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1. Introduction     

Understanding how people process and recognize faces has been a challenging problem in 
the field of object recognition for a long time. Many approaches have been proposed to 
simulate the human process, in which various adaptive mechanisms are introduced such as 
neural networks, genetic algorithms, and support vector machines (Jain et al., 1999). 
However, an ultimate solution for this is still being pursued. One of the difficulties in the 
face recognition tasks is to enhance the robustness over the spatial and temporal variations 
of human faces. That is, even for the same person, captured images of human faces have full 
of variety due to lighting conditions, emotional expression, wearing glasses, make-up, and 
so forth. And the face features could be changed slowly and sometimes drastically over time 
due to some temporal factors such as growth, aging, and health conditions.  
When building a face recognition system, taking all the above variations into consideration in 
advance is unrealistic and maybe impossible. A remedy for this is to make a recognition 
system evolve so as to make up its misclassification on its own. In order to construct such an 
adaptive face recognition system, so-called incremental learning should be embedded into the 
system because it enables the system to conduct learning and classification on an ongoing 
basis. One challenging problem for this type of learning is to resolve so-called “plasticity and 
stability dilemma” (Carpenter & Grossberg, 1988). Thus, a system is required to improve its 
performance without deteriorating classification accuracy for previously trained face images.  
On the other hand, feature extraction plays an essential role in pattern recognition because 
the extraction of appropriate features results in high generalization performance and fast 
learning. In this sense, incremental learning should be considered not only for a classifier 
but also for the feature extraction part. As far as we know, however, many incremental 
learning algorithms are aiming for classifiers. As for the incremental learning for feature 
extraction, Incremental Principal Component Analysis (IPCA) (e.g., Oja & Karhunen, 1985; 
Sanger, 1989; Weng et al., 2003; Zhao et al., 2006) and Incremental Linear Discriminant 
Analysis (Pang et al., 2005; Weng & Hwang, 2007) have been proposed so far. Hall and 
Martin (1998) proposed a method to update eigen-features (e.g., eigen-faces) incrementally 
based on eigenvalue decomposition. Ozawa et al. (2004) extended this IPCA algorithm such 
that an eigen-axis was augmented based on the accumulation ratio to control the 
dimensionality of an eigenspace easily.  O
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Source: State of the Art in Face Recognition, Book edited by: Dr. Mario I. Chacon M.,  
ISBN -3-902613-42-4, pp. 250, January 2009, I-Tech, Vienna, Austria
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Recently, a prototype face recognition system was developed by the authors (Ozawa et al, 
2005) based on a new learning scheme in which a classifier and the feature extraction part 
were simultaneously learned incrementally. In this system, IPCA was adopted as an online 
feature extraction algorithm, and Resource Allocating Network with Long-Term Memory 
(RAN-LTM) (Kobayashi et al., 2001) was adopted as a classifier model. It was verified that 
the classification accuracy of the above classification system was improved constantly even 
if a small set of training samples were provided at a starting point. To accelerate learning of 
IPCA, we also proposed an extended algorithm called Chunk IPCA (Ozawa et al., 2008) in 
which an eigenspace is updated for a chunk of given training examples by solving a single 
intermediate eigenvalue problem.  
The aim of this chapter is to demonstrate the followings:  
1. how the feature extraction part is evolved by IPCA and Chunk IPCA,  
2. how both feature extraction part and classifier are learned incrementally on an ongoing 

basis,  
3. how an adaptive face recognition system is constructed and how it is effective.  
This chapter is organized as follows. In Section 2, IPCA is first reviewed, and then Section 3 
presents the detailed algorithm of Chunk IPCA. Section 4 explains two neural classifier 
models: Resource Allocating Network (RAN) and its variant model called RAN-LTM. In 
Section 5, an online incremental face recognition system and its information processing are 
described in detail, and we also explain how to reconstruct RAN-LTM when an eigenspace 
model is dynamically updated by Chunk IPCA. In Section 6, the effectiveness of incremental 
learning in face recognition systems is discussed for a self-compiled face image database. 
Section 7 gives conclusions of this chapter.  

2. Incremental Principal Component Analysis (IPCA)  

2.1 Learning assumptions and outline of IPCA algorithm  

Assume that N  training samples ni R∈)(x ),,1( Ni …=  are initially provided to a system 

and an eigenspace model ),,,( Nkk ΛUx=Ω  is obtained by applying Principal Component 

Analysis (PCA) to the training samples. In the eigenspace model Ω , x  is a mean vector of 
)(i

x  ),,1( Ni …= , 
kU  is an kn×  matrix whose column vectors correspond to eigenvectors, 

and { }kk λλ ,,diag 1 …=Λ  is a kk × matrix whose diagonal elements are non-zero 

eigenvalues. Here, k  is the number of eigen-axes spanning the eigenspace (i.e., eigenspace 

dimensionality) and the value of k  is determined based on a certain criterion (e.g., 

accumulation ratio). After calculating Ω , the system keeps the information on Ω  and all the 

training samples are thrown away.   

