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Abstract

In this chapter, we investigate the stopping power of an ion in a magnetized electron
plasma in a model of binary collisions (BCs) between ions and magnetized electrons, in
which the two-body interaction is treated up to the second order as a perturbation to the
helical motion of the electrons. This improved BC theory is uniformly valid for any
strength of the magnetic field and is derived for two-body forces which are treated in
Fourier space without specifying the interaction potential. The stopping power is explic-
itly calculated for a regularized and screened potential which is both of finite range and
less singular than the Coulomb interaction at the origin. Closed expressions for the stop-
ping power are derived for monoenergetic electrons, which are then folded with an
isotropic Maxwell velocity distribution of the electrons. The accuracy and validity of the
present model have been studied by comparisons with the classical trajectory Monte Carlo
numerical simulations.

Keywords: ion stopping, magnetized plasma target, binary collisions

1. Introduction

There is an ongoing in the theory of interaction of charged particle beams with plasmas. Although

most theoretical works have reported on the energy loss of ions in a plasma without magnetic

field, the strongly magnetized case has not yet received as much attention as the field-free case.

The energy loss of ion beams and the related processes in magnetized plasmas are important in

many areas of physics such as transport, heating, magnetic confinement of thermonuclear

plasmas, and astrophysics. The range of the related topics includes ultracold plasmas [1, 2], the
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cooling of heavy ion beams by electrons [3–12], as well as many very dense systems involved in

magnetized target fusions [11], or heavy ion inertial confinement fusion (ICF).

For a theoretical description of the energy loss of ions in a plasma, there exist some standard

approaches. The dielectric linear response (LR) treatment considers the ion as a perturbation of

the target plasma, and the stopping is caused by the polarization of the surrounding medium.

It is generally valid if the ion couples weakly to the target. Since the early 1960s, a number of

calculations of the stopping power (SP) within LR treatment in a magnetized plasma have

been presented (see Refs. [13–37] and references therein). Alternatively, the stopping is calcu-

lated as a result of the energy transfers in successive binary collisions (BCs) between the ion

and the electrons [37–45]. Here, it is necessary to consider appropriate approximations for the

screening of the Coulomb potential by the plasma [8]. However, significant gaps between these

approaches involve the ion stopping along magnetic field B and perpendicular to it. In partic-

ular, at high B values, the BC predicts a vanishingly parallel energy loss, which remains at

variance with the nonzero LR one. Also, challenging BCLR discrepancies persist in the trans-

verse direction, especially for vanishingly small ion projectile velocity vi when the friction

coefficient contains an anomalous term diverging logarithmically at vi ¼ 0 [23, 24]. For calcu-

lation of the energy loss of an ion, two new alternative approaches have been recently

suggested. One of these methods is specifically aimed at a low-velocity energy loss, which is

expressed in terms of velocity-velocity correlation and, hence, to a diffusion coefficient [34].

Next, in Ref. [27] using the Bhatnagar-Gross-Krook approach based on the Boltzmann-Poisson

equations for a collisional and magnetized classical plasma, the energy loss of an ion is studied

through a LR approach, which is constructed such that it conserves particle number locally.

An alternative approach, particularly in the absence of any relevant experimental data, is to test

various theoretical methods against comprehensive numerical simulations. This can be achieved

by a particle-in-cell (PIC) simulation of the underlying nonlinear Vlasov-Poisson Equation

[10, 31]. While the LR requires cutoffs to exclude hard collisions of close particles, the collectivity

of the excitation can be taken into account in both LR and PIC approaches. In the complemen-

tary BC treatment, the stopping force has been calculated numerically by scattering statistical

ensembles of magnetized electrons from the ions in the classical trajectory Monte Carlo (CTMC)

method [7, 10, 37–41]. For a review we refer to a recent monograph [8] which summarizes all

theoretical and numerical methods and approaches also discussing the ranges of their validity.

The very recent upheaval of successful experiments involving hot and dense plasmas in the

presence of kilotesla magnetic fields (e.g., at ILE (Osaka), CELIA (Bordeaux), LULI (Palaiseau),

LLNL (Livermore)) remaining nearly steady during 10–15 ns strongly motivates the fusion as

well as the warm dense matter (WDM) communities to investigate adequate diagnostics for

their dynamic properties. This opens indeed a novel perspective by allowing magnetic fields to

play a much larger if not a central role both in ICF andWDM plasmas. In this context proton or

any nonrelativistic ion stopping is likely to provide an option of choice for investigating

genuine magnetization features such as anisotropy, when the electron plasma frequency turns

significantly lower than the cyclotron one [46]. In addition, an experimental test of proton or

alpha particle stopping in a magnetized plasma is currently envisioned (see, e.g., Ref. [46] for a

preliminary discussion). The parameters at hand are a fully ionized hydrogen plasma with a

density up to 1020 cm3 and temperature between 1 and 100 eV. The steady magnetic field can

be up to 45 T strong. A preliminary examination based on comparing electron Debye length
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with corresponding Larmor radius indicates that to experience a strong influence of the

magnetic field, the electron density should be comparable with a few 1016 cm3. We expect these

endeavors to lead to the very first unambiguous and genuine identification of an experimental

magnetic signature for nonrelativistic ion stopping in plasmas.

Motivated by these recent developments, our purpose is to investigate the SP of an ionmoving in

amagnetized plasma in a wide range of the value of a steadymagnetic field. The present paper is

based on our earlier studies in Refs. [8, 24, 44, 45] where the second-order energy transfers for

individual collisions of electron-ion [8, 24, 44] of any two identical particles, like electron-electron

[44], and finally of two gyrating arbitrary charged particles [45] have been calculated with the

help of an improved BC treatment. This treatment is—unlike earlier approaches of, e.g., Refs.

