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Abstract

This chapter describes the various systems beyond the central nervous system that are 
associated with Alzheimer’s disease (AD). There is strong evidence to believe that while 
AD has symptoms of memory and cognitive impairment—undoubtedly domains of the 
central nervous system—the primary insult that causes this condition may arise systemi-
cally. We describe associations with the immune system, gut microbiome, and endocrine 
abnormalities that may be at play. Our goal is to incorporate a multi-system approach 
to understand the pathogenesis of AD. Our body does not function as soloed organ sys-
tems, and we hypothesize that the mechanisms described herein are similarly contribut-
ing to the progression of cognitive impairment in AD.

Keywords: microglia, inflammation, metabolism, diet, gut microbiota, amyloid

1. Introduction

No scientific problem has seen more heartbreak and frustration than the challenges of 
Alzheimer’s disease (AD). This is not surprising—we are dealing with a disease that progres-

sively degenerates a complex biological system. A century has passed since the symptoms 

were first recorded by Dr. Alois Alzheimer, yet we lack meaningful treatments. We propose 
that this is not a weakness of past research, but a misguided approach that focuses on spe-

cific aspects of disease pathogenesis centering within the brain and out of context from other 
systems involved. In other words, we suggest that the seemingly elusive nature of piecing 

together this tragic disease is due to viewing it through the lens of only one or two potential 

mechanisms at a time. Our goal is to synthesize several mechanisms into an explanation of 

disease pathogenesis that incorporates neurons, the immune system, and even the gastro-

intestinal tract and its microbial inhabitants. We will show that the pathology seen in AD is 
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a result of multiple hits contributed by systems within and outside the brain parenchyma 

and thus prompt the search for novel therapies that address the multi-organ etiology of AD 

pathology.

2. The amyloid cascade hypothesis

The most widely accepted theory of AD etiology is the amyloid cascade hypothesis [1], which 

maintains that overproduction and/or decreased clearance leads to extracellular aggregation 

of the presumably toxic amyloid-beta (Aβ) peptide. These extracellular Aβ aggregates act 
to increase neuronal kinase activity, resulting in phosphorylation of the microtubule-asso-

ciated protein tau. Hyperphosphorylation of tau induces formation of intracellular aggre-

gates known as neurofibrillary tangles and alters intracellular transport along microtubule 
tracks. This in turn abolishes neuronal communication, resulting in cell death in a spatially 
conserved pattern and producing deficits in networks that subserve memory and cognition. 
Aggregation of Aβ and tau is well-established pathological characteristics of AD brain tissue 
at autopsy. It is also known that in familial forms of AD, mutations in amyloid precursor 
protein (APP), Presenilin 1, or Presenilin 2 accelerate Aβ production and accumulation and 
lead to cognitive decline at a much earlier age. Presinilins function as part of the gamma secre-

tase protein complex, one of three proteolytic enzymes responsible for cleaving APP into Aβ 
or nonaggregating amyloid peptides. Autopsy samples from brain parenchyma of patients 

with familial AD, which account for less than 1% of all AD cases, present with exorbitant Aβ 
and Tau accumulation similar to sporadic AD. Additionally, since the APP gene is located on 

chromosome 21, individuals with Down syndrome (trisomy 21) invariably develop AD-like 
dementia, also at a younger age than sporadic cases. This intuitively makes sense: an extra 
copy of APP on chromosome 21 will inevitably lead to the generation of more Aβ. However, 
it is highly uncertain to what degree familial AD and Down syndrome recapitulate the initial 

stages of sporadic AD, which accounts for the vast majority of AD cases. This is the core of the 

debate surrounding the amyloid cascade hypothesis: Is Aβ aggregation the start of AD or a 
downstream effect of an earlier insult? Additionally, and of considerable concern, to the day 
of writing this chapter, multiple immunotherapy clinical trials that target and clear Aβ as well 
as trials to block the activity of the secretases have failed to reverse cognitive loss and, in some 
cases, have accelerated it [2]. In this chapter, we will describe Aβ aggregation only as surro-

gate for the final common pathway of multiple disease mechanisms leading to the established 
end pathology of AD and not as a direct, initiating cause of clinical demise.