Now assume that the )1( +N th training sample yx =+ )1(N n
R∈  is given. The addition of 

this new sample results in the changes in the mean vector and the covariance matrix; 
therefore, the eigenspace model ),,,( Nkk ΛUx=Ω  should be updated. Let us define the 

new eigenspace model by )1,,,( +′′′=Ω′ ′′ Nkk ΛUx . Note that the eigenspace dimensions 

might be increased from k  to 1+k ; thus, k′  in Ω′  is either k  or 1+k . Intuitively, if almost 
all energy of y  is included in the current eigenspace spanned by the eigenvectors 

kU′ , there 

is no need to increase an eigen-axis. However, if y  includes certain energy in the 

complementary eigenspace, the dimensional augmentation is inevitable; otherwise crucial 
information on y  might be lost. Regardless of the necessity in eigenspace augmentation, the 
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eigen-axes should be rotated to adapt to the variation in the data distribution. In summary, 
there are three main operations in IPCA: (1) mean vector update, (2) eigenspace 
augmentation, and (3) eigenspace rotation. The first operation is easily carried out without 
past training examples based on the following equation:  

 ( )yxx +
+

=′ N
N 1

1   n
R∈ .  (1) 

Hence, the following subsections give the explanation only for the last two operations.   

2.2 Eigenspace augmentation 
There have been proposed two criteria for judging eigenspace augmentation. One is the 

norm of a residue vector defined by  

 gUxyh
T

k−−= )(   where  )( xyUg −= T

k
.  (2) 

Here, T  means the transposition of vectors and matrices. The other is the accumulation ratio 

whose definition and incremental calculation are shown as follows:  
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where 
iλ  is the ith largest eigenvalues, n and k mean the dimensionality of the input space 

and that of the current eigenspace, respectively. The former criterion in Eq. (2) was adopted 

in the original IPCA (Hall & Martin, 1998), and the latter in Eq. (3) was used in the modified 

IPCA proposed by the authors (Ozawa et al., 2004). Based on these criteria, the condition of 

increasing an eigen-axis ĥ  is represented by:  

 [Residue Vector Norm]   

⎩
⎨
⎧ >

=
otherwise0

if/ˆ ηhhh
h   (4) 

 [Accumulation Ratio]      

⎩
⎨
⎧ <

=
otherwise0

)(if/ˆ θkA Uhh
h   (5) 

where η  (in the original IPCA, η  is set to zero) and θ  are positive constants. Note that 

setting a too large threshold η  or too small θ  would cause serious approximation errors for 

eigenspace models. Hence, it is important to set proper values to η  in Eq. (4) and θ  in Eq. 

(5). In general, finding a proper threshold η  is not easy unless input data are appropriately 

normalized within a certain range. On the other hand, since the accumulation ratio is 

defined by the ratio of input energy in an eigenspace over the original input space, the value 

of θ  is restricted between 0 and 1. Therefore, it would be easier for θ  to get an optimal 

value by applying the cross-validation method. The detailed algorithm of finding θ  in 

incremental learning settings is described in Ozawa et al. (2008).  
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2.3 Eigenspace rotation 
If the condition of Eq. (4) or (5) satisfies, the dimensions of the current eigenspace would be 

increased from k  to 1+k , and a new eigen-axis ĥ  is added to the eigenvector matrix 
kU . 

Otherwise, the dimensionality remains the same. After this operation, the eigen-axes are 
rotated to adapt to the new data distribution. Assume that the rotation is given by a rotation 
matrix R , then the eigenspace update is represented by the following equation:  

 1)  If there is a new eigen-axis to be added, RhUU ]ˆ,[1 kk =′ + , (6) 

 2)  otherwise, RUU kk =′ .  (7) 

It has been shown that R  is obtained by solving the following intermediate eigenproblem 

(Hall & Martin, 1998):   

1. If there is a new eigen-axis to be added,  

 ,
)1(01

122 +′=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
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2. otherwise,  

 .
)1(1 2 k

T

k
N

N

N

N ΛRRggΛ ′=
⎭
⎬
⎫

⎩
⎨
⎧

+
+

+
  (9) 

Here, )(ˆ xyh −= Tγ  and 0  is a k-dimensional zero vector; 
1+′kΛ  and 

kΛ′  are the new 

eigenvalue matrices whose diagonal elements correspond to k  and 1+k  eigenvalues, 

respectively. Using the solution R , the new eigenvector matrix 
kU′  or 

1+′kU  is calculated 

from Eq. (6) or (7). 

3. Chunk Incremental Principal Component Analysis (Chunk IPCA) 

3.1 Learning assumptions and outline of chunk IPCA algorithm  
IPCA can be applied to one training sample at a time, and the intermediate eigenproblem in 

Eq. (8) or (9) must be solved for each sample even though a chunk of samples are provided 

to learn at a time. Obviously this is inefficient from a computational point of view, and the 

learning may get stuck in a deadlock if a large chunk of training samples is given to learn in 

a short term; that is, the next chunk of training samples could come before the learning is 

completed if it takes long time for updating an eigenspace.  

To overcome this problem, the original IPCA is extended so that the eigenspace model Ω  
can be updated with a chunk of training samples in a single operation (Ozawa et al., 2008). 
This extended algorithm is called Chunk IPCA.  