[9, 42]—valid for any strength of the magnetic field. As the first application of the theoretical BC

model developed in Refs. [8, 24, 44, 45], we have calculated in Ref. [47] the cooling forces on the

heavy ion beam interacting with a strongly magnetized and temperature anisotropic electron

beam. It has been shown that there is a quite good overall agreement with both the CTMC

numerical simulations and the experiments performed at the ESR storage ring at GSI [48–50].

In Section 2 we introduce briefly a perturbative binary collision formulation in terms of the

binary force acting between an ion and a magnetized electron and derive general expressions

for the second-order (with respect to the interaction potential) stopping power. In contrast to the

previous investigations in Refs. [8, 24, 44, 45], we here consider the (macroscopic) stopping force

which is obtained by integrating the binary force of an individual electron-ion interaction with

respect to the impact parameter and the velocity distribution function of electrons. That is, the

stopping force for monoenergetic electrons is folded with a velocity distribution. The resulting

expressions involve all cyclotron harmonics of the electrons’ helical motion and are valid for any

interaction potential and any strength of the magnetic field. In Section 2.4 we present explicit

analytic expressions of this second-order stopping power for the specific case of a regularized

and screened interaction potential [51, 52] which is both of finite range and less singular than the

Coulomb interaction at the origin and which includes as limiting cases the Debye (i.e., screened)

and the Coulomb potentials. For comparison of our expressions with previous approaches, we

consider in Section 3 the corresponding asymptotic expressions for large and small ion velocities

and strong and vanishing magnetic fields. The analytical expressions presented in Section 2.4 are

evaluated numerically in Section 4 using parameters of the envisaged experiments on ion

stopping [46]. In particular, we compare our approach with the CTMC simulations. The results

are summarized and discussed in Section 5. The regularization parameter and the screening

length involved in the interaction potential are briefly specified and discussed in Appendix A.

2. Theoretical model

2.1. Binary collision (BC) formulation

Let us consider two point charges with masses m,M and charges �e, Ze, respectively, moving

in a homogeneous magnetic field B ¼ Bb. We assume that the particles interact with the

potential �Z=e2U rð Þ with =e2 ¼ e2=4πe0, where e0 is the permittivity of the vacuum and
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r ¼ r1 � r2 is the relative coordinate of the colliding particles. For two isolated charged

particles, this interaction is given by the Coulomb potential, i.e., UC rð Þ ¼ 1=r. In plasma

applications UC is modified by many-body effects and the related screening and turns into

an effective interaction. In general, this effective interaction, which is related to the wake

field induced by a moving ion, is non-spherically symmetric and depends also on the ion

velocity. For any BC treatment, however, this complicated ion-plasma interaction must be

approximated by an effective two-particle interaction U rð Þ. This effective interaction U may

be modeled by a spherically symmetric Debye-like screened interaction uD rð Þ ¼ e�r=λ=r with

a screening length λ, given, e.g., by the Debye screening length λD (see, e.g., [16]), in case of

low ion velocities and an effective velocity-dependent screening length λ við Þ for larger ion

velocities vi (see [53–55]). Further details on the choice of the effective interaction U rð Þ are

given in Ref. [47].

In the presence of an external magnetic field, the Lagrangian and the corresponding equations

of particle motion cannot, in general, be separated into parts describing the relative motion and

the motion of the center of mass (cm) [8]. However, in the case of heavy ions, i.e., M≫m, the

equations of motion can be simplified by treating the cm velocity vcm as constant and equal to

the ion velocity vi, i.e., vcm ¼ vi ¼ const. Then, introducing the velocity correction through

relations δv tð Þ ¼ ve tð Þ � ve0 tð Þ ¼ v tð Þ � v0 tð Þ, where v tð Þ ¼ r tð Þ ¼ ve tð Þ � vi is the relative

electron-ion velocity ve0 tð Þ and v0 tð Þ ¼ _r0 tð Þ ¼ ve0 tð Þ � vi are the unperturbed electron and

relative velocities, respectively, the equation of relative motion turns into

r0 tð Þ ¼ R0 þ vrtþ a u sin ωctð Þ � b� u½ � cos ωctð Þ½ �, (1)

δ _v tð Þ þ ωc δv tð Þ � b½ � ¼ �
Z=e2

m
f r tð Þ½ �: (2)

Here, �Z=e2f r tð Þ½ � f ¼ �∂U=∂rð Þ is the force exerted by the ion on the electron, ωc ¼ eB=m is the

electron cyclotron frequency, and δv tð Þ ! 0 at t ! �∞. In Eq. (1) u ¼ cosφ; sinφð Þ is the unit

vector perpendicular to the magnetic field; the angle φ is the initial phase of the electron’s

helical motion; vr ¼ ve∥b� vi is the relative velocity of the guiding center of the electrons,

where ve∥ and ve⊥ (with ve⊥ ≤ 0) are the unperturbed components of the electron velocity

parallel and perpendicular to b, respectively; and a ¼ ve⊥=ωc is the cyclotron radius. In

Eq. (1), the quantities u and R0 are defined by the initial conditions. In Eq. (2) r tð Þ ¼ re tð Þ � vit

is the ion-electron relative coordinate.