3. Microglia in brain homeostasis

3.1. Microglia and brain development

Microglia are the endogenous immune cells of the central nervous system. Over the past decade, 

the ontogeny of microglial cells has been controversial. Their developmental progression has 
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gone through several interesting iterations leading to our current understanding of how these 

peripherally derived cells come to reside in the central nervous system [3]. During development, 

myeloid precursors travel to the brain and then differentiate into microglia (CNS parenchymal 
macrophages). These tissue-specific macrophages make their way to the brain through the circu-

lation from the embryonic yolk sac [4]. They grow concurrently with neurons, before the devel-

opment of astrocytes and oligodendrocytes, participating in key neurodevelopmental events 
such as neurogenesis, synaptic pruning, and thus the development and remodeling of neuro-

nal circuits. There is evidence that microglia need to adapt to their quickly changing environ-

ment and modify their functions as needed [5]. It seems logical, then, that aberrant or impaired 

microglial activation during development would be implicated in CNS disease later on in life.

Early brain development involves a vast amount of axon and synaptic growth—a process 

known as exuberant synaptogenesis. During early childhood and puberty, these synapses are 
slowly eliminated in a regulatory process called synaptic pruning. Interestingly, the mecha-

nisms responsible for synaptic pruning are related to peripheral immune mediators such as 

major histocompatibility complex [6] and complement proteins [7, 8]. As described in a review 

by our group [9] and briefly summarized below, the reemergence of these molecules in the 
aging brain may lead to inappropriate synaptic pruning and uncontrolled neuroinflammation.

3.2. Microglia and AD

The role of microglia in the body is the story of Goldilocks. Much like the body’s peripheral 
immune system, diseased or dystrophic microglia have diminished capacity to fight exog-

enous infections, clear endogenous cellular waste products, or promote homeostasis after an 

injurious insult. On the other hand, too much activation can severely harm the brain, much 

like how autoimmunity or graft rejection occurs in the periphery. In the brain, microglia con-

tribute to Aβ clearance [10, 11]. However, the ability of microglial clearance appears to dete-

riorate and, in some cases, negatively change with age [12, 13]. At late stages of AD, microglia 

are thought to become overstimulated and paradoxically contribute to the disease by releasing 

proinflammatory cytokines in response to Aβ deposition [14, 15] or actively phagocytosing 

damaged, but live neurons [16]. Recent studies have consistently shown complement cascade 

proteins C1q and C3b—both normally associated with peripheral inflammation—upregu-

lated on synapses induced by Aβ plaques in a mouse model of AD. Microglia then eliminated 
these C1q- or C3b-tagged synapses, leading to neurodegeneration and behavioral impairment 
[17, 18]. Immunohistochemistry studies reveal that Ig-positive neurons were C1q and C5b-9-
positive and appeared degenerative [19]. These data suggest that neurons in AD brains are 

dying from an antibody-induced classical complement process. Additionally, newly discov-

ered genetic risk factors are based on microglial phagocytosis, including CD33 [20], TREM2 

[21, 22], and complement receptor 1 [23]. A full description of these mechanisms is out of the 

scope of this chapter, but the reader is encouraged to read more exhaustive reviews on this 

topic [24–26]. Nonetheless, it is a fascinating prospect that a peripherally derived cell plays 

such a large part in a central nervous system disease and that many of the processes used for 

brain development resurface to wreak havoc during degeneration. This shall segue into our 
next section discussing purely systemic mechanisms of AD pathogenesis.
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4. Peripheral manifestations of a central nervous system disease

Over the past two to three decades, significant research effort has attempted to characterize 
the peripheral contributions to brain disease. This is a fascinating notion, considering the 

apparent impermeability of the central nervous system. However, even this impermeability 

depends on the environment to which the brain is subjected and may be under the influence 
of factors important during development. Unlike most other organs (with the exception of 
the retina and testes), the brain is highly susceptible to injury by chemical stressors normally 

present outside the confines of the blood-brain barrier (BBB). Neurons, despite their seem-

ingly robust ability to work throughout the human lifespan, constant firing during that lifes-

pan and frequent turnover of their signal transmitting elements (synapses), are a delicate class 
of cells. For this, neurons are accompanied by three other cell types termed glial cells, which 

are supportive in nature. These consist of the myelinating oligodendroglia, the jack of all 
trades astroglia and the aforementioned specialized immune cells of the CNS called microg-

lia. All of these cells—count approximately 172 billion [27]—are separated from the nearly 

500 miles of brain vasculature and capillary networks by the tight junction-lined and sealed 
BBB [28]. Most of the protection afforded to neurons is performed by the BBB, microglial cells, 
and astrocytes. Dysfunction of any of these components leads to some form of neuronal com-

promise. In this section, we will concentrate specifically on the BBB and microglia and how 
peripheral insults, including an unsuspecting role of the resident microflora, may influence 
their ability to protect neurons.