Assume again that N training samples { })()1( ,, N
xxX …=  NnR ×∈  have been given so far and 

an eigenspace model ),,,( Nkk ΛUx=Ω  was obtained from these samples. Now, a chunk of 

L  training samples { })()1( ,, L
yyY …=  LnR ×∈  are presented to the system. Let the updated 

eigenspace model be ),,,( LNkk +′′′=Ω′ ′′ ΛUx . The mean vector x′  in Ω′  can be updated 

without the past training samples X  as follows:   
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 ( )yxx LN
LN

+
+

=′
1 . (10) 

The problem is how to update 
kU′  and 

kΛ′  in Ω′ .  
As shown in the derivation of IPCA, the update of 

kU′  and 
kΛ′  is reduced to solving an 

intermediate eigenproblem, which is derived from an eigenvalue problem using a 
covariance matrix. Basically, the intermediate eigenproblem for Chunk IPCA can also be 
derived in the same way as shown in the derivation of IPCA (Hall & Martin, 1998). 
However, we should note that the dimensionality k′  of the updated eigenspace could range 
from k  to Lk +  depending on the given chunk data Y . To avoid constructing a redundant 
eigenspace, the smallest k′  should be selected under the condition that the accumulation 
ratio is over a designated threshold. Thus, an additional operation to select a smallest set of 
eigen-axes is newly introduced into Chunk IPCA. Once the eigen-axes to be augmented are 
determined, all the eigen-axes should be rotated to adapt to the variation in the data 
distribution. This operation is basically the same as in IPCA.  
In summary, there are three main operations in Chunk IPCA: (1) mean vector update, (2) 
eigenspace augmentation with the selection of a smallest set of eigen-axes, and (3) 
eigenspace rotation. The first operation is carried out by Eq. (10). The latter two operations 
are explained below.  

3.2 Eigenspace augmentation 
In Chunk IPCA, the number of eigen-axes to be augmented is determined by finding the 
minimum k  such that θ≥)( kA U  holds where θ  is a threshold between 0 and 1. To 

introduce this criterion, we need to modify the update equation of Eq. (3) such that the 
accumulation ratio can be updated incrementally for a chunk of L samples. In Chunk IPCA, 
we need to consider two types of accumulation ratios. One is the accumulation ratio for a k-
dimensional eigenspace spanned by RUU kk =′  where R  is a rotation matrix which is 

calculated from the intermediate eigenvalue problem described later. The other is that for a 
(k+l)-dimensional augmented eigenspace spanned by [ ]RHUU lklk ,=′ +  where 

lH  is a set of 

l augmented eigen-axes. The former is used for checking if the current k-dimensional 
eigenspace should be augmented or not. The latter one is used for checking if further eigen-
axes are needed for the (k+l)-dimensional augmented eigenspace.  
The new accumulation ratio )( kA U′′  and )( lkA +′′ U  are calculated as follows (Ozawa et al., 

2008):  
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where ( ),xyUg −= T

k
 ( ),)(

yyUg −=′′ iT

ki
 ,yxμ −=  ,)(

yyμ −=′′ j

j
 ( ),xyHγ −= T

l
 and 

( )yyHγ −=′′ )(iT

li
. To update )( kA U′′ , the summation of eigenvalues 

iλ  ( ni ,,1…= ) is 

required, and this summation can be held by accumulating the power of training samples 
(Ozawa et al., 2004). Hence, the individual eigenvalues 

iλ  ( nki ,,1…+= ) are not necessary 

for this update.  

As seen from Eqs. (11) and (12), we need no past sample )( j
x  and no rotation matrix R  to 

update the accumulation ratio. Therefore, this accumulation ratio is updated with the 

following information: a chunk of given training samples { })()1( ,, LyyY …= , the current 

eigenspace model ),,,( Nkk ΛUx=Ω , the summation of eigenvalues ∑ =

n

j i1
λ , and a set of 

augmented eigen-axes 
lH  which are obtained through the procedure described next.   

In IPCA, a new eigen-axis is obtained to be orthogonalized to the existing eigenvectors (i.e., 
column vectors of 

kU ). A straightforward way to obtain new eigen-axes is to apply Gram-

Schmidt orthogonalization to a chunk of given training samples (Hall et al., 2000). If the 

training samples are represented by L
~

 linearly independent vectors, the maximum number 

of augmented eigen-axes is L
~

. However, the subspace spanned by all of the L
~

 eigen-axes is 
redundant in general. Therefore, we should find a smallest set of eigen-axes without losing 
essential information on Y .  
The problem of finding an optimal set of eigen-axes is stated below.  

Find the smallest set of eigen-axes { }*,,1

*

l
hhH …=   for the current eigenspace model     

),,,( Nkk ΛUx=Ω  without keeping the past training samples X  such that the accumulation ratio 

)( *lk
A

+
′′ U of  all the given training samples { }YX,  is larger  than a threshold θ . 

Assume that we have a candidate set of augmented eigen-axes { }ll hhH ,,1 …= . Since the 

denominator of Eq. (12) is constant once the mean vector y  is calculated, the increment of 

the accumulation ratio from )( kA U′′  to )( lkA +′′ U  is determined by the numerator terms. 

