molecule indicating the donated (D) and accepted (A) hydrogen

bonds. From D. Marx: Throwing Tetrahedral Dice. Science. 2004; 303: 634–636. Reprinted with permission from AAAS.
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pure aqueous medium with ab initio Molecular Dynamics (AIMD) [37, 38], and (c) analogous

studies for PEMFCs [33, 45–48].

3.1.3. Surface site hopping

It involves the movement of hydroxide ions by means of successive hops from one side chain

of the membrane to another due to strong electrostatic attractive forces exerted by the cationic

functional groups on the ions [3, 29, 33]. This process takes place as follows: first, a hydroxide

ion attached to a cationic functional group is solvated and dissociated by water molecules.

After that, an adjacent side chain attracts the solvated ion to its surface, then the process

repeats. This results in a net displacement of the hydroxide ion through the membrane equal

to the distance between the two cationic side chains.

Although this mechanism is more likely at low water contents of the membrane, it is consid-

ered a secondary process because of the strong interactions between water molecules in the

system and the hydrophilic cationic functional groups, which act as a barrier for the hydroxide

ions to interact and reach the surface of the latters. This reduces the possibility of this mecha-

nism to take place over the others [29].

Both Grotthuss mechanism and surface site hopping take place at atomic length and time scale

and can only be effectively studied through quantum physic techniques like AIMD because of

the nature of this phenomenon. At the macroscale, their contributions to total diffusion in

mathematical models can be accounted in following way: Grotthuss mechanism, which takes

place at the bulk of water molecules, can be accounted by extending the expression for the

effective mass diffusion of hydroxide ions in water (Eq. (7)) as:

D
eff
OH� ,W ¼

1
1

D
M, eff
OH�,W

þ
1

DGrott
OH�

(13)

Surface site hopping can be accounted by applying empirical corrections to the influence of the

membrane structure on hydroxide mobility (that is D
M, eff
OH� ,AEM) to include not only frictional

effects but also surface phenomena [29]. By applying Eq. (13) and an appropriate correction to

D
M, eff
OH� ,AEMinto Eq. (11), one gets:

∇xOH� ¼
xOH�NW � xWNOH�

cTD
eff
OH�,W

�
NOH�

cTD
eff
OH� ,AEM

(14)

in which D
eff
OH� ,AEM is the effective diffusion coefficient between hydroxide ions and membrane

that accounts for surface site hopping. Eq. (14) combined with Eq. (13) are rigorous expressions

that take into account all the diffusive phenomena that hydroxide ions can undergo. However,

its full application is very limited because Grotthuss mechanism and surface site hopping have

not been formally characterized for anion-exchange membranes, and thus, there are no accu-

rate correlations to represent them (i.e., expressions for DGrott
OH� to account for Grotthuss mecha-

nism and either D
eff
OH� ,AEM or D

Surf
OH� in Figure 4 to account for surface site hopping) like for
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proton-exchange membranes (see for instance, the research of Choi et al. [33]). For that reason,

current transport models approximate D
eff
OH� ,W by combining the value of the binary diffusion

coefficient of hydroxide ions in pure liquid water at 25�C (5.3 � 10�9 m2/s) with empirical

correlations to take into account effects of temperature, pressure and water content, which in

practice works well to obtain accurate solutions to the transport models but screening how

exactly diffusion of hydroxide ions is taking place and how it changes with temperature,

pressure, and water content.

3.2. Convection

Convective transport can take place mainly due to a pressure gradient between the bound-

aries of the anode and cathode diffusion layers of the fuel cell and the membrane. It is also

due to electro-osmotic drag, in which a flux of water molecules is induced by the motion of

hydroxide ions in the absence of concentration gradients (i.e., by electric potential gradients)

[3, 20, 29].

In electrochemical systems, a convection velocity can be defined by means of the Schogel’s

equation [29]:

νconv ¼
Bo

η
∇Pþ

X

n

i

zici

 !

F∇ϕ

" #

(15)

in which Bo is the d’ Arcy hydraulic permeability, η the dynamic viscosity, F the Faraday

constant, zi the charge number of specie i and ϕ the electric potential. The terms in the

brackets at right side of Eq. (15) are respectively the contributions to convection by pressure

gradients and electro-osmotic drag. It is important to point out that Schoegel’s equation

assumes that charged species in the radial direction of the membrane pores are uniformly

distributed, thus potential gradients are neglected. This is indeed the case for exchange

membranes in which pore sizes are small so there are not considerable localized variations

in the radial direction [29].

