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Abstract

Vascular smooth muscle cells (VSMCs) are the stromal cells of the vascular wall and are
responsible for regulating arterial tone, blood pressure, and blood supply of the tissues.
VSMCs display diversity in function and phenotype depending on their location within
the arterial tree (large conduit vs. small resistance vessels), their embryologic origin, and
their organ-dependent microenvironment. The heterogeneity of VSMCs is regulated by
multiple mechanisms including intracellular signaling and changes in the VSMC micro-
environment. Genetic disorders and extrinsic stimuli-induced dysfunction in VSMCs are
associated with age-related vascular pathogenesis and vascular diseases, and thus are
considered as a potential therapeutic target.
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1. Introduction

Vascular smooth muscle cells (VSMCs) are the main cellular components of the normal blood

vessel walls, interweaving with elastic fiber layers to form the vascular media that provides

structural integrity. VSMCs play an important role in the regulation of blood pressure and

blood distribution to various tissues of the body through dynamic contraction and relaxation

in response to vasoactive stimuli such as hormones, metabolites and neurotransmitters. Mor-

phological and biochemical studies have revealed that two distinct phenotypes of VSMCs co-

exist in the vessel wall, which are the differentiated contractile and the synthetic proliferative

phenotypes. These two phenotypes of VSMCs are dictated by their environmental and func-

tional requirements and also reflect differing patterns of gene expression [1–3].
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The contractile VSMCs are characterized by specific contractile proteins, ion channels, and

cellular surface receptors that regulate the contractile process. Synthetic VSMCs, also called

secretory VSMCs, are characterized by significant proliferation and migration activity, such as

the production of a large amount of extracellular matrix during development, in response to

the physiological changes (such as long-term exercise and pregnancy) and pathological injury

(such as under the conditions of inflammation, hypertension, diabetes) [4]. It has been shown

that the different phenotypes of VSMCs can reversibly switch, but a nonreversible change from

the contractile to the synthetic phenotype is a prerequisite for the progression of vascular

disease [4]. This chapter will summarize the current state of our knowledge on the origin and

the ultrastructure of the VSMCs, and the mechanisms underlying the change in the VSMC

phenotypic switch. We will also outline the current progress on the role of the VSMC dysfunc-

tion in the development of the vascular diseases and the therapeutic potential of the manipu-

lation of the VSMC gene expression in these diseases.

2. Origin of VSMCs

Heterogeneity within the blood vessels is critical to cardiovascular function. In order to meet

distinct physiological requirements, different regions of the vasculature exhibit different phys-

ical properties. Early studies have shown that the VSMCs of the proximal large vessels (which

comprises the arch of the aorta, the common carotids, the common pulmonary trunk, and the

brachiocephalic artery) are derived from the neural crest (NC) (ectomesenchymal smooth

muscle) [5, 6], while VMSCs of the distal vessels (which includes the abdominal aorta and the

right and left carotid arteries) are derived from the mesenchyme [7, 8]. At the region of the

interface of these vessels, VSMCs are derived frommixed origins, both of the ectomesenchymal

and mesenchymal.

There is abundant evidences showing that the embryonic origin of the VSMCs plays an

important role in vascular biology and in the response to the stimuli response [9, 10]. Firstly,

the different embryonic origins of VSMCs reflect different gene expression patterns [11].

Secondly, differentiation of VSMCs from embryonic stem cells through NC- or mesoderm-

lineages showed that VSMC characteristics are programmed largely based on embryonic

origin [12]. These distinct embryonic origin differences also converge in the adult vessels [13].