Thus, let us define the following difference )(
~

lkA +′′Δ U  of the numerator terms between 

)( kA U ′′  and )( lkA +′′ U :  

 ∑∑
==

+ ′Δ−+−
+

=′′Δ
l

i

i

L

j

jT

l

T

llk A
NLN

L
A

1

def

1

2
)(

2 ~
)(

1
)()(

~
yyHyxHU   (13) 

where  

 { } { } .)(
1

)(
~

1

2)(2 ∑
=

−+−
+

=′Δ
L

j

jT

i

T

ii
NLN

L
A yyhyxh   (14) 

Equation (13) means that the increments of the accumulation ratio is determined by the 

linear sum of 
iA

~′Δ . Therefore, to find the smallest set of eigen-axes, first we find 
ih  with the 

largest 
iA

~′Δ , and put it into the set of augmented eigen-axes 
lH  (i.e., 1=l  and 

il hH = ). 

Then, check if the accumulation ratio )( lkA +′′ U  in Eq. (12) becomes larger than the threshold 

θ . If not, select 
ih  with the second largest 

iA
~′Δ , and the same procedure is repeated until 

θ≥′′ + )( lkA U  satisfies. This type of greedy algorithm makes the selection of eigen-axes very 

simple. The algorithm of the eigen-axis selection is summarized in Algorithm 1. 
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3.3 Eigenspace rotation 

Next, let us derive the update equations for 
kU  and 

kΛ . Suppose that l  eigen-axes are 

augmented when a chunk of L  training samples Y  is provided; that is, the eigenspace 

dimensions are increased by l . Let us denote the augmented eigen-axes as follows:  

 { } .0,,,1 LlR
ln

ll ≤≤∈= ×
hhH …   (15) 

Then, the updated eigenvector matrix 
lk+′U  is represented by  

 RHUU ],[ lklk =′ +   (16) 

where R  is a rotation matrix. It has been shown that R is obtained by solving the following 
intermediate eigenproblem (Ozawa et al., 2008):   
1. If there are new eigen-axes to be added (i.e., 0≠l ),  
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2. otherwise,  
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Here, ( )xyUg −=′ )(iT

ki
 and ( )xyHγ −=′ )(iT

li
. As seen from Eqs. (17) and (18), the rotation 

matrix R  and the eigenvalue matrix 
lk+′Λ  correspond to the eigenvectors and eigenvalues 

of the intermediate eigenproblem, respectively. Once R  is obtained, the corresponding new 
eigenvector matrix 

lk+′U  is given by Eq. (16).   

The overall algorithm of Chunk IPCA is summarized in Algorithm 2.  
 

 

3.4 Training of initial eigenspace 

Assume that a set of initial training samples { }NiD ii ,,1|),( )()(

0 …== zx  is given before 

incremental learning gets started. To obtain an initial eigenspace model ),,,( Nkk ΛUx=Ω , 

the conventional PCA is applied to D0 and the smallest dimensionality k of the eigenspace is 
determined such that the accumulation ratio is  larger than θ. Since a proper θ is usually 
unknown and often depends on training data, the cross-validation technique can be applied to 
determining θ (Ozawa et al., 2008). However, for the sake of simplicity, let us assume here that 
a proper θ is given in advance. The algorithm of the initial training is shown in Algorithm 3.  
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4. Incremental learning of classifier 

4.1 Resource Allocating Network (RAN) 
 Resource Allocating Network (RAN) (Platt, 1991) is an extended version of RBF networks. 
When the training gets started, the number of hidden units is set to one; hence, RAN has 
simple approximation ability at first. As the training proceeds, the approximation ability of 
RAN is developed with the increase of training samples by allocating additional hidden 
units.  

Figure 1 illustrates the structure of RAN. The output of hidden units { }TJyy ,,1 …=y   is 

calculated based on the distance between an input { }TIxx ,,1 …=x  and center vector of the 

jth hidden unit { }T
jIjj cc ,,1 …=c :  

 

2

2
exp for  1, ,

j

j

j

y j J
σ

⎛ ⎞−
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

…
x c

  (19) 

where I and J are the numbers of input units and hidden units, respectively, and 2

jσ  is a 

variance of the jth radial basis. The network output { }TKzz ,,1 …=z  is calculated as follows:  

 Kkywz k

K

k

jkjk ,,1for 
1

…=+=∑
=

γ   (20) 

where K is the number of output units, 
kjw  is a connection weight from the jth hidden unit 

to the kth output unit, and 
kγ  is a bias of the kth output unit.   