4.1. Systemic inflammation

Recent studies reveal that a cross-pollination between molecules thought to be exclusively 

involved with either the CNS or the immune system. Cytokines, complement proteins, and 
major histocompatibility complex (MHC) class 1 proteins have all been implicated in brain 
development [29–31] and neurological disease.

We know that bacterial, viral, fungal, and parasitic infections that target the CNS are associ-
ated with an increased risk of AD. These infections likely trigger a chronic, systemic inflam-

matory state in the CNS, leading to neurodegeneration. For example, it has been shown that 
a bacterial infection can induce amyloidosis and thus lead to the development of AD [32]. A 

recent study in mice showed that memory impairment after West Nile virus infection was 

dependent on microglia and complement-induced synaptic pruning within the CA3 region of 
the hippocampus [33]. However, the big question that many in the field of AD have asked is: 
What are the contributions of the immunological effectors that exist solely in the peripheral 
blood, and how do they wreak havoc within the tightly regulated brain parenchyma?

The start of this research began even before the discovery that established Aβ as the composi-
tion of the senile plaques that are the hallmark pathology seen in postmortem AD brains [34]. 

Eikelenboom and Stam found both immunoglobulins and complement proteins resided within 
senile plaques using basic immunoperoxidase techniques [35]. This study, along with continued 

confirmatory experiments led to the subsequent study of non-steroidal anti-inflammatory drugs 
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(NSAIDs) in randomized control trials [36–40]. Unfortunately, a relatively recent meta-analysis 

demonstrated no clinically significant slowing of AD progression when these data were aggre-

gated [41]. However, many of the studies included in the meta-analysis were done well before the 

establishment of a thorough understanding of AD clinical progression [42, 43]. In other words, 

could it be that therapy needs to be initiated during prodromal clinical stages of the disease—a 

time when the pathology has not yet reached a saturation threshold and may be more effectively 
halted? A corollary to this is whether we should begin battling neurodegeneration even in the 
first years of life, as we will discuss below. These questions are being actively studied in current 
trials of both anti-amyloid and anti-inflammatory therapies.

Research still continues to produce good studies implicating a peripheral source of immu-

nological and inflammatory mediators of disease. Of particular interest in this regard is a 
series of studies using a parabiotic model of AD pathogenesis. Villeda and colleagues dem-

onstrated that connecting the circulatory systems of old and young mice could alter cogni-

tive function in both groups, but in opposite directions [44]. For example, blood transferred 

from old to young mice reduced synaptic plasticity and neurogenesis and thus decreased 

spatial learning and memory and fear conditioning. In addition, the authors were able to 

isolate several chemokine differences between the two groups of mice (specifically CCL11) 
and when injected intraperitoneal or into the dentate gyrus of young mice, a similar decrease 

in cognitive function ensued. Conversely, and further proof of concept, the same group then 
exposed older mice to young blood and found a reversal of the effects seen in their previous 
study (i.e. increased dendritic spine density, stabilization of synaptic plasticity, and reversal 

of age-related cognitive dysfunction) [45]. This positive regulation also seems to be medi-

ated by remodeling of the cerebrovasculature, which ultimately increases blood flow [46] and 

additionally lends credence to vasculopathic origins of neurodegenerative diseases.

Preclinical studies of this possible therapeutic modality in AD mouse models are ongoing and 

have so far shown some promise. For example, aged mice harboring an APP mutation that 

underwent heterochronic parabiosis to young wild-type mice or injection of young plasma 

showed a complete restoration of markers of synaptic function compared to old APP isochronic 
parabiotic mice [47]. Important to the overarching theme of this chapter is that these effects 
were independent of changes in amyloid between the groups, suggesting Aβ is not involved 
to the degree that the field often perpetuates. However, results of cognitive and behavioral 
testing were not as impressive suggesting more work will need to be done to determine the 
specific factors involved in the synaptic changes and thus the efficacy of this treatment option.