As noted earlier, the VSMCs of the proximal aorta arise from two distinct embryonic origins:

the NC and the somatic mesoderm [14, 15]. This juxtaposition of the VSMCs from different

embryonic origins in the aorta contributes to the specific ability of the aorta to respond to high

local pressure/force loading and various chemical stimulation as well as neuronal–hormonal–

regulation to meet the physiological requirement of circulation. In addition, VSMCs from

different embryonic origins may also be responsible for some specific pathogenesis of vascular

diseases. For example, studies have shown that when vessels that are prone to atherosclerosis

are placed in a vascular region that does not typically develop atherosclerosis, they retain their

predisposition to disease [16]. This evidence suggests that individual VSMC characteristics

may be linked to embryonic origin. However, definitive evidence that embryonic origin dic-

tates vascular phenotype has not been fully elucidated [17].
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While the embryonic origins of many VSMC populations are known, the exact nature of the

VSMC precursor remains elusive. It has been indicated that VSMC progenitors may arise from

distinct embryonic sources including the splanchnic mesoderm [18], somatic mesoderm [15,

19], neural crest (NC) [14, 20], mesothelial [21], and other embryonic cell types [22]. In the

aorta, splanchnic mesodermal cells are first recruited and differentiate into VSMCs. Before the

splanchnic mesoderm cells completely encircle the dorsal aorta, the cells are displaced by the

somatic mesodermal cells. Differentiation of these somatic mesodermal cells begins in the

ventral anterior end of the vessel. Differentiation then proceeds around the circumference of

the vessel and down the length of the aorta toward the diaphragm. Meanwhile, the cardiac NC

migrates down the pharyngeal arches to invade the aortic sac. A subset of the cardiac NC

participates in septation of the truncus arteriosus into the aortic arch and the pulmonary trunk

[23]. The rest of the cardiac NC remains in the pharyngeal arch arteries and become the VSMCs

of the aortic arch and the arteries of the head and neck [20]. The border that forms between the

NC-derived VSMCs of the ascending aortic arch (aAo) and mesoderm-derived VSMCs of the

descending aorta (dAo) is maintained throughout development and into adulthood [14, 20].

Once cells encircle the aorta and differentiate into VSMCs, they undergo a closely regulated

process of layer formation within the media.

3. The structure and ultrastructure of VSMCs

Under physiological conditions, VSMCs mostly express the contractile phenotype with a

spindle-like shape with a length of 50–200 μm, a width of 2–8 μm. The nucleus is located in

the center surrounded by smooth endoplasmic reticulum and mitochondria. The cytoplasm is

rich in thick and thin myofilaments, with every thick myofilament surrounded by 15 thin

myofilaments. The thick myofilaments and thin myofilaments are aggregated into myofila-

ment units, also known as systolic units. The intracellular thin filaments are connected by

dense bodies. The adjacent dense bodies are connected by intermediate filaments to form a

smooth muscle network. Thin filaments and cell membranes are connected by dense patches.

Smooth muscle cells are surrounded by reticulated fibrous connective tissue, including extra-

cellular matrix secreted by VSMCs, which interlaces individual cells into clusters to be func-

tional units [24].

3.1. The thick filaments

The diameter of thick filaments is 8–16 nm, which is a myosin dimer. The myosin superfamily

is subdivided into 18 categories based on their conserved motor domain and systemic devel-

opment. Type II is the constituent protein of thick filaments found in multiple subtypes of

striated muscle, myocardium and smooth muscle. The smooth muscle subtype is encoded by

the same gene, with selective splicing producing myosin monomer SMA and SMB [25]. The

SMB type is more expressed in phasic contractile smooth muscle such as in the bladder and

smooth muscle of the small intestine [26]. The SMA type is more abundant in tensile contractile

smooth muscle. Smooth muscle myosin has a molecular weight of about 50 kDa, containing
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two heavy chains and four light chains. Each heavy chain has a carboxyl-terminal tail and an

amino-terminal head, containing approximately 2000 amino acids, approximately 20 kDa. The

tails of the two heavy chains are wound in the form of α-crimping spirals to form the skeleton

of the thick filaments [25]. The heads of the two heavy chains are separated, face the thin

filaments, and form part of the transverse bridge. Myosin is hydrolyzed by trypsin to produce

about 350 kDa heavy meromyosin and 150 kDa light meromyosin. Hydrolyzed myosin can be

produced by proteases such as papain to generate fragment S1 and S2. The fragment S2 is a

helical structure. The fragment S1 is the head of myosin and can be divided into a motor domain

and lever arm. The motor domain contains an actin binding site and a nucleotide binding site