When a training sample ),( dx  is given, the network output is calculated based on Eqs. (19) 

and (20), and the root mean square error zd −=E  between the output z  and target d  for 

the input x  is evaluated. Depending on E , either of the following operations is carried out:  
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y (t)J
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w11

w1J

wK1
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Fig. 1. Structure of Resource Allocating Network (RAN).  
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1. If E  is larger than a positive constant ε  and the distance between an input x  and its 

nearest center vector *
c  is larger than a positive value )(tδ  (i.e., ε>E  and 

)(* tδ>− cx ), a hidden unit is added (i.e., 1+← JJ ).  Then, the network parameters 

for the Jth hidden unit (center vector 
Jc , connection weights { }KJJJ ww ,,1 …=w , and 

variance 2

jσ ) are set to the following values: 
pJ xc = , zdw −=J

, and *
cx −= κσ J

 

where κ  is a positive constant. )(tδ  is decreased with time t as follows:  
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⎦
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⎢
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⎞
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⎛−= minmax ,expmax)( δ

τ
δδ t

t   (21) 

 

where τ  is a decay constant, 
maxδ  and 

minδ  are maximum and minimum values of 

)(tδ , respectively.  

2. Otherwise, the network parameters are updated as follows:  
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k
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where 
kkk zde −=  and α  is a positive learning ratio.  

Although the approximation ability is developed by allocating hidden units, the interference 

cannot be suppressed completely only by this mechanism. In the next section, we present an 

extended model of RAN in which a mechanism of suppressing the interference is explicitly 

introduced.  

4.2 Resource allocating network with long-term memory 
RAN is a neural network with spatially localised basis functions; hence it is expected that 

the catastrophic interference (Carpenter & Grossberg, 1988) is alleviated to some extent. 

However, since no explicit mechanism of suppressing the interference is introduced, the 

insufficient suppression might cause serious unlearning over the long run.  

To suppress unexpected forgetting in RAN, Resource Allocating Network with Long-Term 

Memory (RAN-LTM) (Kobayashi et al., 2001) has been proposed. Figure 2 shows the 

architecture of RAN-LTM which consists of two modules: RAN and an external memory 

called Long-Term Memory (LTM). Representative input-output pairs are extracted from the 

mapping function acquired in RAN and they are stored in LTM. These pairs are called 

memory items and some of them are retrieved from LTM to learn with training samples. In 

the learning algorithm, a memory item is created when a hidden unit is allocated; that is, an 

RBF center and the corresponding output are stored as a memory item. 
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Fig. 2. Architecture of RAN-LTM. 

The learning algorithm of RAN-LTM is divided into two phases: the allocation of hidden 

units (i.e., incremental selection of RBF centers) and the calculation of connection weights 

between hidden and output units. The procedure in the former phase is the same as that in 

the original RAN, except that memory items are created at the same time. Once hidden units 

are allocated, the centers are fixed afterwards. Therefore, the connection weights { }
jkw=W  

are only parameters that are updated based on the output errors. To minimize the errors 

based on the least squares method, it is well known that the following linear equations 

should be solved (Haykin, 1999): 

 DΦW =   (25) 

 

where D  is a matrix whose column vectors correspond to the target outputs and Φ  is a 

matrix of hidden outputs. Suppose that a new training sample ),( dx  is given and M 

memory items )~,~( )()( mm zx  ),,1( Mm …=  have already been created, then in the simplest 

version of RAN-LTM (Ozawa et al., 2005) the target matrix D  are formed as follows: 

{ } .~,,~, )()1( TMzzdD …=  Furthermore, { }
ijφ=Φ  )1,,1( += Mi …  is calculated from the 

training sample and memory items as follows:  
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Singular Value Decomposition (SVD) can be used for solving W  in Eq. (25). The learning 

algorithm of RAN-LTM is summarized in Algorithm 4.  
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5. Face recognition system 

Figure 3 shows the overall process in the proposed face recognition system. As seen from 
Fig. 3, the proposed system mainly consists of the following four sections: face detection, 
face recognition, face image verification, and incremental learning. The information 
processing in each section is explained below.  

5.1 Face detection 
In the face detection part, we adopt a conventional algorithm that consists of two operations: 
face localization and face feature detection. Figure 4 shows an example of the face detection 
process.  
Facial regions are first localized in an input image by using the skin color information and 
horizontal edges. The skin color information is obtained by projecting every pixel in the 
input image to a skin-color axis. This axis was obtained from Japanese skin images in 
advance. In our preliminary experiment, the face localization works very well with 99% 
accuracy for a Japanese face database.  
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Fig. 3. The processing flow in the face recognition system. DNN and VNN are implemented 
by RBF networks, while RNN is implemented by RAN-LTM that could learn misclassified 
face images incrementally. In the feature extraction part, an eigen-space model is 
incrementally updated for misclassified face images by using Chunk IPCA.  
 

(a) (b) (c) (d)  

Fig. 4. The process of face detection: (a) an output of skin colour filter and (b) an output of 
edge filter, (c) a face region extracted from the two filter outputs in (a) and (b), and (d) the 
final result of the face detection part. Only one face was detected in this case.  

After the face localization, three types of facial features (eye, nose, mouth) are searched for 

within the localized regions through raster operations. In each raster operation, a small sub-

image is separated from a localized region. Then, the eigen-features of the sub-image are 

given to Detection Neural Network (DNN) to verify if it corresponds to one of the facial 

features. The eigenspace model for the face detection part was obtained by applying PCA to 

a large image dataset of human eye, nose, and mouth in advance. This dataset is also used 

for the training of DNN.  