Another interesting set of data that supports a peripheral cause for AD comes out of the 

field of sepsis and critical care. Sepsis is an exacerbated and uncontrolled peripheral inflam-

matory response to an infectious agent via the release of proinflammatory cytokines such 
as IL-1 and TNF-alpha as well as complement proteins. Although sepsis is an acute event, 
it could be an enlightening lens through which to view the link between peripheral inflam-

mation and cognitive dysfunction. For example, one study compared relatively young ICU 
patients (mean age 55) with and without sepsis and found that those who had survived 

sepsis 6 to 24 months prior demonstrated cognitive dysfunction equivalent to mild cognitive 

impairment on a battery of neuropsychological tests [48]. Additionally, volumetric magnetic 
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resonance imaging showed reduction in hippocampal volume in sepsis patients compared 

to nonsepsis patients, but no evidence of vasculopathy. Confounding factors such as depres-

sion, systemic infection that is not sepsis and quality of life were all controlled for. This was 

corroborated by a separate group that showed a decrease in whole brain volumes at least 

3 months after sepsis, which was associated with long-term cognitive impairment at least 

12 months post sepsis [49]. Another study in older individuals (mean age 77) demonstrated 

that patients with sepsis 3 years prior were three times more likely to become cognitively 
impaired compared to nonsepsis patients [50]. These data suggest that cognitive impair-

ment persists several months to years after a peripheral blood insult, although it would be 

interesting to follow these patients even further, even to autopsy. Even studies looking at 
nonsepsis patients, systemic infections show that an increased infectious burden with com-

mon pathogens (including bacteria such as Chlamydia pneumoniae and Helicobacter pylori and 

viruses such as cytomegalovirus and herpes simplex viruses 1 and 2) conferred a higher risk 
of memory decline that is independent of vascular risk factors [51].

More recent studies have tried to delineate some of the molecular and cellular mechanisms of 

sepsis-induced cognitive decline, and many are unsurprisingly similar to those proposed for 

the etiology of AD. One very interesting study compared the neuropathology of a rat model 

of sepsis-associated encephalopathy to that of deceased patients with sepsis and found two 

patterns of brain damage: diffuse axonal injury and ischemic damage [52]. Pathologically, 

human sepsis specimens demonstrated Aβ-positive plaques and neurofibrillary tangles, 
which corresponded to increased levels of βAPP and altered axonal morphology in the rat 
model. Both pathological hallmarks were absent in control specimens of both humans and 
rats. Furthermore, MRI was able to demonstrate either diffuse axonal injury or ischemic brain 
injury in 9 of the 13 sepsis patients, although several of the patients were of advanced age 

making it difficult to determine if these lesions are truly a result of sepsis or a separate under-

lying pathology. However, this is a unique study, and larger numbers of patients with more 

quantitation would be of great value for future clinical management. This may be prudent 

sooner rather than later as a recent preclinical study has shown that statins may be beneficial 
in preventing this cognitive decline in mice with experimental sepsis-associated encephalopa-

thy [53]. The authors showed that this cognitive protection (not necessarily prevention of 

death from sepsis) was due to reduction in peripheral and brain proinflammatory cytokines, 
oxidative stress, and even microglial activation, in addition to increased capillary density and 

subsequent increase in blood flow. These results coincide nicely with findings demonstrated 
in clinical studies, as discussed above.

4.2. Diabetes mellitus: the effect of peripheral blood glucose

To have a discussion linking peripheral inflammation and other peripheral stressors to brain 
disease, one must discuss the effect of diet and exercise on neuronal homeostasis. Just as AD 

has become an epidemic in the aging population, there is an increasing prevalence of obesity 

and type 2 diabetes mellitus (T2DM). T2DM is related to chronically elevated blood glucose. 

Both T2DM and metabolic syndrome are highly associated with aberrant insulin signaling. 
The association of AD with impaired insulin signaling suggests that a similar pathological 

pathway may be at play here.
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Epidemiologic and basic science research has found a shared link between the pathophysiol-
ogy of AD and T2DM. This is a difficult association to make since both conditions are common 
in aging. However, several key animal and human studies have shown that the connection 
may be deeper than just that of aging. Some have even suggested identifying Alzheimer’s 
disease as type 3 diabetes mellitus.