[27]. The lever arm contains binding site of convert domain, myosin light chain 17 (MLC17) of

17 kDa, and myosin light chain 20 (MLC 20) of 20 kDa. The torsion zone is a site where relative

rotation occurs between the motor domain and lever arm to relatively slide actin and myosin.

MLCl7 is located near the torsion zone and related to the structural stability of the lever arm.

MLC20 is located near the junction of S1 and S2 [27] .

3.2. The thin filaments

Thin filaments, which consists of acting, are 5–8 nm in diameter and 1 µm in average length.

Actin is the most abundant protein in eukaryotic cells and accounts for 20% of total protein

weight in muscular cells. Actin monomers, which called globular actin (G-actin), are dumbbell-

shaped. Microfilaments are formed by the conglomeration of actin monomers into large

multimers, which are called fibrous actin (F-actin) [28]. Monomeric actin consists of 375 amino

acid residues with a molecular weight of 42 kDa which has three binding sites, one for ATP

binding and two for myosin binding. Actin maintains its polymer in a dynamic, polar state by

hydrolyzing ATP. Some proteins are closely related to the smooth muscle filament’s function

including tropomyosin, caldesmon and calponin [17, 29]. VSMCs expressed at least five tropo-

myosin subtypes with subtype α displaying the highest abundance. By regulating the binding

of other proteins to actin filaments, tropomyosin affects the interaction between actin and

myosin and multimerization of actin [30]. The calponin protein is a 34 kDa-sized protein that

is present in smooth muscle and non-muscle tissue, and is primarily calponin-l in smooth

muscle, which may reduce muscle contraction by inhibiting the myosin ATP enzyme [31].

3.3. The skeleton protein

The skeleton protein plays an important role in maintaining cellular shape, intracellular organ-

elle location, intracellular vesicle trafficking, cell migration, and division [32]. Like all eukary-

otic cells, VSMCs mainly contain three skeleton proteins: microfilaments, intermediate

filaments and microtubules. The microfilament has a diameter of about 4 nm and consists of

linear polymerization of actin. The filaments are connected to each other through dense bodies

to form a network structure and are connected to the cell membrane through dense spots.

There are four types of actin isoforms in smooth muscle: α-smooth muscle actin, β-non-

muscular actin, γ-smooth muscle actin and γ-cytoplasmic actin, all of which are distinct gene

products [33, 34]. In VSMC, α- smooth muscle actin is the main subtype interacting with

myosin to produce contraction. Approximately 60% of large arterial vascular actin is α-smooth
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muscle type, 20% is β-non-muscle actin and the remainder is γ-smooth muscle and γ-cytoplas-

mic actin. Γ-smooth muscle actin is mainly confined to the gastrointestinal muscles. Studies

have shown that γ-cytoplasmic actin is confined to the cell cortex, α-actin serpentine longitu-

dinal full-length cells, and β-actin borders dense plaques. The diameter of the intermediate

filament is about 10 nm, which is involved in maintaining the three-dimensional structure of

the cell, maintaining the proper position of the organelle in the cytoplasm, and participating in

the transfer of the membrane receptor signal to the nucleus [35]. The intermediate filaments of

VSMC are in the shape of the crest, and the periphery is often accompanied by a dense body

[36]. It is abundantly expressed during development and decreased with cell maturation. The

intermediate filaments of differentiated vascular smooth muscle are mainly composed of

vimentin and desmin [37, 38]. Vimentin, which is generally found in cells of mesenchymal

origin, is the major intermediate filament types of aortic smooth muscle [37]. Skeletal proteins

make the different components of the VSMCs an organic three-dimensional structure, which is

a dynamic process that produces adaptive changes based on changes in cell function.

