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Abstract

Human pancreatic innervation is of particular interest due to its possible role in the 
pathogenesis of such diseases as diabetes mellitus, pancreatitis and pancreatic cancer. 
Despite the clinical importance, data concerning pancreatic innervation during human 
ontogeny and in various disorders are very limited. In this chapter, we present a review 
on human pancreatic autonomic innervation on the basis of the literature data and our 
previous results. Special attention is paid to the innervation of the endocrine pancreas. 
Gradual branching of neural network was seen during human pancreatic development. 
Innervation of the foetal pancreas is more abundant than in adults. In agreement with 
previous observations, we have revealed a close integration and similarity between 
endocrine cells and nervous elements in the developing human pancreas. Moreover, 
simultaneous interactions between the nervous system components, epithelial cells and 
endocrine cells were detected in the pancreas during prenatal human development. It has 
been suggested that pancreatic innervation plays an important role not only in regulation 
of endocrine and exocrine activity but also in normal islet morphogenesis.

Keywords: pancreatic innervation, islets of Langerhans, human development, 
sympathetic system, parasympathetic system

1. Introduction

The pancreas of most vertebrates is an organ that combines both endocrine and exocrine func-

tions. Functions of the exocrine pancreas are the synthesis, accumulation and secretion of 

digestive enzymes (protease, amylase, lipase and nucleases) and preferment (elastase, pro-

carboxypeptidase, trypsinogen, pepsinogen, deoxyribonuclease and ribonuclease). The main 
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function of the endocrine pancreas is regulation of carbohydrate metabolism. Specialised 

endocrine cells are grouped in units called pancreatic islets or islets of Langerhans. Islets of 

mammals (including humans) contain four major types of endocrine cells: beta cells secret-

ing insulin, alpha cells secreting glucagon, delta cells secreting somatostatin and PP cells that 

synthesise pancreatic polypeptide [1]. Recently, another type of pancreatic endocrine cells 

was described—ghrelin-containing cells (epsilon cells) [2]. Pancreatic innervation is of interest 

due to its role in the pathogenesis of some diseases including chronic pancreatitis, pancreatic 

cancer and type 1 diabetes. Pain is the dominant clinical symptom in the majority of cases 

(73–93%) in patients with pancreatic cancer and pancreatitis. At the same time, the aetiology 

and pathogenesis of pain in chronic pancreatitis and pancreatic cancer are still unclear and are 

the subject of numerous studies [3].

In experiments on rodents (mice and rats) and cell cultures, it was indicated that nerve fibres 
and glial cells located in pancreatic islets may be the first target of autoimmune attack in type 
1 diabetes [4–7]. Recently, there were reports of involvement of the peripheral nervous system 

in the pathogenesis of types 1 and 2 diabetes in humans [8, 9]. Moreover, the participation 

of the nervous system in the regulation of maturation, level of proliferation and number of 

insulin-producing beta cells, both in prenatal pancreatic development and in the postnatal 

period, was indicated in a number of experimental studies. Therefore, detailed information 

about the innervation of the endocrine pancreas is needed for understanding the mechanisms 

of beta cell pool renewal.

The pancreas is well innervated by the autonomic nervous system in various mammalian 

species [3, 10–15]. Rich innervation of the blood vessels and the exocrine part of the pancreas 

as well  a more abundant innervation of the islets compared with the surrounding acinar part 

was detected already in the early studies [16, 17].

Connections between neurons are usually studied using anterograde and retrograde label-

ling of pathways. Pancreatic innervation was studied in various animal species using differ-

ent tracing methods involving viruses, cholera toxin B, horseradish peroxidase, True Blue or 

DiI. It is believed that nerve fibres enter (and exit) in the pancreas as a part of neurovascular 
trunks. Within the pancreas, they also pass along the blood vessels and terminate (or, con-

versely, begin) near to the capillary wall and endocrine cells [18]. At the same time, they do 

not form classical synapses with target cells, but release neurotransmitters into the inter-

cellular space, thus affecting more than one target simultaneously (i.e. they are enpassant 
synapses) [14]. Using retrograde labelling, the connection of pancreatic innervation with the 

central parasympathetic and sympathetic neurons in the brain stem, midbrain, hypothala-

mus and forebrain was shown [19–21]. Some of these brain centres are involved in monitor-

ing of food intake or circadian rhythms, and it would be logical to assume that they send 

signals to the pancreas to adapt the digestive ferments and pancreatic hormone secretion to 

behavioural status. However, the central regulation of these processes has not yet been suf-

ficiently studied [14].