After all raster operations are done, face candidates are generated by combining the 

identified facial features. All combinations of three facial features are checked if they satisfy 

a predefined facial geometric constraint. A combination of three features found on the 

geometric template qualifies as a face candidate. The output of the face detection part is the 

center position of a face candidate.  

The overall process in the face detection part is summarized in Algorithm 5.  

5.2 Face recognition and face image verification 
In the face recognition part, all the detected face candidates are classified into registered 

or non-registered faces. This part consists of the following two operations: feature 

extraction and classification (see Fig. 3). In the feature extraction part, the eigenface 

approach is adopted here to find informative face features. A face candidate is first 
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projected to the eigen-axes to calculate eigen-features, and they are given to RAN-LTM 

called Recognition Neural Network (RNN). Then, the classification is carried out based on 

the outputs of RNN. 

If the recognition is correct, RNN should be unchanged. Otherwise, RNN must be trained 

with the misclassified images to be classified correctly afterward. The misclassified images 

are collected to carry out incremental learning for both feature extraction part and classifier 

(RNN). Since the perfect face detection cannot be always ensured, there is a possibility that 

non-face images happen to be mixed with the misclassified face images. Apparently the 

training of these non-face images will deteriorate the recognition performance of RNN. 

Thus, another RBF network called Verification Neural Network (VNN) is introduced into this 

part in order to filter non-face images out.  

The procedures of face recognition and verification are summarized in Algorithm 6.  
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5.3 Incremental learning 
Since face images of a person can vary depending on various temporal and special factors, the 
classifier should have high adaptability to those variations. In addition, the useful features 
might also change over time for the same reason. Therefore, in the face recognition part, the 
incremental learning should be conducted for both feature extraction part and classifier.  
The incremental learning of the feature extraction part is easily carried out by applying 
Chunk IPCA to misclassified face images. However, the incremental learning of 
classification part (RNN) cannot be done in a straightforward manner due to the learning of 
the eigenspace model. That is to say, the inputs of RNN would dynamically change not only 
in their values but also in the number of input variables due to the eigen-axis rotation and 
the dimensional augmentation in Chunk IPCA. Therefore, to make RNN adapt to the 
change in the feature extraction part, not only the network parameters (i.e., weights, RBF 
centers, etc.)  but also its network structure have to be modified.  
Under one-pass incremental learning circumstances, this reconstruction of RNN is not easily 
done without unexpected forgetting of the mapping function that has been acquired so far. 
If the original RAN is adopted as a classifier, there is no way of retraining the neural 
classifier to ensure that all previously trained samples can be correctly classified again after 
the update of the feature space because the past training samples are already thrown away. 
This can be solved if a minimum number of representative samples are properly selected 
and used for retraining the classifier. RAN-LTM is suitable for this purpose.  
To implement this idea, we need to devise an efficient way to adapt the memory items in 
RAN-LTM to the updated eigenspace. Let an input vector of the mth memory item be 

Im R∈)(~x  and let its target vector be Km R∈)(~z : { })()( ~,~ mm
zx  ),,1( Mm …= . Furthermore, let 

the original vector associated with )(~ m
x  in the input space be nm R∈)(x . The two input 

vectors have the following relation: )(~ )()( xxUx −= mTm . Now, assume that a new eigenspace 

model ),,,( LNlklk +′′′=Ω′ ++ ΛUx  is obtained by applying Chunk IPCA to a chunk of L 

training samples ),,( 1 LyyY …= . Then, the updated memory item '~ )(m
x  should satisfy the 

following equation:  
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where x′  and 
lk+′U  are given by Eqs. (10) and (16), respectively. The second term in the 

right-hand side of Eq. (27) is easily calculated. To calculate the first term exactly, however, 

the information on x(m), which is not usually kept in the system for reasons of memory 

efficiency, is needed. Here, let us consider the approximation to the first term without 

keeping x(m).  
Assume that l of eigen-axes Hl is augmented. Substituting Eq. (16) into the first term on the 
right-hand side of Eq. (27), then the first term is reduced to  
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As seen from Eq. (28), we still need the information on x(m) in the subspace spanned by the 
eigen-axes in Hl. This information was lost during the dimensional reduction process. The 
information loss caused by this approximation depends on how a feature space evolves 
throughout the learning. In general, the approximation error depends on the presentation 

order of training data, the data distribution, and the threshold θ for the accumulation ratio in 
Eqs. (11) and (12). In addition, the recognition performance depends on the generalization 
performance of RNN; thus, the effect of the approximation error for memory items is not easily 
estimated in general. However, recalling a fact that the eigen-axes in Hl are orthogonal to every 

vector in the subspace spanned by Uk, the error could be small if an appropriate threshold θ is 

selected. Then, we can approximate the term )( )( xxH −mT

l
 to zero, and Eq. (27) is reduced to  
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  (29) 

Using Eq. (29), memory items in RNN can be recalculated without keeping the memory 

items nm R∈)(x  in the input domain even after the eigenspace model is updated by Chunk 

IPCA. Then, RNN, which is implemented by RAN-LTM, is retrained with L training 

samples and M updated memory items { }'~,'~ )()( mm
zx  ),,1( Mm …=  based on Algorithm 4.  