2.2. The perturbative treatment

We seek an approximate solution of Eq. (2) in which the interaction force between the ion

and electron is considered as a perturbation. Thus, we are looking for a solution of Eq. (2) for

the variables r and v in a perturbative manner r ¼ r0 þ r1 þ…, v ¼ v0 þ v1 þ⋯, where

r0 tð Þ, v0 tð Þ are the unperturbed ion-electron relative coordinate and velocity, respectively,

and rn tð Þ, vn tð Þ n ¼ 1; 2;⋯ð Þ are the nth-order perturbations of r tð Þ and v tð Þ, which are propor-

tional to Zn.
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The parameter of smallness which justifies such kind of expansion can be read off from a

dimensionless form of the equation of motion Eq. (2) by scaling lengths in units of the screen-

ing length λ, velocities in units of the initial relative velocity v0, and time in units of λ=v0. Then,

it is seen (see Ref. [47] for details) that the perturbative treatment is essentially applicable in

cases where ∣Z∣=e2=mv20λ < 1, that is, when the (initial) kinetic energy of relative motion mv20=2,

is large compared to the characteristic potential energy ∣Z∣=e2=λ in a screened Coulomb poten-

tial. Or, expressed in velocities, the initial relative velocity v0 must exceed the characteristic

velocity vd ¼ Zj j=e2=mλ
� �1=2

, that is, vd here demarcates the perturbative from the non-

perturbative regime. If this condition is met not only for a single ion-electron collision but in

the average over the electron distribution, e.g., by replacing v0 with the averaged initial ion-

electron relative velocity v0h i, i.e., v0h i≳vd, we are in a regime of weak ion-target or, here, weak

ion-electron coupling, which allows the use of perturbative treatments (besides BC also, e.g.,

linear response (LR)). For nonmagnetized electrons this is discussed in much detail in Refs. [53,

54]. Even though the particle trajectories are much more intricate in the presence of an external

magnetic field, the given definitions and demarcations of coupling regimes are basically the

same for magnetized electrons. That is, the applicability of a perturbative treatment is essen-

tially related to the charge state Z of the ion and the typical range λ of the effective interaction,

but not directly on the strength B of the magnetic field. The latter may affect the critical velocity

vd only implicitly via a possible change of the effective screening length λ with B.

The equation for the first-order velocity correction is obtained from Eq. (2) replacing on the

right-hand side of the exact relative coordinate r tð Þ by r0 tð Þwith the solutions v1 tð Þ ¼ _r1 tð Þ and

r1 tð Þ ¼
Z=e2

m
�bQ∥ tð Þ þ Re b b �Q⊥ tð Þð Þ �Q⊥ tð Þ þ i b�Q⊥ tð Þ½ �½ �

� �

: (3)

Here, we have introduced the following abbreviations:

Q∥ tð Þ ¼

ðt

�∞

b � f r0 τð Þ½ � t� τð Þdτ,

Q⊥ tð Þ ¼
1

iωc

ðt

�∞

f r0 τð Þ½ � eωc t�τð Þ � 1
h i

dτ

(4)

and have assumed that all corrections vanish at t ! �∞.

2.3. Second-order stopping power

We now consider the interaction process of an individual ion with a homogeneous electron

plasma described by a velocity distribution function f veð Þ and a density ne. We assume that the

ion experiences independent binary collisions (BCs) with the electrons. The total stopping

force, F við Þ, acting on the ion is then obtained by multiplying the binary force Z=e2f r tð Þ½ � by the

element of the flux relative flux nevrd
2sdt, integrating with respect to time and folding with

velocity distribution of the electrons. The impact parameter s introduced here in the electron

flux is defined by s ¼ R0⊥ ¼ R0 � nr nr � R0ð Þ and is the component of R0 perpendicular to the
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relative velocity vector vr with nr ¼ vr=vr. As can be inferred from Eq. (1), s represents the

distance of the closest approach between the ion and the guiding center of the electron’s helical

motion.

The resulting stopping power, S við Þ ¼ � vi
vi
� F við Þ, then reads

S við Þ ¼ �
Ze2ne
vi

ð

dvef veð Þvr

ð

d2s

ð

∞

�∞

vi � f r tð Þ½ �dt, (5)

which is an exact relation for uncorrelated BCs of the ion with electrons. We evaluate this

expression within a systematic perturbative treatment (see Ref. [47] for more details). First, we

introduce the two-particle interaction potential U rð Þ, and the binary force f rð Þ is written using

Fourier transformation in space. Furthermore, the factor eik�r tð Þ in the Fourier transformed

binary force is expanded in a perturbative manner as eik�r tð Þ ≃ eik�r0 tð Þ 1þ i k � r1 tð Þð Þ½ �, where

r0 tð Þ and r1 tð Þ are the unperturbed and the first-order corrected relative coordinates (Eqs. (1)

and (3)), respectively. Next, we consider only the second-order binary force f2 and the

corresponding stopping force F2 with respect to the binary interaction since the averaged

first-order force F1 (related to f1) vanishes due to symmetry reasons [8, 24, 44, 45, 47]. Within

the second-order perturbative treatment, the stopping power can be represented as

S við Þ ¼ �
Z=e2ne
vi

ð

dvef veð Þvr

ð

d2s

ð

dkU kð Þ k � við Þ

ð

∞

�∞

k � r1 tð Þ½ �eik�r0 tð Þdt: (6)

From Eq. (6) it is seen that the second-order stopping power is proportional to Z2. Inserting

now Eqs. (1) and (3) into Eq. (6), assuming an axially symmetric velocity distribution

f veð Þ ¼ f ve∥; ve⊥
� �

, and performing the s integration, we then obtain

S ¼ �
2πð Þ4Z2=e4ne

mvi

ð

∞

�∞

dve∥

ð

∞

0

f ve∥; ve⊥
� �

ve⊥dve⊥

�
Ð

dk U kð Þj j2 k � við Þ

ð

∞

0

k2∥ þ k2⊥
sin ωctð Þ

ωct

� �

� J0 2k⊥a sin
ωct

2

� 	

sin k � vrtð Þdtd,

(7)

where Jn is the Bessel function of the nth order; k∥ ¼ k � bð Þ and k⊥ are the components of k

parallel and transverse to b, respectively; and ve∥ and ve⊥ are the electron velocity components

parallel and transverse to b, respectively. This general expression (7) for the stopping power of

an individual ion has been derived within second-order perturbation theory but without any

restriction on the strength of the magnetic field B.