3.4. The sarcoplasmic reticulum

The sarcoplasmic reticulum, also known as sarcoplasmic reticulum, is a specialized smooth

endoplasmic reticulum in muscle cells; a phospholipid bilayer forming a capsular network,

which stores a large amount of Ca2+ [39]. At rest, the sarco/endoplasmic reticulum Ca2 + �

ATPase (SERCA) transport the cytosolic Ca2+ into the sarcoplasmic reticulum through hydro-

lyzing ATP. The inositol (1,4,5)-triphosphate receptor (IP3R) and ryanodine receptor (RyR)

channel release Ca2+ into the cytoplasm when excited and thus play an important role in the

regulation of contraction and relaxation [40, 41]. SERCA is a type of sarcoplasmic reticulum

transmembrane Ca2+ transport ATP enzyme, which can transport two Ca2+ per one ATP

hydrolyzation. Three major subtypes are known: SERCA1, SERCA2 and SERCA3. SERCA2a

is presented in the myocardium, skeletal muscle and multiple smooth muscle cells. The sarco-

plasmic reticulum releases calcium ions to the cytoplasm through the IP3R and RyR Ca2+

channels. IP3R is a membrane glycoprotein complex composed of inositol trisphosphate-

activated Ca2+ channels. It consists of four subunits with a molecular weight of approximately

300 kDa. The ratio of IP3R and RyR in vascular smooth muscle is 3:1 to 4:1. The RyR can cluster

in the sarcoplasmic reticulum near the cellular membrane, so that the local release of Ca2+ is at

a high concentration [40].

4. The VSMC phenotypes and their regulations

4.1. The phenotypes of VSMCs

Although the primary function of VSMCs in the adult animal and human is contraction,

VSMCs maintain considerable plasticity throughout life and can exhibit a phenotypic switch

during normal development, the repair of vascular injury, and in disease states [42, 43]. During

development, VSMCs exhibit a secretory phenotype that is distinct from the spindle-shaped

mature, contractile phenotype present during physiological conditions in the adult. Secretory
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VSMCs contain a large number of organelles involved in protein synthesis, whereas the main

component of contractile smooth muscle cells is myofilaments.

Secretory VSMCs show high proliferation rates, apparent migration activity and strong extra-

cellular matrix synthesis [42]. These extracellular matrixes include collagen, elastin, proteogly-

can, cadherin, and integrin. At the developmental stage, VSMCs form a large number of gap

junctions with endothelial cells, a process that is critical for vascular maturation [44]. In

contrast, the contractile phenotype of VSMCs is very low in proliferation and the migration

activity and synthesis of extracellular matrix are also low. The expression of some marker

proteins is different in different phenotypic smooth muscle cells, for example, PDGF-a,

intercellular adhesion molecule 1 (ICAM1), I-caldesmon, osteopontin, matrix Gla protein

(MGP), collagen 1 and connexin43 decrease gradually in the process of VSMC transition from

secretory to contractile type [45, 46]; whereas αl-, β1- and α7 integrins, transcriptional co-

activation factors myocardin, cadherin, α-smooth muscle actin, desmin, smooth muscle pro-

tein 22α (SM22α), carboxypeptidase-like protein, smooth muscle calponin, h-calmodulin bind-

ing protein, aortic preferentially expressed gene1 (APEG1) cysteine-rich protein 2 (CRP2)

gradually increased during VSMC transition from secretory type to contractile type [47–49] .