If transport by convection and diffusion are taking place simultaneously, Eq. (15) can be

combined with Eq. (5):

∇xi ¼
X

n

j 6¼i

xiNj � xjNi

cTD
eff
i, j

�
Ni

cTD
eff
i,AEM

�
Bo

ηD
eff
i,AEM

∇Pþ
X

n

i

zici

 !

F∇ϕ

" #

(16)

in which binary diffusion coefficient was replaced by effective diffusion coefficients to

include the effect of membrane structure and all the possible diffusion mechanisms affecting

specie i (as was described in Section 3.1). In addition, convection term appears divided

by D
eff
i,AEM to take into account any frictional effect of the membrane on this mechanism.

Applying the abovementioned definitions into Eqs. (11) and (12), the following set of equa-

tions is obtained:
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∇xOH� ¼
xOH�NW � xWNOH�

cTD
eff
OH� ,W

�
NOH�

cTD
eff
OH� ,AEM

�
Bo

ηD
eff
OH�,AEM

∇Pþ cOH�F∇ϕ
� �

(17)

∇xW ¼
xWNOH� � xOH�NW

cTD
M, eff
W ,OH�

�
NW

cTD
M, eff
W ,AEM

�
Bo

ηD
M, eff
W ,AEM

∇Pþ cOH�F∇ϕ
� �

(18)

Transport by convection is especially important at high hydration levels in which porous

structure of the membrane swells enough to give place to continuous channels that connect

the anode with cathode, so an effective pressure gradient can be established. In addition,

convection by electro-osmotic drag must be considered at high concentrations of hydroxide

ions when electric potential gradients could be significant.

3.3. Migration

It is defined as the motion of charged species due to electric potential gradients resulting from

the electrostatic interactions between them. Transport by migration can be described according

to Ohm’s law:

i ¼ �σ∇ϕ (19)

in which σ is the ionic conductivity of the membrane, ϕ the electric potential and i the current

density. The latter can be related to molar flux by the following definition:

i ¼ F
X

n

i

ziNi (20)

When either diffusion or convection takes place simultaneously with migration, the general-

ized Stefan-Maxwell equations (GSME) for a system of n-particles can be used [29]:

ci
RT

∇~μi ¼
X

n

j 6¼i

xiNj � xjNi

D
eff
i, j

�
Ni

D
eff
i,AEM

�
Boci

ηD
eff
i,AEM

∇Pþ
X

n

i

zici

 !

F∇ϕ

" #

(21)

which is analogous to Eq. (16) but expressed in terms of electrochemical potential gradi-

ents:

∇~μi ¼ ∇μi þ ziF∇ϕ (22)

Alternatively, the dilute-solution or concentrate-solution approaches can be applied. In the

dilute-solution approximation, interactions between solute molecules are neglected, and the

Nernst-Planck equation can be used [32]:

Ni ¼ �ziuiFci∇ϕ�Di∇ci þ ciνconv (23)
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in which ui is the mobility of specie i. The terms of the right correspond respectively to

migration, diffusion, and convection (in which electro-osmotic drag is neglected). In addition,

the Nernst-Einstein equation can be used to relate ionic mobility (and conductivity) with

diffusivity and reduce the number of transport properties in Eq. (23) [32]:

Di ¼ RTui (24)

However, Eqs. (23) and (24) apply rigorously just at infinite dilution (<0.01 mol/dm3 [49]),

which most of the time is not the case for a membrane in an AEMFC. Therefore,

concentrated-solution theory is preferred if enough information about the required parameters

and transport properties is available [32]. Under this approach, the following set of equations

for hydroxide ions and water can be obtained (see detailed derivation in Refs. [50, 51]):

iOH
� ¼ �σ∇ϕ

OH
� �

σξ

F
∇μ

w
(25)

Nw ¼ �
σξ

F
∇ϕ

OH
� � αþ

σξ2

F
2

� �

∇μ
w

(26)

in which ξ is the electro-osmotic drag coefficient and α is a transport coefficient that can be

related either to a hydraulic pressure gradient or a concentration gradient through the defini-

tion of chemical potential [32]:

∇μ
w
¼ RT∇lnaw þ Vw∇P (27)

in which aw is the activity and Vw the molar volume. Along with diffusion, transport by

migration usually has a strong effect in the mobility of hydroxide ions even at low ionic

concentrations. Therefore, application of concentrated-solution theory could be considered

essential for the correct description of full transport phenomena of hydroxide ions. However,

lack of information about most of the transport properties and parameters in the model for

anion-exchange membranes limits greatly its use. Therefore, mathematical expressions for

those properties in anion-exchange membranes are based on correlations fully characterized

and validated for proton-exchange membranes [29], on the basis that transport phenomena in

both systems should be equivalent as was mentioned at the beginning of this section.