2.4. The SP for a regularized and screened coulomb potential

For an electron plasma with an isotropic Maxwell distribution, the velocity distribution rele-

vant for the averaging in Eq. (7) is given by
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f veð Þ ¼ 1

2πð Þ3=2v3th
e�v2e =2v

2
th , (8)

where the thermal velocity vth is related to the electron temperature by v2th ¼ T=m (here, the

temperature is measured in energy units). Inserting Eq. (8) into expression (7) and assuming

now a spherically symmetric potential U ¼ U kð Þ yields after performing the velocity integra-

tions (see Ref. [56]), the stopping power

S við Þ ¼ 8Z2=e4ne
mωcvi

2πð Þ4
4

ð

∞

0

dk∥

ð

∞

0

U2 kð Þk⊥dk⊥
ð

∞

0

e�
t2

2 k
2
∥a

2

e�k2⊥a
2ð1� cos t k2∥ þ k2⊥

sin t

t

� 	

tdt

� k⊥ai⊥ cos k∥ai∥t
� �

J1 k⊥ai⊥tð Þ þ k∥ai∥ sin k∥ai∥t
� �

J0 k⊥ai⊥tð Þ

 �

:

(9)

Here, we have introduced the thermal cyclotron radius of the electrons a ¼ vth=ωc, and

ai⊥ ¼ vi⊥=ωc, ai∥ ¼ vi∥=ωc, where vi⊥ and vi∥ are the ion velocity components transverse and

parallel to b, respectively. For the Coulomb interaction U kð Þ ¼ UC kð Þ, the full two-dimensional

integration over the s-space results in a logarithmic divergence of the k integration in Eqs. (7)

and (9). To cure this, cutoff parameters kmin and kmax must be introduced (see, e.g., Refs. [8, 24,

47] for details). These cutoffs are related to the screening of the interaction in a plasma target

and the incorrect treatment of hard collisions in a classical perturbative approach. As an

alternative implementation of this standard cutoff procedure, we here employ the regularized

screened interaction U rð Þ ¼ UR rð Þ ¼ 1� e�r=λ
� �

e�r=λ=r with the Fourier transform

UR kð Þ ¼ 2

2πð Þ2
1

k2 þ λ�2
� 1

k2 þ d�2

� 	

, (10)

where d�1 ¼ λ�1 þ ƛ
�1: UR represents a Debye-like screened interaction UD (see Section 2.1)

which is additionally regularized at the origin [51, 52] and thus removes the problems related

to the Coulomb singularity in a classical picture and prevents particles (for Z > 0) from falling

into the center of the potential. The parameter λ related to this regularization is here consid-

ered as a given constant or as a function of the classical collision diameter [47].

Substituting the interaction potential (10) into Eq. (9) and performing the k∥ integration, we

arrive, after lengthy but straightforward calculations, at

S við Þ ¼ 4
ffiffiffiffi

π
p

Z2=e4ne
mv2th

v

ð

∞

0

dt

t

ð1

0

dζ exp �v2ζ2P t; ζð Þ

 �

Φ Ψ t; ζð Þ½ �

� P1 t; ζð Þ þ sin αtð Þ
αt

P2ðt; ζÞ
� �

ζ
2 1� ζ

2
� �

G t; ζð Þ ,

(11)

where P t; ζð Þ ¼ cos 2ϑþ sin 2ϑ=G t; ζð Þ and

P1 t; ζð Þ ¼ 2 cos 2ϑþ P t; ζð Þ 1� 2v2ζ2 cos 2ϑ
� �

, (12)

P2 t; ζð Þ ¼ 2

G t; ζð Þ
sin 2ϑ

G t; ζð Þ þ P t; ζð Þ 1� v2ζ2 sin 2ϑ

G t; ζð Þ

� 	� �

: (13)
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Here, we have introduced the dimensionless quantities v ¼ vi=
ffiffiffi

2
p

vth, α ¼ ωcλ=vth. ϑ is the angle

between b and vi, Ψ t; ζð Þ ¼ t2=2
� �

1� ζ
2

� �

=ζ2, G t; ζð Þ ¼ Θ tð Þζ2 þ 1� ζ
2, Θ tð Þ ¼ 2

αt sin
αt
2

� �2
, and

Φ zð Þ ¼ e�z þ e�ϰ2z � 2

ϰ2 � 1

1

z
e�z � e�ϰ2z

 �

, (14)

where ϰ ¼ λ=d ¼ 1þ λ=ƛ.

Eq. (11) for the SP is the main result of the outlined BC treatment which will now be evaluated

in the next sections.

3. Comparison with previous approaches

Previous theoretical expressions for the stopping power which have been extensively

discussed by the plasma physics community (see, e.g., Refs. [3, 8] for reviews) basically

concern the two limiting cases of vanishing and infinitely strong magnetic fields. We therefore

investigate the present approach for these two cases, first for arbitrary interactions U kð Þ and
electron distributions f veð Þ as given by Eq. (7) and later for the more specific situation of the

regularized interaction (10) and the velocity distribution (8) as given by Eq. (11).