Chronically elevated glucose levels are a known risk factor for dementia and Alzheimer’s dis-

ease in individuals with and without a diagnosis of diabetes [54]. This literature highlights the 

various deleterious consequences of chronically elevated glucose on the aging brain. A 2015 

study compared the brains of individuals with T2DM and those without T2DM to identify 

any possible effects on the brain. The brains of individuals with T2DM was associated with 
higher levels of total tau and phosphorylated tau in the CSF, suggesting an increased level of 
neuronal damage in the brain, although no significant association was made with regards to 
the brain Aβ load. The study concluded that T2DM may promote neurodegeneration by pro-

moting tau hyperphosphorylation [55]. As with all studies between two separate conditions, 

we should be cautious if these types of studies demonstrate correlation or in fact a causation. 

More research is needed to support either conclusion.

On a mechanistic level, the insulin receptor and the insulin-like growth factor-1 (IGF-1) recep-

tor have been found to be impaired in AD neurons, suggesting that CNS cells in persons with 
AD may be resistant to insulin signaling. One possible mechanism for the impaired signal-

ing pathway is due to aberrant phosphorylation of Ser/Thr sites, IGF-1, and insulin receptor 
resistance. The increased levels of phosphorylation sites were found primarily in neurons 

with neurofibrillary tangles of AD brains [56]. A disruption of insulin signaling to the brain 

would have significant consequences to the brain as it could lead to a compromised source of 
energy. It would impair important neurotrophic and metabolic brain functions and contribute 

to AD pathology.

Switching gears from causes to treatment, recent studies have shown an interesting connec-

tion between therapeutic targets of T2DM and AD. Medications such as glucagon-like pep-

tide-1 and glucose-dependent insulinotropic polypeptide that have shown to improve glucose 

control in patients with diabetes also show evidence of memory improvement in mice models 

of Alzheimer’s disease. Amyloid plaque load, neuroinflammation, and oxidative stress have 
been shown to be reduced by these anti-diabetic drugs [57]. The results are still early, and it 

remains unclear if these treatments will demonstrate similar results in humans. Further clini-

cal research and potential clinical trials will bring us one step closer to understanding the link 
between diabetes and Alzheimer’s disease. Importantly, it may open doors for new, innova-

tive approaches to treatment of AD and other forms of dementia.

The benefit of regular physical activity and exercise is clearly recognized in the neurological 
wellbeing of a population. Multiple cohort studies have found that high physical activity is 

associated with a reduced risk of AD and dementia [58–60]. The connection of T2DM and 

obesity with AD is a compelling reason to explore the effects of exercise since there is robust 
evidence that demonstrates the efficacy of exercise on reducing the progression of insulin 
resistance. Physical activity and exercise stimulates release of particular neurotransmitters 
and growth factors, specifically brain-derived neurotrophic factor (BDNF) and insulin-like 
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growth factor (IGF-1), and increases circulating testosterone levels. All of these effects have 
been shown to reduce the levels of Aβ in the brain, both by decreased production and 
increased clearance in the brain. The reduced Aβ was even found in individuals that carried 
the ApoE4 allele, which put them at greater risk for Alzheimer’s disease [61]. These findings 
suggest the observation that Alzheimer’s disease is linked to metabolism and the body’s 
hormonal signaling system. The Aβ found in AD may be the result, but not the true culprit 
of the condition.

4.3. The microbiome

The human microbiome—the complement of microbial species (or microbial genes) and com-

munities inhabiting the human organism—has been the subject of intense research interest 

in the context of brain development and dysfunction [62]. The influence of microflora on 
external and internal cues in brain development has been known for some time through pop-

ulation-based studies. As part of normal physiology, crosstalk between the gut and the brain 
plays a critical role in modulating brain homeostasis and behavior. Several neurological and 
psychiatric disorders (e.g. multiple sclerosis, Parkinson’s disease, spinal cord injury, autism, 
and Alzheimer’s disease) have been associated with dysbiosis or the disruption of normal 

gut flora. For example, children with late onset autism were found to have significantly more 
and different species of Clostridium in their fecal flora than control subjects without autism 
[63], and oral vancomycin improved several neurocognitive parameters when given to late-

onset autistic children [64]. Experimental studies in rodents have shown that germ-free (GF) 

mice have increased serotonin, norepinephrine, and dopamine turnover and a decrease in 

their receptor levels, as well as reduced anxiety [65, 66]. Interestingly, changes to the micro-

flora due to high-fat diet during pregnancy can have detrimental effects on the fetus when 
compared to normal chow diet [67]. Maternal obesity seems to also correlate with changes 

to the microflora (i.e. increase in Bacteroides and Staphylococcus) [68], which may predispose 

the mother to neurological disease and increase the risk of future neurodegeneration in her 
offspring. Additionally, gut bacterial infection early in life can alter memory formation in the 
young [69] and later in life, especially after a subsequent inflammatory insult [70].