In the pancreas, nerve endings were shown around blood vessels, as well as pancreatic aci-

nar, ductal and endocrine cells, using immunohistochemistry and electron microscopy [17, 

18]. Four types of plexuses (perivascular, periductal, periacinar and peri-insular) have been 

Autonomic Nervous System16



identified in the mouse pancreas [18]. Similar data were obtained in studies on the pancreas 

of the rat and nutria [22, 23]. One of the most interesting features of the mammalian pancreas 

is that endocrine cells may form highly organised complexes with structures of the nervous 

system, so-called neuro-insular complexes (NICs). The structure of NIC in the human pancreas 

has not been studied in detail since their first description by van Campenhout [24] and Simard 

[25]. Fujita described two types of NIC, which he observed in the foetal and adult pancreas of 

the dog, cat and rabbit [26]. Some of the pancreatic ganglia contained endocrine cells forming 

NIC type I (NIC I). In NIC type II (NIC II), endocrine cells lie on the surface of, or even in the 

midst of, the nerve bundle. However, the distinction between these two types of complexes 

is conditional because there is an intermediate type of complex in which islets associate with 

nerve cells and nerve fibres simultaneously. Thus, in the pancreas, endocrine islets are closely 
associated with a dispersed neural network, which consists of autonomic nerves including 

sympathetic, parasympathetic and sensory nerves. Unfortunately, because of depth limita-

tions in microscopy, this network cannot be easily portrayed by standard microtome-based 

two-dimensional (2D) histology. The systematic development of three-dimensional (3D) islet 

neurohistology has provided insight into neural-islet regulatory mechanisms and the role of 

neural tissue remodelling in the development of diabetes [27–29].

In addition, endocrine cells of pancreatic islets are similar to nervous cells in some biochemi-

cal and physiological characteristics. Some proteins expressed in endocrine cells of pancre-

atic islets are also specific to the nervous system: S100, GFAP (glial fibrillary acidic protein), 
GAD (glutamic acid decarboxylase), TH (tyrosine hydroxylase), NPY (neuropeptide Y), NSE 

(neuron-specific enolase) and others [6, 7, 30–32]. Moreover, a number of transcription factors 

that are characteristic of the nervous system, such as Ngn3 (neurogenin3), BETA2/NEUROD, 

etc., are expressed during the differentiation of pancreatic endocrine cells [33–35]. The cells 

of the endocrine pancreas are classified as cells of a dispersed (diffuse) endocrine epithelial 
system. The cells of the dispersed endocrine system are a part of the so-called APUD (amine 

precursor uptake and decarboxylation) system [36]. These cells have the combined ability to 

the capture and deposit amine precursors and synthesise biogenic amines. The obvious simi-

larity between the pancreatic endocrine cells and nerve tissue leaves the issue of its causes 

open to discuss.

The precise innervation patterns of islets are unknown, particularly in humans [37]. Every 

year reviews are published, in which morphology and function of pancreatic innervation are 

discussed (see for review [10, 11, 14, 15, 38–40]). However, the nature and distribution of the 

nervous system structures in the pancreas were studied mainly in rodents. Interspecies dif-

ferences in the structure and innervation of the pancreas between humans and experimental 

animals (mice and rats) are quite large. In humans, the pancreas is a compact organ, while 

in rodents it is treelike, distributed over the mesentery of the small intestine. Therefore, it is 

impossible to automatically transfer the data obtained on experimental animals to humans.

In addition, knowledge about the dynamics of innervation during ontogenesis and in various 

diseases of the pancreas is very limited. Single studies are devoted to the formation of inner-

vation in prenatal human development (mainly in the last century, without the use of modern 

methods). Therefore, the fine details of pancreatic innervation (such as the distribution of 
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sympathetic and parasympathetic fibres and the formation of neuro-insular complexes) in 
human ontogenesis are insufficiently studied. This is mainly due to the inaccessibility of the 
material and to a number of technical difficulties, including the quality of pancreatic autopsy 
samples due to the activity of enzymes of the exocrine part [40].

However, over the past 10 years, different groups of researchers have made significant prog-

ress in the study of the peculiarities of innervation in rodents. The most attention was paid to 
the influence of the nervous system on the endocrine pancreas. It has been shown that both 
sympathetic and parasympathetic nervous systems affect postnatal development of the endo-

crine pancreas and its plasticity in adult animals [9, 41]. For example, after vagotomy there 

was a decrease in insulin-containing cell proliferation in mice and rats [42]. The important 

role of the sympathetic innervation for the formation of islet cytoarchitecture and their func-

tional maturation during development was also shown [43].

Thanks to recent progresses in the field of islet research (including the study of isolated islets, 
in thick slices and in vivo), a number of issues concerning the structure and functions of pan-

creatic innervation have been clarified (see, e.g. [44–47]). In this chapter, we summarise the 

literature data and our previous results concerning the morphological organisation of auto-

nomic innervation in the human foetal and adult pancreas. We also discuss the possible role 

of the close integration between the nervous system and epithelial and endocrine cells in the 

development of the endocrine pancreas.