Importantly, calcium signaling varies between the two phenotypes. Ca2+ signals controlled by

large conductance K+ channels KCa1.1, voltage-gated L-type Ca2+ channels and RyR are asso-

ciated with the transcription of differentiated contractile protein markers while signals con-

trolled by intermediate conductance Ca2+-activated K+ channels (KCa3.1) and TRPC channels

are associated with the transcription of pro-proliferative protein markers [50]. Furthermore,

the expression levels of intracellular Ca2+release channels, Ca2+-activated proteins and pumps

are also altered during VSMC phenotype switching: the synthetic VSMCs lose the RyR3 and

the SERCA2a pump and reciprocally regulate isoforms of the ca2+/calmodulin-dependent

protein kinase II [50]. Changes in calcium signaling molecules as a result of phenotypic

switches reflect changes in the function of the VSMCs as contractility is substituted for prolif-

eration.

Currently, smooth muscle myosin heavy chain (SM-MHC) and smoothelin are two marker

proteins that identify the contractile phenotype of smooth muscle. SM-MHCwas found only in

smooth muscle cells in in vivo studies and was observed only in VSMCs during embryonic

development; its detection sensitivity is high in cultured vascular smooth muscle. Addition-

ally, phenotypic switching of SMCs in response to PDGF BB in vitro, or vascular injury in vivo

has been shown to be associated with a loss of activating histone modifications at gene loci

encoding SMC marker genes, but retention of additional markers such as H3K4 methylation

[51]. It was postulated that epigenetic mechanisms may allow for the “cell lineage memory”

during the reversible phenotypic switching of VSMCs [51].

4.2. The regulation of VSMCs phenotypes

The mature skeletal muscle is terminally differentiated, that is, the its ability to be changed is

limited. However, the mature VSMC has a strong plasticity, with significant and reversible

phenotypic changes occurring when the local environment changes. The VSMCs can quickly

transform from a contractile phenotype to a secretory phenotype in response to injury.
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Significantly, when the injury is repaired and the local environment returns to normal condi-

tion, VSMCs can regain the contractile phenotype. Thus, the regulatory mechanisms have to be

reversible.

Although the molecular mechanisms controlling the VSMCs phenotypes switching have

not been fully understood and the signaling pathways involved under different conditions

may be variant, epigenetic mechanisms have been suggested as a possible explanation of

the reversibility of VSMC switching. For example, microRNA 663 and micro RNA 133 have

been identified as modulators of VSMC phenotypic switching [52, 53]. In addition, it has

been widely-accepted that serum response factor (SRF)-mediated signaling pathways play

an important role in the regulation of VSMC phenotype changes [54]. The SRF belongs to

the MADS box transcription factor superfamily, through which the cis-element CArG box

binding regulates the transcription of smooth muscle marker genes and is closely related to

the phenotype of smooth muscle [54]. SiRNA-mediated SRF suppression affected the

expression of established SRF target genes such as SMA or SM22α and decreased both F-

actin formation and cell migration [54]. The binding state of SRF and myocardin under

normal oxygen conditions promotes the transcription and contraction phenotype of smooth

muscle marker genes. The transcriptional coactivator myocardin and the nuclear transcrip-

tion factor Elk1 competed for the same binding site on the SRF. The binding state of SRF

and myocardin in pulmonary vascular smooth muscle under normal oxygen conditions

promotes the transcription and contraction phenotype of smooth muscle marker genes,

and the expression of myocardin decreases under hypoxia, leading to enhanced binding of

SRF to Elk1 and smooth muscle orientation [55]. Notably, the transcription of smooth

muscle cell markers can also be under epigenetic control [56]. Inhibition of histone acetyl

transferases (HATs) and histone deacetylases (HDACs) decreases the activity of the pro-

moters of SMC marker genes [57].

The expression of myocardin is down-regulated during hypoxia, leading to enhanced binding

of SRF. Elevated PDGF-BB can also promote Elk1 phosphorylation and Elk1-substituted

myocardin binding to SRF through the ras/raf/mek/erk kinase pathway, promoting conversion

to the secretory phenotype [58]. Activation of RhoA is essential for smooth muscle specific

transcriptional up-regulation. RhoA activates multimerization of actin via ROCK and then

promotes the translocation of myocardin-related transcription factor (MRTF) into the nucleus

and binds to SRF, stimulating smooth muscle marker gene transcription and conversion to a

contractile phenotype [59]. Rho-dependent MRTF nuclear translocation is one of the key

regulation mechanisms of smooth muscle cell differentiation.