At the cellular level of brain development, the resident microflora can alter the development 
and thus the permeability of the BBB. In GF mothers, BBB permeability was increased in 
the fetus [71]. Mice born to GF mothers demonstrated decreased BBB integrity beginning in 

utero with decreased levels of tight junction proteins in the hippocampus, frontal cortex, and 

striatum. Interestingly, pericyte coverage and vascular density were not altered in this model, 

but the authors did not investigate the role that GF status had on astrocyte physiology, which 

are an important cellular component of the BBB. The mechanism of decreased tight junction 
components was due to the lack of short-chain fatty acids (SCFAs) normally produced by 
commensal organisms. Considering the importance of the BBB in keeping neurotoxic mol-
ecules out of the brain parenchyma, this developmental flaw makes the brain vulnerable to a 
number of insults from the periphery increasing neuronal stress.

Of particular interest here is that SCFAs produced by bacteria in the gut also have the potential 
to inhibit Aβ aggregation in cell culture [72] and guide the proper development of microglial 
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cells, as discussed later. At the genetic level, Apolipoprotein E (ApoE)—one of the most impor-

tant risk factors in AD—may play a role in selecting for a microflora more prone to generating 
SCFAs. For example, 5xFAD mice harboring the ApoE2 allele, which is considered protec-

tive, contained higher numbers of the Ruminococcaceae family of bacteria, which are known to 
produce high levels of SCFAs [73]. However, ApoE4 mice (the best characterized genetic risk 
factor for AD) contained higher levels of Lactobacillaceae, which are considered a pro-health 

microflora, making these results difficult to interpret, but may highlight the importance of 
SCFAs in CNS protection. As might be expected, the neutral ApoE3 mice contained a mixture 
of both families of bacteria. These results were independent of 5xFAD status.

An altered microbiome may be a source of proinflammatory molecules that are toxic to the 
brain. For example, in humans, it has recently been demonstrated that elderly patients with 

higher levels of Aβ based on 18F-Florbetapir positron emission tomography (PET) contained 

higher levels of proinflammatory microbiota (e.g. Escherichia and Shigella), as well as proin-

flammatory cytokines, while also containing lower levels of anti-inflammatory microbiota 
(e.g. Eubacterium rectale, Eubacterium hallii, and Bacteroides fragilis) [74]. Interestingly, even cog-

nitively impaired individuals without PET evidence of amyloidosis showed a similar increase 

in proinflammatory microbiota and peripheral cytokines and decreased anti-inflammatory 
microbiota, although the effect was smaller. This corroborated findings in the first PET study 
show that periodontal disease was associated with amyloidosis in AD-specific brain regions. 
However, the authors did not characterize the clinical characteristics of the study subjects, so 

it is difficult to know if these findings are relevant to cognitive decline. In addition, peripheral 
inflammation was implicated in the increased rate of cognitive decline in a cohort of mild to 
moderate AD patients who had periodontitis [75], which was not seen in patients without 

it, although the relative changes were not that robust. However, other studies have shown a 

positive relationship between the levels of TNF-α and immunoglobulins to periodontal bac-

teria in AD patients with periodontal disease that was absent in normal controls [76]. In fact, 

serum immunoglobulins to a wide variety of periodontal pathogens were present in patients 

before they converted to clinical AD [77], implying an increased risk of AD due to peripheral 
inflammation mediated by oral microflora.