2. Sources of pancreatic innervation

The pancreas is innervated by sympathetic and parasympathetic nerve fibres [11, 13]. The 

literature data indicate poor innervation of adult human pancreatic islets in comparison with 

rodents [44, 48–50]. At the end of the twentieth century, pancreatic innervation by postgan-

glionic adrenergic and cholinergic fibres was intensively studied (for references, see [51]). 

Single nerve cells and nerve ganglia, both myelinated and unmyelinated nerve fibres of vari-
ous diameters, have been detected in the human pancreas [23, 37, 48, 49]. In a simplified form, 
it can be considered that pancreatic sympathetic innervation is effected by the fibres of the 
ventral trunk and the parasympathetic innervation by the vagus nerve.

2.1. Efferent sympathetic fibres

Bodies of neurons, which form the efferent preganglionic sympathetic nerve fibres, are local-
ised in the thoracic and upper lumbar segments of the spinal cord (T5–L1) [37, 52] or, accord-

ing to some literature, in C8–L3 [21, 53]. Myelinated axons of these cells leave the ventral 

roots of the spinal cord and terminate on the bodies of neurons that lie in the ganglia of the 

paravertebral sympathetic chain, or pass through this chain via the n. splanchnicus to the 

celiac (celiac) and superior mesenteric (mesenteric) ganglia, and then terminate on neurons 

localised in these ganglia [54, 55]. The preganglionic fibres of the sympathetic system secrete 
acetylcholine (Ach). Postganglionic nerve fibres go to the pancreas, where they secrete nor-

epinephrine, which binds to α and β adrenergic receptors and the neuropeptides galanin and 
NPY (neuropeptide Y) [10, 11, 53, 56].
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In humans, the body and tail of the pancreas are innervated by nerve fibres originating from 
the ventral plexus and accompanying two arteries: the splenic artery and the transverse artery 

of the pancreas. The pancreatic head receives the largest number of nerve fibres [57, 58].

In the exocrine pancreas, sympathetic axons contact mostly with intrapancreatic ganglia, 

blood vessels and ducts. In mice, the innervation of the exocrine part is less pronounced than 

in humans. The major nerves run along the interlobular arteries and form the peri-insular 

plexus [18]. At the same time, in mice axons of sympathetic nerves contact alpha cells, while 

contact with beta cells is not found [44]. The axons of sympathetic nerves also innervate 

smooth muscle cells and pericytes of blood vessels and perivascular space, forming the so-

called sympathetic neurovascular complex. In humans, sympathetic fibres innervate smooth 
muscle cells and pericytes and rarely contact directly with the endocrine cells. Apparently, 

the effects of the sympathetic innervation are likely mediated through indirect effects on local 
blood flow within the islet microcirculation [44, 59].

2.2. Efferent parasympathetic fibres

The bodies of the neurons forming the parasympathetic preganglionic nerve fibres lie in the 
dorsal motor nucleus of the n. vagus (X) [60–62] and, possibly, in the nucleus ambiguus [11–13]. 

Both of these nuclei are under the control of the hypothalamus. Preganglionic parasympa-

thetic fibres are directed to the pancreas as a part of the vagus nerve branches. In the pancreas, 
parasympathetic fibres terminate on the bodies of parasympathetic neurons lying in intrapan-

creatic ganglia [38, 63]. These ganglia contain from 3 to 30 neurons and are usually located in 

intralobular connective tissue, within lobules or in close proximity to islets [13, 27, 29]. It is 

also important that these ganglia receive input not only from the parasympathetic nervous 

system but also from the sympathetic nervous system, as well as fibres from other intrapancre-

atic ganglia and also from the myenteric plexus [13]. Parasympathetic fibres are also involved 
in the formation of nerve plexuses around the arteries and mingle with sympathetic fibres.

Preganglionic parasympathetic fibres secrete acetylcholine (Ach), which binds to nicotine 
receptors on the membranes of neurons [53]. Short, unmyelinated postganglionic fibres termi-
nate on the epithelial cells of acini and ducts, smooth muscle cells and islet cells. Postganglionic 

parasympathetic fibres release several neurotransmitters (Ach (acetylcholine) and NO 
(nitric oxide)) and neuropeptides (VIP (vasoactive intestinal peptide), GRP (gastrin-releas-

ing peptide) and PACAP (pituitary-activating adenyl cyclase polypeptide)) [10, 11, 13, 56].  