3.1. General SP Eq. (7) at vanishing and infinitely strong magnetic fields

At vanishing magnetic field B ! 0ð Þ, sin ωctð Þ= ωctð Þ ! 1 and the argument of the Bessel

function in Eq. (7) should be replaced by k⊥ve⊥t. Then, denoting the second-order SP at

vanishing magnetic field as S0 and assuming spherically symmetric potential with U ¼ U kð Þ,
one obtains

S0 við Þ ¼ 4 2πð Þ2Z2=e4ne
mv2i

U

ðvi

0

f veð Þv2edve, (15)

where U is the generalized Coulomb logarithm:

U ¼ 2πð Þ4
4

ð

∞

0

U2 kð Þk3dk: (16)

Employing the regularized and screened potential U kð Þ given by Eq. (10), the generalized

Coulomb logarithm is U ¼ UR ¼ Λ ϰð Þ (see also Refs. [8, 24, 44, 45]), where

Λ ϰð Þ ¼ ϰ
2 þ 1

ϰ2 � 1
lnϰ� 1: (17)

Taking the bare Coulomb interaction with U kð Þ ¼ UC kð Þ � 1=k2, Eq. (16) diverges logarithmi-

cally at k ! 0 and k ! ∞, and two cutoffs kmin ¼ 1=rmax and kmax ¼ 1=rmin must be introduced
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as discussed in Section 2.4. In this case the generalized Coulomb logarithm takes the standard

form U ¼ UC ¼ ln kmax=kminð Þ ¼ ln rmax=rminð Þ.

The asymptotic expression of Eq. (15) at high ion velocities can be easily derived using the

normalization of the distribution function which results in

S0 við Þ≃
4πZ2=e4ne

mv2i
U : (18)

At an infinitely strong magnetic field B ! ∞ð Þ, the term in Eq. (7) proportional to k2⊥ and the

argument of the Bessel function vanish since the cyclotron radius a ! 0. In this limit, denoting

the SP as S
∞
við Þ and assuming a spherically symmetric interaction potential, we arrive at

S∞ við Þ ¼
2πZ2=e4ne

m
Uvi sin

2ϑ

ð

1

v5
vi∥ve∥ � 2v2e∥ þ v2i

 �

f e veð Þdve: (19)

The corresponding high-velocity asymptotic expression is given by

S
∞
við Þ ¼

2πZ2=e4ne
mv2i

U sin 2ϑ: (20)

Eqs. (15) and (19) and their asymptotic expressions for high velocities in Eqs. (18) and (20),

respectively, agree with the results derived by Derbenev and Skrinsky in Ref. [57] in case of the

Coulomb interaction potential, i.e., with U ¼ UC. Using instead a regularized interaction

potential and thus the Coulomb logarithm, UR allows closed analytic expressions and converg-

ing integrals and avoids any introduction of lower and upper cutoffs “by hand” in order to

restrict the domains of integration. Moreover, employing the bare Coulomb interaction may, as

pointed out by Parkhomchuk [58], result in asymptotic expressions which essentially different

from Eqs. (19) and (20), which is related to the divergent nature of the bare Coulomb interac-

tion (see Ref. [47]).

3.2. Some limiting cases of Eq. (11)

Next, we discuss some asymptotic regimes of the SP (Eq. (11)) where the regularized interac-

tion (Eq. (10)) and the isotropic velocity distribution (Eq. (8)) have been assumed. In the high-

velocity limit where vi > ωcλ; vthð Þ, only small t contributes to the SP (Eq. (11)) due to the short

time response of the electrons to the moving fast ion. In this limit we have sin αtð Þ=αt ! 1. The

remaining t integration can be performed explicitly. This integral is given by [47].

ð

∞

0

dt

t
Φ Ψ t; ζð Þ½ � � Λ ϰð Þ: (21)

Here, the function Φ zð Þ is determined by Eq. (14), and Λ ϰð Þ is the generalized Coulomb

logarithm (Eq. (17)). The remaining expressions do not depend on the magnetic field, i.e., ωc,

as a natural consequence of the short time response of the magnetized electrons. In fact,
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sin αtð Þ=αt ! 1 and G t; ζð Þ ! 1 and the related t integration (Eq. (21)) are also valid for

vanishing magnetic field α ! 0. Integration by parts turns Eq. (11) into

S0 ¼
4πZ2=e4ne

mv2
i

Λ ϰð Þ erf vð Þ � 2
ffiffiffiffi

π
p ve�v2

� �

, (22)

where erf zð Þ is the error function and v ¼ vi=
ffiffiffi

2
p

vth is again the scaled ion velocity. The SP

(Eq. (22)) is isotropic with respect to the ion velocity vi and represents the two limiting cases of

high velocities at arbitrary magnetic field and arbitrary velocities at vanishing field. Of course,

expression (22) can be also obtained by performing the remaining integration in the

nonmagnetized SP (Eq. (15)) using the isotropic velocity distribution (Eq. (8)) and U ¼ Λ ϰð Þ.

A further increase of the ion velocity finally yields

S0 ≃
4πZ2=e4ne

mv2
i

Λ ϰð Þ, (23)

which completely agrees with the asymptotic expression (18) in case of U ¼ Λ ϰð Þ. Inspecting
Eq. (23) shows that the SP does not depend explicitly on the electron temperature T at

sufficiently high velocities, while T may still be involved in the generalized Coulomb loga-

rithm Λ ϰð Þ.