Experimental and preclinical models of AD have also shown that changes to the microbiome 

have an effect on the progression of disease pathology. In the first study to show this, the 
authors used a well-characterized AD mouse model harboring the Swedish APP mutation 
and the PS1 tau mutation [78]. The experimental group (ABX) of these mice was given a cock-

tail of antibiotics after postnatal day 14 for the entirety of their lifespan. As might be expected, 

the ABX group had a distinctly different microbial profile than the control group, but also 
demonstrated a lower Aβ plaque burden and smaller plaque size. Additionally, insoluble 
levels of Aβ40 and Aβ42 were decreased, but soluble forms of these two peptides were actu-

ally increased, although it is not clear as to why this was. A subsequent study in the same 

model of AD, but with a different method of GF group generation, obtained similar findings 
of reduced Aβ plaque burden in GF-APP mice [79]. Interestingly, when the authors cross-

colonized the GF-APP mice with the microbiota from the conventionally raised APP-PS1 
group, the Aβ levels increased in the GF-APP group. Conversely, colonization of the GF-APP 
group with microbiota from wild-type mice (a separate group of mice conventionally raised 
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and without the APP-PS1 mutations) contained less Aβ pathology than conventionally raised 
APP-PS1 mice. This last set of data is congruent with human findings that the specific micro-

bial populations involved in AD pathogenesis are more important than simply whether 

microorganisms are present or not. The authors attempted to demonstrate this idea by look-

ing at the differences in microbial populations between conventionally raised APP-PS1 mice 
and GF-APP mice. However, because the variable being changed in this circumstance is the 

APP status, their results would suggest that APP mutation effects microbial diversity and not 
necessarily that microbial diversity effects Aβ generation. In other words, any mouse model 
starting with a mutation that increases Aβ levels in the first place has already conceded that 
an overproduction of Aβ is the cause of pathology in that model, which in humans has shown 
to be inaccurate for 95% of AD cases (i.e. the sporadic, non-Mendelian cases make up the vast 
majority of human cases). For now, thought, the data suggests that microbial products and 

the immune response to microbiota contribute to specific pathological outcomes implicated 
in AD—namely APP metabolism. Unfortunately, the experimental studies described in the 

previous paragraph lack a clinical surrogate. For example, the studies by Minter et al. and 
Harach et al. did not characterize neuronal degeneration or cognitive decline in their identical 

models, so we cannot know if there was any clinically relevant change to neuronal integrity. It 
is well known within the field of AD that neuronal degeneration is a better predictor of cogni-
tive decline than is Aβ pathology.

One mechanism that may link the microflora with neurodegeneration involves the immune 
cells of the brain. As one might expect of a peripherally derived immune cell, a complex 

gut microbiota promotes microglial development, while the lack of rich microbiota leads to 
impaired microglial maturation, differentiation, and function. In the first of its kind, one study 
compared the immune responses and its association within the brain by studying GF mouse 

models [80]. Moreover, the same study found that the reintroduction of complex microbiota 

may largely, but not entirely, restore microglia. Interestingly, the authors of the study suggest 

that the wide complexity of the microbiota, not the bacterial load, is associated with restored 

microglial function.

This seems like a good time to revisit another interpretation of the amyloid cascade hypoth-

esis put forth by Bishop and Robinson over two decades ago and, unfortunately, largely for-

gotten. They named it the bioflocculant hypothesis of AD [81]. It is an alternative way to look 
at the production of Aβ, not as much as the start of a pathological cascade, but as a way to 

halt the sequence of events beginning with a previous injury or stressor that leads to neurode-

generation. It views Aβ production as a response to exogenous insults since Aβ is produced 
after a variety of brain injuries [82–85]. They compare the production of Aβ, and subsequent 
aggregation into plaques, to a web constructed to trap any offending agents that may enter 
the brain in a pathological state. They convincingly describe a situation in which neurons may 

use the sticky properties of Aβ as a way to contain pathogens, toxic metals, or other products 
of blood in a trap much like a spider’s web. It is then easy to imagine microglia as the spider 
in this scenario engulfing anything trapped within the web and disposing of it. We would add 
to this list of functions, a means to plug up holes in the microvasculature as might be seen 
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in the microbleeds of cerebral amyloid angiopathy. In support of their hypothesis, a recent 

paper demonstrated Aβ’s role in trapping infiltrating bacteria (specifically Salmonella typhi 

and Candida albicans), which coaggregated in 5xFAD mice by binding to the bacterial cell wall 

via heparin-binding domains [86].