Postganglionic nerve fibres perform their functions mainly via Ach by binding to muscarinic 
receptors found, in particular, in the endocrine cells of the islets [12, 53]. In mice, postgan-

glionic parasympathetic nerve fibres innervate all types of islets cells [10, 11, 44]. Recently, it 

was found that parasympathetic islet innervation in humans differs from that in mice: first, 
it was shown that only a small number of fibres penetrate inside the islets (most of the axons 
terminate in the exocrine part of the pancreas) [44], and, secondly, it was recently shown that 

stimulation with Ach mostly stimulates beta and delta cells, whereas alpha cells react to a 

lesser extent [64]. Interestingly, alpha cells themselves may be the primary source of Ach in 

human islets [45]. Apparently, in human islets, this classical neurotransmitter regulates the 
activity of other cell types in a paracrine manner. However, now, this concept is again under 

revision thanks recently to the work of Tang et al. [29].
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2.3. The afferent fibres

In the pancreas, there are afferent (sensory) nerve fibres in addition to efferent sympathetic 
and parasympathetic innervation [10–12, 53, 54]. Bundles of sensory nerve fibres leave the 
pancreas and follow the sympathetic (n. splanchnicus) and vagus nerves. The bodies of sen-

sory sympathetic neurons are localised in the ganglia of the dorsal roots in the spinal cord, 

mainly at the level of the lower thoracic segments (the so-called spinal afferents) projected on 
interneuron plates I and IV [52, 65]. For the parasympathetic system, the bodies of afferent 
neurons are localised in the ganglion nodosum, sending information to the nucleus of tractus 

solitarii [12, 54]. The neurotransmitters of the sensory nerve fibres are CGRP (calcitonin gene-
related peptide) and SP (substance P). Most sympathetic and parasympathetic afferent nerves 
are sensitive to capsaicin [14]. Capsaicin (vanillin) receptors mainly transmit pain information 

[66]. In addition, Pacinian corpuscles were described in the pancreas of various mammalian 

species. The suggested function of this receptor is to transmit information about pressure and 

vibration stimuli. In the human pancreas, they were discovered in the early twentieth century 

[67]. Despite this fact being presented in many histology textbooks, in the modern literature, 

only three cases of these findings (all in pancreatic cancer) were described [67, 68]. In our 

research, we have studied pancreatic autopsies of 42 foetuses and neonates aged from the 

10th to 40th week of gestation and of 65 adults, 18 of whom suffered from diabetes mellitus 
type 2. In total, more than 1000 sections were investigated. However, Pacinian corpuscles are 

a rare finding in the human pancreas: we were able to detect Pacinian corpuscles only in one 
pancreatic section of a newborn with diagnosed diabetic fetopathy. Thus, Pacinian corpuscles 

do not appear to play a significant role in the sensory innervation of the human pancreas.

2.4. Enteric nervous system

In some studies on pancreatic innervation, it is assumed that the pancreas is innervated not 

only by extrinsic efferent and afferent nerves but also by intrinsic enteric neurons of the so-
called enteric nervous system (ENS) [12, 69]. The ENS controls the motor, secretion and other 

functions of the gastrointestinal tract and is closely related with the diffuse endocrine system 
[70]. Enteric ganglia have some morphological and functional differences from sympathetic 
and parasympathetic ganglia:

1. The ENS performs complex integrative functions independently of higher nerve centres.

2. In the ENS, a large number of various neurotransmitters, many of which are characteristic 
of the central nervous system, are produce.

3. Unlike other autonomous ganglia, enteric ganglia do not contain connective tissue and 

blood vessels. Enteric ganglia are demarcated from the surrounding tissue of the so-called 

blood-ganglionic barrier, similar to the blood–brain barrier. It is insufficiently studied, and 
not all researchers agree with its existence.

4. Glial cells of enteric ganglia are similar in morphology, cell markers and functions with 

astrocytes of the CNS.
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The complex structure of the enteric nervous system, containing a variety of morphologi-

cal and functional types of neurons and their neurotransmitters, allows the ENS to perform 
complex reflex acts, some of which are implemented autonomously and some in interac-

tion with the central nervous system and other parts of the autonomous nervous system. 

Intrapancreatic ganglia are connected with autonomous ganglia in the intestinal nerve plexus 

[71–73]. Neurotransmitters for neurons of these ganglia are, among others, serotonin and 
nitric oxide (NO) [73]. However, according the dominant viewpoint, intramural pancreatic 

neurons belong to the parasympathetic system.

3. Functional role of pancreatic innervation

As was mentioned earlier, the pancreas combines exo- and endocrine functions, secreting 

digestive enzymes and hormones, which regulate glucose homeostasis. The nervous system 

regulates the activity of both the endocrine and exocrine pancreas. However, it is problematic 

to separate the innervation of the pancreatic endocrine part from the innervation of the exo-

crine, since the tracing method used for this purpose belongs to the pancreas as a whole. In 

addition, the activity of both endocrine and exocrine parts of the pancreas depends on food 

intake. Therefore, it is not surprising that the cephalic phase has been described for both pan-

creatic parts. Although the stimulation of the ventromedial hypothalamus and efferent sym-

pathetic and parasympathetic neurons affects the secretion of islet hormones (see below), it is 
unknown whether this stimulation is direct through axons innervating the islet or indirect by 

activating other organs, which affect insulin and glucagon secretion [14]. Moreover, it is very 

difficult to separate the nervous system effects from other (e.g. humoral) influences.