4. Conclusions, challenges, and future work

Although PEMFCs are nowadays the main and most attractive fuel cell technology for mobile

applications, AEMFCs have significant advantages over PEMFCs that give them a greater

potential for massive production at low cost: (a) the oxygen reduction reaction is more favor-

able in alkaline medium. Therefore, catalysts as silver or nickel, which are less expensive than

platinum (predominantly used in PEMFCs and their major drawback) can be used [52]. (b)

Corrosion problems are reduced because metals and coal generally used in bipolar plates,

current collectors and catalysts are chemically more stable in alkaline than in acid medium.
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This allows the use of less expensive components such as current collectors of nickel and thin

metal bipolar plates [8]. (c) The oxidation of alcohols such as methanol and ethanol is more

favorable in alkaline medium. This allows a more efficient alcohol oxidation, and the amount

of platinum and ruthenium in catalysts can be reduced [53]. However, more intensive research

is required.

Homogeneous membranes are currently the most efficient electrolytes for AEMFCs because

of their high ionic conductivity and durability in comparison with heterogeneous mem-

branes and interpenetrated polymer networks. However, they have strong drawbacks that

need to be overcome. Membranes produced by copolymerization using chloromethylstyrene

and divinylbenzene as their base materials have shown both high ionic conductivities and

chemical stability at fuel cell conditions, but as was mentioned in Section 2, they are imprac-

tical because of the low availability of chloromethylstyrene and high cost of divinylbenzene.

Conductive polymers functionalized by radiation grafting procedures have been extensively

researched and have the highest ionic conductivities among the listed membrane types. In

fact, most of the commercial membranes nowadays belong to this category. However, as

membranes produced by coplymerization, they are very expensive and unfeasible for a

large-scale production. Finally, homogeneous membranes functionalized by chemical modi-

fication can be produced at low cost and be as conductive and efficient as membranes

produced by copolymerization and radiation grafting. Therefore, they are the most promis-

ing materials for a future mass production of AEMFCs. The main problem with these

materials is the attachment process of the cationic functional groups and their chemical

stability. First, fabrication procedures need to be improved and standardized so they can be

effectively implement at large-scale production. Second, membranes of this category use

trimethylammonium-based chains as the cationic functional groups, which are very reactive

with hydroxide ions. In consequence, they have poor stability at operational conditions of

the fuel cell and tend to degrade at early operation times.

Theoretical understanding of the transport mechanisms taking place within anion-exchange

membranes is a straightforward way to design effective procedures to fabricate anion-

exchange membranes with the required characteristics to operate efficiently and stably at the

conditions of an AEMFC. Unfortunately, there are a lot of conceptual gaps and lack of infor-

mation that currently limits strongly this possibility. It is required a better understanding and

particularization of the transport theories behind those models to anion-exchange membranes.

For instance, great part of the transport properties and parameters required by the most

rigorous models (like GSME and concentrated-solution theory) have not been experimentally

measured or mathematically defined for anion-exchange membranes, so they still are calcu-

lated from correlations and theories extensively studied and validated for proton-exchange

membranes regardless their application could not be correct for alkaline medium. Moreover,

the characteristics of some of the transport mechanisms involved in the mobility of hydroxide

ions are not exactly known. This is, for example, the case of the mechanism considered to have

the major contribution to the hydroxide mobility through hydrated anion-exchange mem-

branes, that is, Grotthuss mechanism. Mobility studies for hydroxide ions in pure aqueous

medium have approached the basic characteristics of the mechanism, but it has not been done

yet an extension of those studies to anion-exchange membranes to take into account key
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aspects that could affect dramatically its development such as: (a) water content of the con-

ductive polymer, which affects its morphology and distribution of its cationic functional

groups and (b) the type of cationic functional group, which is responsible of the electrostatic

forces exerted on the hydroxide ions and water, steric and frictional effects due to the structure

and size of the cationic group and the electrical double layer effects due to the surface distri-

bution of electrostatically attracted molecules [14, 33, 34, 45].

All the above mentioned approaches are nowadays active research areas of high interest. If

successful alternatives to improve the current limitations of the existent polymeric systems

could be obtained from the co-development of experimental and theoretical studies, AEMFCs

could not only exceed in efficiency and economy the PEMFCs, but also become a competitive,

feasible, and sustainable technology to other alternative power generation sources especially

for portable and stationary applications at low temperature.
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