The procedure of incremental learning is summarized in Algorithm 7.  
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5.4 Overall algorithm of online incremental face recognition system 
As mentioned in Section 5.1, the eigenspace model for the face detection part is obtained by 
applying PCA to a large dataset of human eye, nose, and mouth images. This dataset is used 
for training DNN as well. The training of VNN is carried out using a different dataset which 
includes a large amount of face and non-face images. Note that DNN and VNN are trained 
based on the learning algorithm of RAN (see Section 2). All the trainings for the face 
detection part, DNN, and VNN are conducted in advance.  
Finally, we summarize the overall algorithm of the proposed online incremental face 
recognition system in Algorithm 8.  
 

 

6. Performance evaluation 

6.1 Experimental Setup 
To simulate real-life environments, 224 video clips are collected for 22 persons (19 males / 3 
females) during about 11 months such that temporal changes in facial appearances are 
included. Seven people (5 males / 2 females) are chosen as registrants and the other people 
(14 males /a female) are non-registrants. The duration of each video clip is 5-15 (sec.). A 
video clip is given to the face detection part, and the detected face images are automatically 
forwarded to the face recognition part. The numbers of detected face images are 
summarized in Table 1. The three letters in Table 1 indicate the code of the 22 subjects in 
which M/F and R/U mean Male/Female and Registered/Unregistered, respectively; for 
example, the third registered male is coded as MR3.  
The recognition performance is evaluated through two-fold cross-validation; thus, the whole 
dataset is subdivided into two subsets: Set A and Set B. When Set A is used for learning RNN, 
Set B is used for testing the generalization performance, and vice versa. Note that since the 
incremental learning is applied only for misclassified face images, the recognition accuracy 
before the incremental learning is an important performance measure. Hence, there are at least 
two performance measures for the training dataset: one is the performance of RNN using a set 
of training samples given at each learning stage, and the other is the performance using all 

www.intechopen.com



State of the Art in Face Recognition 

 

104 

training datasets given so far after the incremental learning is carried out. In the following, let 
us call the former and latter datasets as incremental dataset and training dataset, respectively. 
Besides, let us call the performances over the incremental dataset and training dataset as 
incremental performance and training performance, respectively. We divide the whole dataset into 
16 subsets, each of which corresponds to an incremental dataset. Table 2 shows the number of 
images included in the incremental datasets. 
 

Set MR1 FR1 MR2 MR3 FR2 MR4 MR5 FU1 

A 351 254 364 381 241 400 136 133 

B 170 220 297 671 297 241 359 126 
 

Set MU1 MU2 MU3 MU4 MU5 MU6 MU7 MU8 

A 131 294 110 103 170 136 174 33 

B 228 292 80 233 117 202 182 14 
 

Set MU9 MU10 Mu1 Mu12 Mu13 Mu14 Total 

A 79 15 75 17 10 9 3766 

B 9 14 28 18 9 9 3816 

Table 1. Two face datasets (Set A and Set B) for training and test. The three letters in the 
upper row mean the registrant code and the values in the second and third rows are the 
numbers of face images.  

Set 1 2 3 4 5 6 7 8 

A 220 232 304 205 228 272 239 258 

B 288 204 269 246 273 270 240 281 
 

Set 9 10 11 12 13 14 15 16 

A 212 233 290 212 257 188 199 217 

B 205 249 194 241 214 226 210 206 

Table 2. Number of images included in the 16 incremental datasets.  

Stage Init. 1 2 … 12 13 14 15 

Case 1 1 2 3 … 13 14 15 16 

Case 2 1,2 3 4 … 14 15 16 --- 

Case 3 1,2,3 4 5 … 15 16 --- --- 

Table 3. Three series of incremental datasets. The number in Table 2 corresponds to the tag 
number of the corresponding incremental dataset.  
 

MR3

FR2

MR4

Learning Stages
init. 2 4 6 8 11 13

 

Fig. 6. Examples of face images trained at different learning stages.  

www.intechopen.com



Online Incremental Face Recognition System Using Eigenface Feature and Neural Classifier 

 

105 

The size of an initial dataset can influence the test performance because different initial 
eigen-spaces are constructed. However, if the incremental learning is successfully carried 
out, the final performance should not depend on the size of the initial dataset. Hence, the 
three different series of incremental datasets shown in Table 3 are defined to see the 
influence. Note that the number in Table 3 corresponds to the tag number (1-16) of the 
incremental dataset in Table 2. Hence, we can see that Case 1 has 15 learning stages and the 
number of images in the initial dataset is 220 for Set A and 288 for Set B, which correspond  
to 6.7% and 7.5% over the whole data. On the other hand, the sizes of the initial datasets in 
Case 2 and Case 3 are set to a larger value as compared with that in Case 1; while the 
numbers of learning stages are smaller than that in Case 1. Figure 6 shows the examples of 
detected face images for three registered persons at several learning stages. 
When an initial dataset is trained by RNN, the number of hidden units is fixed with 50 in 

this experiment. The other parameters are set as follows: 72 =σ , 01.0=ε , and 5=δ . The 
threshold θ  of the accumulation ratio in IPCA is set to 0.9; thus, when the accumulation 
ratio is below 0.9, new eigen-axes are augmented.  