So, in the laboratory of I.P. Pavlov, in 1895, I.L. Dolinsky conducted an experiment in which 

he established that acid injection into the duodenum causes a release of pancreatic juice [74]. 

In 1901, British physiologists William Baileys and Ernest Starling concluded that there is some 

substance released by the duodenum that stimulates secretion by the pancreas. In the follow-

ing year, 1902, this substance was discovered and named secretin. Secretin was the first such 
“chemical messenger” identified. This type of substance is now called a hormone.

At the same time, in the classic studies of I. P. Pavlov with M. A. Afanasiev, the nervous mech-

anism of pancreatic secretion was found. In the work “On secretory nerves of the pancreas” 

(1877), they showed that vagus nerve stimulation causes pancreatic secretion. Moreover, I. P. 

Pavlov with his colleagues detected that imaginary feeding in animals with chronic pancreatic 

fistula causes an abundant release of pancreatic juice. Later, this was confirmed by the studies 
of K. M. Bykov and G. M. Davydov in patients with pancreatic fistula. An abundant pancre-

atic juice released by this patient occurred while talking about delicious food [74]. However, 

pancreatic juice obtained after vagus nerve stimulation is released in a small quantity and is 

rich in proteins and enzymes, whereas after the secretin injection, it contains little proteins 
and enzymes and is released in large quantities [74]. It should be noted that both these factors 

(nervous and humoral) act simultaneously and synergistically.
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Currently, it is considered that efferent sympathetic nerve fibres indirectly inhibit the release 
of enzymes of the exocrine pancreas by suppressing the stimulating effects of ganglia and 
constriction of vessels (vasoconstriction), thereby reducing blood flow [13, 59]. The stimu-

lation of short, unmyelinated postganglionic parasympathetic fibres increases release from 
secretory cells of the exocrine pancreas and ducts causing vasodilation [13, 57].

The autonomous nervous system also regulates hormone release in the endocrine pancreas, 

thereby affecting glucose metabolism [10, 11, 14, 53]. Many various chemical factors affect 
insulin and glucagon expression. Auto-, juxta-, para- and endocrine ways potentially regulate 

secretion of islet hormones. Since the classical studies of Claude Bernard, which showed that 

injection into the floor of the fourth ventricle causes hyperglycemia, the involvement of the 
nervous system in the regulation of pancreatic endocrine function and metabolic control has 

been shown in many studies. It is, therefore, rather difficult to separate one effect from the 
other [14, 53].

The cellular architecture of islets affects paracrine regulation and synchronises the release of 
insulin [75]. All pancreatic islets secrete hormones consistently, with an approximately 5-min 

interval [76]. In order to create this secretion pattern, the activity of insulin-containing beta 
cells must be consistent both within the individual islet and between the islets [14]. At the 

same time, the secretory activity of other islets endocrine cells, such as glucagon-secreting 

alpha cells that have opposite effects on glucose homeostasis, should be consistent with the 
activity of beta cells. Thanks to this interaction, endocrine cells can simultaneously send sig-

nals regulating the effective delivery of islet hormones into the circulatory system and, ulti-
mately, to the liver, regulating the maintenance of glucose homeostasis [76].

However, the islets of Langerhans are a part of a complex coherent system. They are also 

exposed to humoral factors such as circulating plasma hormones (e.g. epinephrine). The 

brain also regulates the secretion of islet hormones via the autonomic nervous system [14]. 

Thus, in works by Akmaev et al. [19], it was shown that the hypothalamus is able to stimu-

late insulin secretion from beta cells of pancreatic islets along the nerve pathway, which was 

named “paraventricular-vagal.” This pathway starts from small neurons of the paraventricu-

lar nucleus (PVN) of the hypothalamus, synaptically switches in the medulla oblongata to 

neurons of the dorsal nucleus of the vagus nerve and reaches the pancreatic islets in the com-

position of the vagus nerve. In this pathway, beta cells receive stimulating signals. Inhibitory 

signals come from neurons by a humoral way: PVN neurons secrete corticotropin-releasing 

hormone, which stimulates the secretion of adrenocorticotropic hormone in the pituitary 

gland that induces the secretion of glucocorticoids in the adrenal cortex. Glucocorticoids 

inhibit insulin release from beta cells. This kind of double control, according to the authors, 

is typical for the regulation of endocrine functions. Recently, there has been data that signifi-

cantly complements this concept: various areas of the hypothalamus have different effects on 
the secretion of insulin and/or glucagon [77]. So, a detailed study of this system is needed 

to further identify both neurons and functionally related projections of the central nervous 

system regulating islet functions.