One could easily imagine such a scenario playing out in the etiology of AD starting even with 

risk factors present in the early years of life: (1) early embryonic changes to host microbiota 
may predispose a person to a leaky BBB and all of the consequences of that derangement later 
in life (Figure 1a). (2) BBB malfunction may either contribute to or coincide with the microbi-
ota-dependent alterations to networks responsible for memory formation—AD is a disease of 
memory formation after all. (3) Although in its beginning phases of understanding, the SCFAs 
that are responsible for maintaining components of BBB tight junctions during development 
seem to also decrease the toxic effects of the Aβ peptide later in life. (4) The brain’s immune 
cells, if not exposed to the appropriate milieu of microorganisms (and their metabolites such 

as SCFAs) during development, may be unable to protect the brain against invading patho-

gens in adulthood and/or contribute directly to inappropriate neuronal network remodeling 
in development and disease (Figure 1a, b). (5) Changes to the normal microflora during adult-
hood, either through systemic infection (e.g. sepsis, periodontal disease, or any other form 

of peripheral increase in the proinflammatory state) or antibiotic use, can increase the risk 
of conversion to AD, especially in the elderly (Figure 1c). (6) Lastly, all of these steps leading 
to neuronal demise are also dependent on the metabolic perturbations seen in disorders of 

glucose control and obesity (Figure 1d).

4.4. Role of probiotics and antibiotics

The gut microbiota-brain axis is still insufficiently understood. There is a need for more 
research to better identify the unique combination of microbiota that is implicated in the dis-

ease process. The logical next step would be the development of antibiotic or probiotic treat-

ments with the goal of reducing the disease burden.

An important study to answer the question of the microflora’s influence on AD pathology 
and cognitive function did so by feeding an AD mouse model a probiotic formulation rather 

than depleting them of bacteria [87]. The study authors found that cognitive dysfunction was 

ameliorated with the use of probiotics and this was dependent on reduction in peripheral 

proinflammatory cytokines, increased anti-inflammatory cytokines, and replenishment of 
autophagic and proteasomal function within neurons. These are two important ways for the 

body to regulate itself and remove old or damaged proteins. Aberrant proteasome function 

then leads to neurotoxicity and favors the development of misfolded proteins in the brain 

[88, 89]. In addition, several studies presented at this year’s annual Neuroscience meeting 

using probiotics containing Lactobacilli and Bifidobacteria improved memory in several mouse 

models of AD [90]. Although it is early, these data lend credence to the importance of correct-

ing the composition of the microflora after use of antibiotics and the possible importance of 
taking a probiotic to maintain both brain and overall health.
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Figure 1. Summary figure of proposed involvement of the microbiome in brain development and dysfunction. (a) 

Short-chain fatty acids (SCFAs) produced as bacterial metabolites by anti-inflammatory bacteria exert their influence 
both on the development of the blood-brain barrier (BBB) and on the development of microglia. Dysfunction of either 
of these processes may lead to neurodevelopmental disorders early in life or neurodegenerative disorders in adults. 

On the other hand, proinflammatory bacteria are recognized by the immune system as such during a state of sepsis, 
which elicits the overproduction of proinflammatory cytokines. These effectors may (b) activate microglia in adults 

leading to aberrant synaptic pruning and primary phagocytosis of live neurons or (c) have a direct effect on memory 
forming networks during development as well as memory formation and/or retrieval in the adult. development as 
well as memory formation and/or retrieval in the adult. (d)  Chronically elevated peripheral glucose levels may lead to 
insulin resistance and aberrant phosphorylation of the insulin receptor and concomitant hyperphosphorylation of the 

microtubule-binding protein tau, which is a hallmark pathology of the AD brain and correlates more specifically with 
the progression of neurodegeneration.
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5. Conclusion

In this chapter, we described several concurrent mechanisms of AD pathogenesis, including 

the effects of systemic inflammation, metabolic dysfunction, and the gut microbiome. Since 
there seems to be no cure for AD and current established and experimental therapies are 

suboptimal at best, we suggest that more research should focus on minimizing peripheral 

inflammation and maintaining an anti-inflammatory complement of microbiota as early as 
possible. Targeting these two entities appears to positively affect the plethora of mechanisms 
implicated in AD (i.e. Aβ aggregation, tau hyperphosphorylation, microglial and complement 
activation, and BBB breakdown). There is reason to believe that AD arises from a manifesta-

tion of multiple hits within and outside of the central nervous system. A multi-system strat-

egy will thus be most efficacious for prevention and treatment.
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