5. VSMCs dysfunction in vascular pathogenesis and diseases

5.1. Intrinsic VSMC mechanical property and aging-induced aortic stiffness

An increase in vascular stiffness is a common vascular pathogenesis of aging and of aging-

related cardiovascular disease and has been assumed to be caused by molecular changes of the

ECM and the dysfunction of endothelial cells in elastic arteries. It was not until recent years,
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with the use of two unique techniques, atomic force microscopy (AFM) [60] and a

reconstituted tissue model [60], that it was discovered that both the intrinsic mechanisms in

VSMCs and the alterations in VSMC-ECM interaction contribute to the increased aortic stiff-

ness in the old non-human primates [21]. The underlying mechanisms involve the increased

expression and polymerization of α-smooth muscle actin (a stress fiber-specific isoform of

actin for VSMCs), microtubules and myosin light chain kinase (MLCK), and also the increased

expression of adhesion molecule β1-integrin and its binding to fibronectin. It was also

suggested that the oscillatory behavior of VSMC elasticity and adhesion are affected differ-

ently during aging, which may link these events to changes in vascular stiffness. However, the

molecular mechanisms are still not fully understood [61].

5.2. VSMCs and hypertension

Hypertension is one of the most common cardiovascular diseases, which eventually results in

heart, renal failure or stroke. Although most of previous studies focused on the changes in the

ECM and impaired endothelial control [62–64], increasing evidences indicate that VSMCs play

an important role in the development of hypertension. It has been shown that arterial hyper-

tension is accompanied by the proliferation and migration of VSMCs [65, 66]. One of the most

typical features of vascular remodeling in the course of hypertension includes thickening of the

middle layer and intima and the increase of the ratio of wall thickness to lumen. These changes

are mainly found in the small arteries of hypertension, mainly due to hypertrophy and prolif-

eration of VSMCs and the migration of VSMC into the intima. In addition, recent studies

confirmed that the increased intrinsic stiffness of VSMCs from hypertensive aorta contribute

to the aortic stiffening and high blood pressure. The underlying mechanisms are involved in

the upregulation of ROCK-SRF/myocardin and α-smooth muscle actin signaling in the

VSMCs. It is noteworthy that a heterogeneity of mechanical properties in VSMCs between the

large aorta and downstream distal arteries in the hypertensive model was shown, which is

accompanied with a parallel regional difference of the SRF/myocardin signaling pathway.

These observations further support the concept that the different origins of VSCMs plays a

role in the development of hypertension. Furthermore, a most recent study from the same

group also indicate that VSMCs from hypertensive aorta are able to contribute to hypertensive

vessel changes by interrupting synthesis and degradation as well as organization of ECM

through the regulation of activity of lysyl oxidase (LOX) and integrin β1. Importantly,

targeting the stiffening of VSMCs effectively lowered aortic stiffness and blood pressure which

revealed a promising therapeutic potential of anti-hypertension treatment in the future

[28, 59].

5.3. VSMCs and atherosclerosis

Studies have been shown that VSMCs play a complex role in the formation of atherosclerosis,

including increased matrix synthesis, production of multiple proteases, and changes in vascu-

lar contractility, in which the proliferation and apoptosis of VSMCs play a major role in the

process of intima thickening and formation of atherosclerotic plaque [67]. Prior to the devel-

opment of atherosclerosis the VSMCs maintain a stable phenotypical features and showed low
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proliferation. As atherosclerosis developed, the VSMC phenotype changes to a more prolifer-

ative nature, with reduced contraction, increased proteoglycans, but reduced expression of the

typical smooth muscle markers [68–70]. The biological effects of VSMCs were discovered

during the in vitro culturing of these cells and they vary with different subtypes of different

species, such as the spindle-shaped smooth muscle cells (S-SMC), the epithelioid-smooth

muscle cell (E-SMC) and rhomboid- smooth muscle cell (R-SMC) in animal models [71–73].