At B ! 0 and small velocities vi < vthð Þ, the SP (Eq. (22)) becomes

S0 ≃
4π

ffiffiffiffiffiffi

2π
p

Z2=e4ne

3mv3th
viΛ ϰð Þ: (24)

Now, we consider the situation when the magnetic field is very strong and the electron

cyclotron radius is the smallest length scale, ωcλ≫ vi; vthð Þ, and the SP is only weakly sensitive

to the transverse electron velocities and, hence, is affected only by their longitudinal velocity

spread. In this limit sin αtð Þ=αt ! 0 and G t; ζð Þ ! 1� ζ
2 are obtained from Eq. (11) after

straightforward calculations:

S
∞
¼ 4π

ffiffiffiffi

π
p

Z2=e4ne
mv2th

vΛ ϰð Þ
ð1

0

e�v2ζ
2
P ζð Þζ2dζ 2 cos 2ϑþ P ζð Þ 1� 2v2ζ2 cos 2ϑ

� �
 �

, (25)

where P ζð Þ ¼ cos 2ϑþ sin 2ϑ= 1� ζ
2

� �

.

After changing the variable ζ in Eq. (25) to x ¼ ζ P ζð Þ½ �1=2 and some subsequent rearrangement,

Eq. (25) can be expressed alternatively as

S
∞
¼ 2

ffiffiffiffi

π
p

Z2=e4ne
mv2th

vΛ ϰð Þ sin 2ϑ

ð

∞

�∞

e�v2x2x2dx

1þ x2 � 2x cosϑ
Þ3=2: (26)

Up to the definition of the Coulomb logarithm (i.e., U ¼ Λ ϰð Þ versus U ¼ UC), the expressions

are identical to those obtained by Pestrikov [59].
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In particular, at ϑ ¼ 0 and ϑ ¼ π=2 (i.e., when ion moves parallel or transverse to the magnetic

field, respectively), Eq. (25) (or Eq. (26)) yields

S
∞
¼ 4

ffiffiffiffi

π
p

Z2=e4ne
mv2th

Λ ϰð Þve�v2 , (27)

S
∞
¼ 2

ffiffiffiffi

π
p

Z2=e4ne
mv2th

Λ ϰð Þve�v2=2 1þ v2
� �

K0
v2

2

� 	

� v2K1
v2

2

� 	� �

: (28)

respectively, where Kn zð Þ (with n ¼ 0, 1) is the modified Bessel function. It is also constructive

to obtain the angular averaged stopping power. From Eq. (25) one finds

S
∞
vð Þ ¼ 1

2

ðπ

0

S
∞
v;ϑð Þ sinϑdϑ ¼ 4πZ2=e4ne

3mv2
i

Λ ϰð Þ erf vð Þ þ 2
ffiffiffiffi

π
p v v2E1 v2

� �

� e�v2
h i

� �

, (29)

where E1 zð Þ is the exponential integral function.

In the high-velocity limit with ωcλ≫ vi ≫ vth, the SP (Eq. (25)) becomes

S
∞
≃

2πZ2=e4ne
mv2

i

Λ ϰð Þ sin 2ϑ erf vð Þ � 2
ffiffiffiffi

π
p ve�v2

� �

þ 4
ffiffiffiffi

π
p v3e�v2 cos 2ϑ

� �

: (30)

With further increase of the ion velocity, we can then neglect the exponential term in Eq. (30),

while erf vð Þ ! 1 yields the asymptotic expression (Eq. (20)) (for U ¼ Λ ϰð Þ).

The SP given by Eq. (30) (or Eq. (20) with U ¼ Λ ϰð Þ) decays as the corresponding SP

(Eq. (23)) like � v�2
i with the ion velocity. But here, the parallel SP (Eq. (27)) vanishes

exponentially at ϑ ¼ 0 which is a consequence of the presence of a strong magnetic field,

where the electrons move parallel to the magnetic field. If the ion moves also parallel to the

field (i.e., ϑ ¼ 0), the averaged stopping force must vanish within the BC treatment for

symmetry reasons.

Finally, we also investigate the case of small velocities at strong magnetic fields. Considering a

small ion velocity v≪ 1ð Þ in Eq. (25), we arrive at

S∞ ¼ 4πZ2=e4ne
mv2th

Λ ϰð Þv sin 2ϑ ln
2

v sinϑ

� 	

� γ

2
� 1

� �

þ cos 2ϑ

� �

, (31)

where γ≃ 0:5772 is Euler’s constant. Now, it is seen that the SP, S∞, leads at low ion velocities

v≪ 1 and for a nonzero ϑ to a term which behaves as � v ln 1=vð Þ. Thus, the corresponding

friction coefficient diverges logarithmically at small v. This is a quite unexpected behavior

compared to the well-known linear velocity dependence without magnetic field (see asymp-

totic expressions above). Finally, at ϑ ¼ 0 the logarithmic term vanishes and the SP behaves as

S∞ � v.
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4. Features of the SP (Eq. (11)) and comparison with CTMC simulations

In this section we study some general properties of the SP of individual ions resulting from the

BC approach by evaluating Eq. (11) numerically. We consider the effect of the magnetic field on

the SP at various temperatures of the plasma. The density ne ≃ 1016cm�3 and the temperatures

T ≃ 1eV, 10 or 100 eV of the electron plasma, are in the expected range of the envisaged

experiments on proton or alpha particles stopping in a magnetized target plasma [46] (see

corresponding Figures 1–3). As an example we choose proton projectile for our calculations. In

all examples considered below, the regularization parameter ƛ0 ¼ 10�10mm thereby meets the

condition ƛ0 ≫ b0 0ð Þ, i.e., ƛ0, and does not affect noticeably the SP (Eq. (11)) at low and medium

velocities as shown in Appendix A (see also Ref. [47] for more details).

For a BC description beyond the perturbative regime, a fully numerical treatment is required.