For most species studied, it is characteristic that nerve fibres are localised mainly at the 
periphery of the pancreatic islets, forming a peri-insular nervous network [17]. Only single 
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nerve fibres are detected within islets. The bodies of ganglion neurons are also rarely localised 
in the pancreatic islets and may be in direct contact with endocrine cells [17, 27, 29, 78, 79].

It is believed that autonomic innervations indirectly affect the release of insulin in the cephalic 
phase during food intake and also take part in the increase of glucagon and decrease of insu-

lin release by sympathetic stimulation [10, 80]. Stimulation of the splanchnic nerve increases 

the release of glucagon and reduces the release of insulin and somatostatin from endocrine 

cells of the pancreas [12, 14, 15]. Sympathetic nerves are also believed to be involved in islet 

response for hypoglycemia, which includes increased glucagon secretion and inhibition of 

insulin secretion. The general sympathetic effect is expressed by reducing the insulin con-

centration in plasma (by increasing the concentration of catecholamines that inhibit insulin 

secretion) [10, 11].

Parasympathetic nerves are responsible for the early phase of insulin secretion, including the 

cephalic phase (i.e. insulin secretion, which occurs during anticipation of eating). In general, 

parasympathetic stimulation is believed to increase the release of insulin, glucagon, soma-

tostatin and pancreatic polypeptide in many different species (for review, see [10, 11, 14, 15]).

Sensory nerves are also involved in the regulation of hormone secretion by endocrine cells 

[11]. Following chemical destruction of sensory nerves (capsaicin treatment) in mice, there is 

an increase in insulin secretion in response to glucose compared to control [81].

In conclusion, it should be added that pancreatic innervation is insufficiently studied, espe-

cially in humans [40, 44]. Interestingly, the innervation of the islets is very plastic: it has been 

shown that islets transplanted into the portal vein of diabetic rats were reinnervated by the 

nerves of the liver [82]. This makes it necessary to further study the role of innervation in the 

regulation of glucose homeostasis and plasticity of the endocrine part of the pancreas.

4. Pancreatic innervation during prenatal development

Despite the clinical importance, data concerning pancreatic innervation during human ontog-

eny and in diseases are very limited [37]. Such studies have been performed on rodents and 

mostly concern the sympathetic innervation [43, 55, 83]. The embryonic sources of neural ele-

ments are fibres of the vagus (n. vagus) and splanchnic nerves (n. splanchnicus) growing into 

the developing pancreas and neurons that differentiate from the neural crest cells migrating 
to the pancreas. Sympathetic fibres innervate the developing mouse pancreas starting from 
the 15th day of embryonic development (E14.5) [43]. Consequently, the degree of sympathetic 

innervation increases until 20 days of postnatal development (P20) [55]. The development of 

the pancreatic sympathetic innervation depends on nerve growth factor (NGF) [43].

The human pancreas receives extensive innervation, showing peculiar growth dynamics 

during gestation [37]. Ingrowths of nerves in the human pancreas start at 6 weeks of devel-

opment. Further morphogenesis of pancreatic innervation is characterised by the increase of 

sources of innervation and degree of nervous element differentiation [84, 85]. Large bundles 

of nerve fibres and groups of poorly differentiated neurons are found in the human  pancreas 

Development of Human Pancreatic Innervation
http://dx.doi.org/10.5772/intechopen.77089

23



starting from the 8th week of development. At the end of the 9th week, the pancreas is inner-

vated from almost all sources, characteristic of adults (celiac plexus, superior mesenteric 

plexus and posterior vagal trunk) [85]. In 1940, it was shown that pancreatic nerve cells 

migrate from the solar plexus and from ganglia located in the wall of the duodenum and 

along the branches of the vagus nerve (mainly right). At the same time, neuroblasts were 

detected in the pancreas of 20-week-old foetuses. Moreover, even in newborns pancreatic 

nerve cells were neuroblastic [86].

The gradual branching of the vascular and neural networks is observed in the human pan-

creatic development. Primitive free nerve endings are detected starting from the 12th week 

of development. In an immunohistochemical study of pancreatic innervation development in 

human foetuses, two peaks of increase in the number of structures of the nervous system in 

the head of the gland were revealed at the 14th and 22th weeks. In the pancreatic body and 

tail, the number of nerve structures increases from the 20th week [37]. By 30–32 weeks of 

development, the density of nerve endings is reduced compared to previous periods [85]. The 

innervation of pancreatic islets in humans is formed from the 14 to 15th weeks of the develop-

ment. It differs from experimental mammals (rodents): the development of pancreatic islet 
innervation in rodents (mouse, Mongolian gerbil and golden hamster) is observed in the first 
weeks after birth [83, 87, 88].