The S-SMC exhibit features of the contractile phenotype, showing high expression of α-SMA,

desmin, and SM-MHC [74]. The E-SMC and R-SMC, on the other hand, exhibit the synthetic

phenotype that had significantly higher proliferation and migration proficiency. The S-SMC is

more sensitive to vascular contractile factors (including endothelin 1, angiotensin II, etc.) than

E-SMC. Studies on the biological behavior of different smooth muscle subtypes have led to a

deeper understanding of the phenomenon of deposition of smooth muscle cells in the

subendothelial cells during the course of atherosclerosis. As atherosclerotic plaque grow,

apoptosis in mainly macrophages and VSMCs have been detected in the plaques [75]. It has

been suggested that macrophages play a role in inducing the apoptotic process in the VSMCs

which may trigger plaque rupture [76, 77]. Interestingly dying VSMCs are associated with

inflammation as the apoptotic process induce release of cytokines such as IL-1 and IL-1β from

the dying or apoptotic VSMCs [78]. Chronic VSMC apoptosis promotes the progression of

atherosclerosis.

5.4. VSMCs and aortic aneurysm

Aortic aneurysm (AA) is a life-threatening condition where a bulge forms in the aortic wall.

There are abdominal and thoracic AA. The basic structural unit of the aortic wall is the two

layers of elastic fibers clamped by the VSMCs to form a sandwich structure. This structure

allows the blood vessel wall to have a good contractile strength and elasticity. The abnormality

of its composition and function may lead to AA. The development of AA can begin with the

degradation of ECM within the media due to a proteolytic process, which loosens the wall

tension created by the ECM and VSMCs [79]. Mucoid degeneration in the aortic media can

induce the disappearance of VSMCs. Loss of VSMCs inhibits the clearance of proteolytic

enzymes, leading to replacement by vacuoles, proteases, apoptotic cells and modified glycos-

aminoglycans. This state leads to the progression to chronic dilatation and development of

thoracic AA [79]. Like atherosclerosis, phenotypic switching and VSMC apoptosis also influ-

ence the development and progression of AA [80]. VSMCs express NADPH oxidases isoforms,

which then regulates the proliferation migration and apoptosis of the VSMCs [81, 82]. This

implicates that oxidative stress also play an influential role in the development of AA. The

mutations in some cytoskeletal proteins, such as MYH11, is associated with cellular contrac-

tions, may cause AA [83]. The rigidity and function of the cytoskeletal proteins is important to

the function of the VSMCs. In the blood vessel wall of patients with MYH11 mutations, the

axis of the cytoskeleton/membrane integrin-extracellular matrix is disrupted, there is accumu-

lation of proteoglycans, breakage of elastic fibers and reduction in the number of VSMCs. The

typical characteristics of AA include the medial membrane degeneration, abnormal VSMC

arrangement and proliferation of epithelial vasodilatation [79]. In addition to systolic function,

VSMCs are also capable of trans-differentiation and secretion under mechanical and
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biochemical stimuli, such as the secretion of a variety of matrix proteins through the interac-

tion with integrins, G protein-coupled receptors (GPCR) and disks on the cell membrane

surface [84].