In the present cases of interest, such a numerical evaluation of the SP is rather intricate but can

be successfully implemented by classical trajectory Monte Carlo (CTMC) simulations [37–40].

In the CTMC method, the trajectories for the ion-electron relative motion are calculated by a

numerical integration of the equations of motion (Eq. (2)). The stopping force is then deduced

by averaging over a large number (typically 105–106) of trajectories employing a Monte Carlo

Figure 1. The SP [in keV/cm] for protons as a function of the ion velocity vi [in units of vth ] and for fixed plasma

temperature T ¼ 1eV. The theoretical stopping power (Eq. (11)) is calculated for ƛ0 ¼ 10�10m (see appendix a for details)

and for an electron plasma with ne ¼ 1016cm�3 in a magnetic field of B ¼ 0 (black), 45 T (green), 200 T (blue), 103 T (red),

104 T (green), and B ¼ ∞ (cyan). The angle ϑ between B and vi is ϑ ¼ 0 (left), ϑ ¼ π=4 (center), and ϑ ¼ π=2 (right). The

CTMC results for B ¼ ∞ case are shown by the filled circles.

Figure 2. Same as in Figure 1 but for T ¼ 10eV. The SP is given in units eV/cm.
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sampling for the related initial conditions. For a more detailed description of the method, we

refer to Refs. [8, 44, 45]. Both the analytic perturbative treatment and the non-perturbative

numerical CTMC simulations are based on the same BC picture and use the same effective

spherical screened interaction U rð Þ. The following comparison of these both approaches thus

essentially intends to check the validity and range of applicability of the perturbative approach

as it has been outlined in the preceding sections.

5. Stopping profiles and ranges

5.1. General trends

The parameter analysis initiated on Figures 1–3 at ne ¼ 1016cm�3 and T ¼ 1� 10� 100 eV is

implemented for monitoring a possible experimental vindication through a fully ionized

hydrogen plasma out of high-power laser beams available on facilities such as ELFIE (Ecole

Polytechnique) or TITAN (Lawrence Livermore) [62]. The given adequately magnetized tar-

gets (in the 20–45 T range) would then be exposed to TNSA laser-produced proton beams out

of the same facilities, in the hundred keV-MeV energy range [62].

Therefore, we are looking for the most conspicuous effect of the applied magnetized intensity

B on the proton stopping.

Fixing ne and varying T (see Figures 1–3) display an ubiquitous and increasing anisotropy

shared by the stopping profiles (SP) with increasing B and θ and angle between B
!
and initial

projectile velocity V
!
.

Moreover, that anisotropy evolves only moderately between θ ¼ π

4 and
π

2.

Another significant feature is the extension to any B 6¼ 0 of the B ¼ 0 scaling ne
T
. For instance, SP at

ne ¼ 1012 cm�3 andT ¼ 1 eV, at a givenθ, is equivalent to that for ne ¼ 1014 cm�3 andT ¼ 100 eV.

As expected, B effects impact essentially the low-velocity section ( V
Vth

, Vth = target electron

thermal velocity) of the ion stopping profile. One can observe, increasing with B, a shift to the

Figure 3. Same as in Figure 1 but for T ¼ 100eV. The SP is given in units eV/cm.
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left of SP maxima, as shown in Figure 4 at B ¼ 45 tesla, for the profiles displayed in Figure 3,

with θ-averaged SP remaining close to θ ¼
π

2.

Switching now attention to corresponding ranges, down to projectile at rest Ep ¼ 0
� �

, one

witnesses on Figure 5 the counterpart of the above-noticed SP behavior.

In a low projectile velocity V
Vth

≤ 1
 �

, one gets the largest B effects and the smallest proton

ranges attributed to the highest B. The fan of B ranges then merges on a given point, located

between 10 keV and 100 keV at ne ¼ 1016cm�3, and then inverts itself with increasing B

featuring now increasing ranges. Moreover, the aperture of the fan of ranges increases steadily

with θ.

Finally, it can be observed that for θ ¼ 0, the infinite magnetized range looks rather peculiar

and reminiscent of the ion projectile gliding on B
!

∥ V
!

[8, 34].

Figure 4. Same as in Figure 3 restricted to B ¼ 45 T, featuring θ-dependent and θ-averaged SP in eV/cm.

Figure 5. Ranges, down to zero energy pertaining to SP in Figure 3.
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5.2. Specific trends

The projected experimental setup [62] could manage constant, static, and homogeneous B

values up to 45 T. So, we are let to investigate ne range limits within which significant B effects

can be observed.

Obviously, ne ¼ 1012 cm�3 is expected to show quantitatively larger B impact than 1018 cm�3.

Giving attention to proton ranges of T dependence in a low-density plasma ne ¼ 1012cm�3
� �

at

T ¼ 1 and 100 eV, respectively, (Figure 6), one witnesses the smallest ranges for V
Vth

≪ 1,

increased by four orders of magnitude between 1 and 100 eV while remaining essentially

unchanged for V
Vth

≥ 1. Turning now to ne ¼ 1018cm�3 at T ¼ 1 eV, one can see that the given

SP remains quasi-isotropic, hardly θ-dependent, except at extreme magnetization (B ¼ ∞).

Discrepancies between B = 0 and 20 T remain visible only for V
Vth

≤ 2. B ¼ ∞ does not feature

anymore the highest stopping when V
Vth

≤ 1. Also, B ¼ 103 SP exhibits a few top wigglings.

Upshifting Tat 10 eVyields back ne ¼ 1018cm�3 SPs very similar to these displayed on Figure 2

(ne ¼ 1016 cm�3, T ¼ 10 eV) Figure 7.

Corresponding proton ranges (ne ¼ 1018 cm�3, T ¼ 1 eV) are shown in Figure 8.