Our study was performed on a collection of pancreatic autopsies, which allows us to explore 

the features of intrapancreatic innervation directly in humans using a variety of methods: clas-

sical histology; immunohistochemistry; light, fluorescent and confocal microscopy; morpho- 
and stereometry; statistical analysis; 3D histology; and computer reconstruction. The study 

was performed on 50 pancreatic autopsies of foetuses from the 10th to 40th gestational week 

(g.w.). Foetal pancreatic autopsies were divided into four groups according to the classifica-

tion of the foetal period: pre-foetal period (10–12 g.w.), early foetal period (13–20 g.w.), middle 

foetal period (21–28 g.w.) and late foetal period (29–40 g.w.). A panel of antibodies for ner-

vous system proteins (chromogranin A, neuron-specific enolase (NSE), neural cell adhesion 
molecule (NCAM), synaptosomal-associated protein of 25 kDa (SNAP-25, peripherin, S100 

protein and neuron-specific class III β-tubulin), endocrine cell hormones (insulin, glucagon 
and somatostatin) and epithelial cells (cytokeratin 19 (CK19)) were used in this work [89, 90]. 

We generated new data concerning the spatio-temporal distribution of the innervation in the 

human pancreas during prenatal development.

In the pre-foetal period (10–12 g.w.), large weakly branched bundles of nerve fibres and nerve 
ganglia were detected already at the 10th week of gestational development using antibod-

ies to NSE, NCAM and neuron-specific β-III tubulin (Table 1). The largest bundles of nerve 

fibres were detected in the dense peri-pancreatic mesenchyme, and the group of neurons and 
bundles of nerve fibres of smaller diameter were located in the loose mesenchyme between 
pancreatic ducts (Figure 1a). A network of fine nerve fibres was not developed. In some 
cases, bundles of nerve fibres were found near large vessels. Nerve ganglia in the pancreas of 
10–12 week foetuses were small groups of cells.

Starting from 12 weeks, cells immunopositive for antibodies to S100 protein were found in ner-

vous system structures. Localisation of neuromarkers was different. In the nerves, NSE-positive 
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fibres formed the core, while small S100-positive cells surrounded them. The ganglionic cells 
were NSE-positive, and the small cells surrounding them S100-positive. The bodies of gan-

glion neurons were immunonegative to S100, that is, the positive reaction to S100 protein was 

observed in satellite cells of intrapancreatic ganglia and in Schwann cells of nerve fibre bundles, 
while NSE was detected in neuronal bodies and processes. In addition, NSE- and chromo-

granin A-positive endocrine cells were first found in 12-week foetuses (Table 1).

The formation of the human pancreatic islets starts only at 12 weeks of development. In the 

pre-foetal period, only contacts between single endocrine cells or small groups and fine nerve 
fibres were detected, and classical NIC I and NIC II were not found. At gestational week 10 
(postconception week 8), thickening of the ductal epithelial layer was found, in which endo-

crine cells were concentrated forming “buds” on pancreatic ducts. As development proceeds, 

buds containing different types of endocrine cells separate from the ducts forming small clus-

ters or mantle-type islets. In our studies, contacts between the structures of the nervous sys-

tem and epithelial cells of primitive ducts were detected in the foetal pancreas at early stages 

of development (10–13 weeks) before the formation of islets.

The formation of the pancreatic lobules begins in the early foetal period, from 13 weeks. At 

the same time, active formation of the islets of Langerhans and innervation of the endocrine 

part starts (Figure 1b). Nervous system of the pancreas of 14–15 week foetuses becomes more 

branched in comparison with 10–12 weeks of development. Large bundles of nerve fibres are 
localised in the connective tissue of gland’s capsule. Smaller nerves pass into the interlobular 

connective tissue separately or along the blood vessels. Nerve fibres and ganglia are first 
found within the lobules. At the 16th week of development, the nervous apparatus of the 

pancreas is presented by bundles of nerve fibres of different diameters and nerve ganglia, 
which are located in the interlobular connective tissue and within the lobules. The nerve fibres 
connecting two nerve ganglia were found in 14–15 week foetuses, i.e. the first clearly detected 
integration of the nervous system structures was shown.

Localisation of antigens in the structures of the nervous system was also similar with the 

pre-foetal period. In addition, the immunopositive cells for chromogranin A, SNAP-25 and 

peripherin were detected in the nerve fibres and ganglia starting from 14 to 15 weeks of the 
development (Table 1). SNAP-25, NCAM, NSE, peripherin and neuron-specific β-III tubulin 

Markers NSE NCAM Neuron-

specific 
β-III 
tubulin

S100 protein Chromogranin 
A

SNAP-25 Peripherin

Nerve 

fibres and 
ganglions

10 weeks 10 weeks 10 weeks 12 weeks 14 weeks (weak 

staining)

14 weeks 14 weeks

Endocrine 

cells

12 weeks 14 weeks 14 weeks 15–16 weeks 

(some islets 

cells)

12 weeks 16 weeks —

Table 1. Appearance of immunopositive reactions to neural proteins in the developing human pancreas.