6.2 Experimental results 
Figure 7 shows the evolution of learning time over 15 learning stages when the chunk size L 
is 10 in Chunk IPCA (CIPCA). The curves of CIPCA and IPCA show the learning time for 
feature extraction, while those of CIPCA+RAN-LTM and IPCA+RAN-LTM mean the 
learning time for both feature extraction part and classifier. As you can see from the results, 
the learning time of feature extraction by Chunk IPCA is greatly reduced as compared with 
IPCA. This is also confirmed in Table 4.  
The learning time of Chunk IPCA decreases as the chunk size increases, and Chunk IPCA is 
much faster than IPCA even though the feature dimensions at the final stage do not have 
large differences between IPCA and Chunk IPCA. When the chunk size is 10, Chunk IPCA 
is about 8 times faster than IPCA. The reason why the decreasing rate of the learning time 
becomes small for larger chunk size is that the time for finding eigen-axes dominates the 
total learning time (Ozawa et al., 2008).  
To evaluate the effectiveness of learning an eigenspace, the classification accuracy of RAN-
LTM is examined when the following three eigenspace models are adopted:  
1. Static eigenspace model using PCA 
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Fig. 7. Evolution of learning time for four different models (sec.). 
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 IPCA CIPCA(10) CIPCA(50) CIPCA(100) 

Time (sec.) 376.2 45.6 22.5 18.1 

Dimensions 178 167 186 192 

Table 4. Comparisons of Learning time and dimensions of feature vectors at the final 
learning stage. CIPCA(10), CIPCA(50), and CIPCA(100) stand for Chunk IPCA in which the 
chunk sizes are set to 10, 50, and 100, respectively.  

2. Adaptive eigenspace model using the extended IPCA  
3. Adaptive eigenspace model using Chunk IPCA.  
Figures 8 (a)-(c) show the evolution of recognition accuracy over 15 learning stages when 
the percentage of initial training data is (a) 6.7%, (b) 12.5%, and (c) 20%, respectively. As 
stated before, the size of an initial dataset can influence the recognition accuracy because 
different eigenspaces are constructed at the starting point. As seen from Figs. 8 (a)-(c), the 
initial test performance at stage 0 is higher when the number of initial training data is larger; 
however, the test performance of IPCA and Chunk IPCA is monotonously enhanced over 
the learning stages and it reaches almost the same accuracy regardless of the initial datasets. 
Considering that the total number of training data is the same among the three cases, we can 
say that the information on training samples is stably accumulated in RNN without serious 
forgetting even though RNN is reconstructed all the time the eigenspace model is updated.  
In addition, the test performance of RNN with IPCA and Chunk IPCA has significant 
improvement against RNN with PCA. This result shows that the incremental learning of a 
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Fig. 8. Evolution of recognition accuracy for three different datasets (incremental, training, 
test) over the learning stages when the percentages of initial training datasets are set to (a) 
6.7%, (b) 12.5%, and (c) 20.0%. 
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feature space is very effective to enhance the generalization performance of RNN. However, 
Chunk IPCA has slightly lower performance than IPCA. It is considered that this 
degradation originates from the approximation error of the eigenspace model using Chunk 
IPCA. 
In Figs. 8 (a)-(c), we can see that although the incremental performance is fluctuated, the 
training performance of RNN with IPCA and Chunk IPCA changes very stably over the 
learning stages. On the other hand, the training performance of RNN with PCA rather drops 
down as the learning stage proceeds. Since the incremental performance is defined as a kind 
of test performance for the incoming training dataset, it is natural to be fluctuated. The 
important result is that the misclassified images in the incremental dataset are trained stably 
without degrading the classification accuracy for the past training data.  
From the above results, it is concluded that the proposed incremental learning scheme, in 
which Chunk IPCA and RAN-LTM are simultaneously trained in an online fashion, works 
quite well and the learning time is significantly reduced by introducing Chunk IPCA into 
the learning of the feature extraction part.  

7. Conclusions 

This chapter described a new approach to constructing adaptive face recognition systems in 
which a low-dimensional feature space and a classifier are simultaneously learned in an 
online way. To learn a useful feature space incrementally, we adopted Chunk Incremental 
Principal Component Analysis in which a chunk of given training samples are learned at a 
time to update an eigenspace model. On the other hand, Resource Allocating Network with 
Long-Term Memory (RAN-LTM) is adopted as a classifier model not only because 
incremental learning of incoming samples is stably carried out, but also because the network 
can be easily reconstructed to adapt to dynamically changed eigenspace models.  
To evaluate the incremental learning performance of the face recognition system, a self-
compiled face image database was used. In the experiments, we verify that the incremental 
learning of the feature extraction part and classifier works well without serious forgetting, 
and that the test performance is improved as the incremental learning stages proceed. 
Furthermore, we also show that Chunk IPCA is very efficient compared with IPCA in term 
of learning time; in fact, the learning speed of Chunk IPCA was at least 8 times faster than 
IPCA.  
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