6. Pharmacological targets of VSMCs

Since VSMCs play a critical role in the cardiovascular diseases such as aortic stiffening,

hypertension, atherosclerosis and aortic aneurysm, they have become a therapeutic target in

the treatment of these diseases. For example, atorvastatin, one of the most effective drugs for

treating cardiovascular diseases, suppresses tacrolimus-stimulated VSMC proliferation via

down-regulation of β-catenin, ERK1/2, and cyclin B. Tropoelastin is shown to regulate VSMC

phenotypic switch and inhibit VSMC proliferation and migration [22]. Drugs, such as pacli-

taxel and rapamycin which are eluted in the coronary artery stent inhibit the proliferation of

VSMCs and significantly reduces the restenosis rate. In addition, new basic investigation on

the VSMCs in aortic stiffness during aging and hypertension also provides new targets for the

treatment of vascular diseases. For example, two anti-stiffening treatment of VSMC that act

either through the inhibition of ROCK-SRF/myocardin signaling by Rock inhibitor (Y-27632),

or through the inhibition of the SRF/myocardin signaling (CCG-100602) have been shown to

be able to reduce the aortic stiffness and high blood pressure in hypertension. These suggest

that VSMCs can be a promising target of the treatment of hypertension [28, 59]. The successful

preclinical application of these VSMC-targeted interventions underscores the promising pro-

spective of medications targeting VSMC. In fact, Plumericin inhibits proliferation of VSMCs by

blocking STAT3 signaling via S-glutathionylation, highlighting the feasibility of clinical manip-

ulation of VSMCs [85, 86].

7. Conclusions

As summarized in the Figure 1, VSMCs are not only the dominant components of the medial

layer of blood vessels, but also important endocrine cells which secret various signaling factors

promoting the arterial remodeling in the case of pathological stimuli. Multiple factors includ-

ing embryonic origin, regional mechanical load, pathological stimuli and genetic mutations

mediate the gene expression of VSMCs through different signaling pathways which involve

the VSMC membrane receptors, calcium channels, miRNAs, DNA methylation, and histone

modification. This results in the regulation of VSMC phenotypes, the expression of stiffness-

related proteins, and ECM production. These changes subsequently affect VSMCs stiffness,

migration, and proliferation, as well as ECM remodeling, thus, playing a role in normal

vascular physiology and diseases. Although the mechanisms involved in vascular diseases

remain largely unknown, SRF/myocardin mediated signaling pathways have been identified

as a key mechanism within the developmental of vascular diseases through their regulations

on the VSMC stiffness, phenotypic switching and ECM remodeling. Targeting VSMC is a
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promising therapeutic of hypertension, atherosclerosis and aortic dissection/aneurisms and

other related diseases.

8. Future directions

The pathological changes, especially the phenotypic switching of VSMC, are the most impor-

tant mechanisms and characteristics of various cardiovascular diseases, including hyperten-

sion, atherosclerosis and aortic dissection/aneurisms. Medications targeting VSMCs have been

clinically prescribed in the treatment of these diseases. SMC-specific drugs may be achieved

through the different approaches: (1) identifying genes/proteins targets that differentially

regulate VSMC phenotype changes and identifying markers of synthetic phenotype; (2) iden-

tifying genes/proteins that target intrinsic mechanical properties of the VSMCs and developing

inhibitors of the proteins; (3) exploring non-coding RNAs, including microRNA, long- or

short-non-coding RNA and other epigenomic alterations such as DNA methylation and

Figure 1. Summary of the role of VSMCs in normal vascular physiology and in the development of vascular diseases.

Multiple factors including embryonic origin, regional mechanical load, pathological stimuli and genetic mutations medi-

ate the gene expression of VSMCs through different signaling pathways which involves the VSMC membrane receptors,

calcium channels, miRNAs, DNA methylation, and histone modification. This results in the regulation of VSMC pheno-

types, the expression of stiffness-related proteins, and ECM production. These changes subsequently affect VSMCs

stiffness, migration, and proliferation, as well as ECM remodeling, thus, playing a role in vascular normal physiology

and diseases.
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histone regulation that differentially regulates VSMC function; (4) identifying growth factor/

hormones that have differential cellular effects on VSMC; and (5) combined usage of multiple

drugs to achieve distinct functions in ECs and VSMCs.
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