Experimentally, accessible and very small ranges are thus documented for V
Vth

≤ 1. Here, B ¼ 0

and 20 T data remain everywhere distinguishable.

Figure 6. Proton ranges down to the rest of the target with ne ¼ 1012 cm�3, T ¼ 1, and 100 eV at θ ¼
π

2.

Figure 7. Same as in Figure 1 for ne ¼ 1018 cm�3 and T ¼ 1 eV with θ ¼ 0, π4, and
π

2.

Stopping Power of Ions in a Magnetized Plasma: Binary Collision Formulation
http://dx.doi.org/10.5772/intechopen.77213

81



5.3. Very-low-velocity proton slowing down

Up to now we limited our investigation to proton stopping by target electrons. In the very-

low-velocity regime V ≤Vthi, the target protons can also contribute significantly as evidenced

on Figure 9. This topic will be more thoroughly addressed in a separate presentation.

6. Summary

We developed and extensively used a kinetic approach based on a binary collision formulation

and suitably regularized Coulomb interaction, to numerically document for any value of the

Figure 8. Proton ranges in electron target ne ¼ 1012 cm�3 and T ¼ 1 eV with θ ¼ 0 and π

4.

Figure 9. Very-low-velocity proton slowing down on target protons at B ¼ 103T (upper straight line) contrasted to target

electron stopping (any B, lower straight lines).
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applied magnetization B, the stopping of a proton projectile in a fully ionized hydrogen

plasma target. Both ion projectile and target plasma parameters have been selected in order to

fit a planned ion-plasma interaction experiment in the presence of an applied magnetic field ~B.

It should be pointed out that we restricted the target plasma to its electron component. It

therefore remains to include the target ion contribution to proton stopping [63], thus featuring

a complete low-velocity ion slowing down.

More generally, we expect that the present investigation, experimentally geared as it is, could

help to bridge a long-standing and persisting gap between theoretical speculations and exper-

imental facts in the field of nonrelativistic ion stopping in magnetized target plasmas.
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Appendix A: Adjustment of the effective interaction

Our results (Eq. (11)) were derived by using the screened interaction UR rð Þ. As already men-

tioned, the use and the modeling of such an effective two-body interaction are a major but

indispensable approximation for a BC treatment where the full ion-target interaction is

replaced by an accumulation of isolated ion-electron collisions. The replacement of the compli-

cated real non-spherically symmetric potential, like the wake fields as shown and discussed in

Ref. [60], with a spherically symmetric one is, however, well motivated by earlier studies on a

BC treatment at vanishing magnetic field (see Refs. [53–55]). It was shown by comparison with

3D self-consistent PIC simulations that the drag force from the real nonsymmetric potential

induced by the moving ion can be well approximated by an BC treatment employing a

symmetric Debye-like potential with an effective velocity-dependent screening length λ við Þ.

In these studies also a recipe was given how to derive the explicit form of λ við Þ, which turned

out to be not too much different from a dynamic screening length of the simple form

λ við Þ ¼ λD 1þ vi=vthð Þ2
h i1=2

. Here, λD ¼ vth=ωp is the Debye screening length at vi ¼ 0, ωp is

the electron plasma frequency, and vth is a thermal velocity of electrons. Although no system-

atic studies about the use of such an effective interaction with a screening length λ við Þ have

been made for ion stopping in a magnetized electron plasma, the replacement of the real

interaction by a velocity-dependent spherical one should be a reasonable approximation also

in this case. The introduced dynamical screening length λ við Þ also implies the assumption of a

weak perturbation of the electrons by the ion and linear screening where the screening length

is independent of the ion charge Ze, which coincide with the regimes of perturbative BC (see,

e.g., Ref. [54]). Therefore, we do not consider here possible nonlinear screening effects.
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Next, we specify the parameter ƛ which is a measure of the softening of the interaction

potential at short distances. As we discussed in the preceding sections, the regularization of

the potential (Eq. (10)) guarantees the existence of the s integrations, but there remains the

problem of treating accurately hard collisions. For a perturbative treatment, the change in

relative velocity of the particles must be small compared to vr, and this condition is increas-

ingly difficult to fulfill in the regime vr ! 0. This suggests to enhance the softening of the

potential near the origin of the smaller vr. Within the present perturbative treatment, we

employ a dynamical regularization parameter ƛ við Þ [44, 45], where ƛ
2
við Þ ¼ Cb

2
0 við Þ þ ƛ

2
0 and

b0 við Þ ¼ ∣Z∣=e2=m v2
i
þ v2th

� �

. Here, b0 is the averaged distance of the closest approach of two

charged particles in the absence of a magnetic field, and ƛ0 is some free parameter. In addition

we also introduced C≃ 0:292 in ƛ við Þ. In Refs. [44, 45], this parameter is deduced from the

comparison of the second-order scattering cross sections with an exact asymptotic expression

derived in Ref. [61] for the Yukawa type (i.e., with ƛ ! 0) interaction potential. As we have

shown in Refs. [44, 45] employing the dynamical parameter við Þ, the second-order cross

sections for electron-electron and electron-ion collisions excellently agree with CTMC simula-

tions at high velocities. Also, the free parameter ƛ0 is chosen such that ƛ0 ≪ b0 0ð Þ, where b0 0ð Þ is

the distance b0 við Þ at vi ¼ 0. From the definition of við Þ, it can be directly inferred that ƛ0 does

not play any role at low velocities, while it somewhat affects the size of the stopping force at

high velocities when b0 við Þ≲ ƛ0. More details on the parameter ƛ0 and its influence on the

cooling force are discussed in Ref. [47].
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