Development of Human Pancreatic Innervation
http://dx.doi.org/10.5772/intechopen.77089

25



were detected in bundles of nerve fibres of different diameters and the bodies of neurons 
in human foetuses. However, there were fine nerve fibres located in the acinar parenchyma 
that were immunonegative for peripherin but reacted with other markers in all investi-

gated cases. This suggests that nerve fibres of the human pancreas differ according to the 
set of expressed proteins. In addition, positive immunostaining for NCAM and neuron-spe-

cific β-III tubulin was observed in endocrine cells starting from 14 weeks of development, 

Figure 1. Spatio-temporal distribution of the nervous system structures in the human pancreas during ontogenesis. 

(a, b, d–f) double immunohistochemistry on the pancreatic slices of foetuses ((a) 12 g.w., (b) 16 g.w., (d) 28 g.w.), 

child ((e) 3 months) and adult ((f) 88 years): (a, b) insulin (blue) + S100 (red), (d, e) insulin  (red)+ NSE (blue) and (f) 

glucagon (red) + NSE (blue). Arrows indicate some ganglia. (c) Stack of serial immunofluorescence images of NIC in 
the foetal pancreas (20 g.w.) (sum thickness of slices 90 mkm): Glucagon (green) + S100 (red).
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while SNAP-25-positive endocrine cells were detected only from 16 weeks of development. 

Immunopositivity to antibodies against S100 protein was found only in some islet cells start-

ing from 15 to 16 weeks of development (Table 1).

The contacts of nerves fibres with endocrine cells were detected starting from 12 weeks of 
development. Already in the early foetal period, it was possible to identify NIC I (single insu-

lin- or glucagon-containing cells in ganglia (Supplementary Video 1) or ganglia associated 

with the islets) and NIC II (single endocrine cells in the nerve (Supplementary Video 2), nerve 

endings associated with single endocrine cells or with the islets) and make their 3D reconstruc-

tion. The analysis of three-dimensional reconstructions allowed us to show ganglia associated 

with two islets at once, islets associated simultaneously with two ganglia, and NIC of mixed 

(intermediate) type [91]. Moreover, in the foetal pancreas, starting from 13 weeks, we showed 

simultaneously neuro-insular complexes and contacts between the structures of nervous sys-

tem and epithelial cells located in ducts as well as in cell clusters that were often connected 

with the ducts. Based on these findings, we suggested that the development of neuro-insular 
complexes may be due to integration between the structures of the nervous system and epi-

thelial progenitors at the initial stages of islet formation. Furthermore, endocrine cells are sup-

posed to migrate along nerve fibres from the ducts, small clusters of endocrine cells and islets 
to the other islets, which are located a distance from pancreatic ducts, due to exocrine pancre-

atic growth, thus increasing their pool of endocrine cells. We suppose that the mechanism of 

pancreatic islet formation is similar to the formation of some peripheral analysers.

The pattern of immunoreactivity of neural markers during the middle (21–28 g.w.) and 
late foetal periods is similar to those in the early foetal period. In the middle of the foe-

tal period, the density of pancreatic innervation is higher than in the early foetal period 

(Figure 1c, d). Despite increasing the size of pancreatic lobules and more sparse distribu-

tion of large and medium bundles of nerve fibres, the network of fine nerve fibres gradu-

ally branch and become denser. However, during late foetal and neonatal development, 

this network is much sparser (Figure 1e). This is due to the increase in the size of lobules. 

However, at all stages of human prenatal development, density of distribution of the ner-

vous system structures is higher than in adults (Figure 1f). The density of NIC distribution 

also gradually decreases at birth. Our quantitative data indicate that the largest number of 

NIC I was observed in the early and middle foetal periods, during the active morphogen-

esis of pancreatic islets, whereas at birth (in the late foetal period) and in the adult, NIC II 

became more prevalent [91]. During the middle and late foetal periods, the nervous system 

components also contact epithelial cells located in ducts or in clusters outside the ductal 

epithelium and form complexes with separate epithelial cells. We observed CK19-positive 

cells inside the ganglia and nerve bundles, which were located separately or integrated 

within the islets [90].

In this study, our previous data were confirmed and refined [89] that the formation of the ner-

vous system in the development of human pancreas can be divided into three stages. In the 

pre-foetal period, the nervous apparatus of the pancreas is represented by slightly branched 

bundles of nerve fibres and nerve ganglia. However, the structures of the nervous system dif-
fer from the late foetuses and adults by antigenic composition. Expression of various neural 

proteins does not begin simultaneously in the foetal pancreas.
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The second stage of development of the nervous apparatus of the pancreas (during the early 

and middle foetal periods) is characterised by gradual branching of the neural network and 

formation of connections between the structures of the nervous system and exocrine and endo-

crine parts. In the early foetal period, nerve fibres gradually branch, nerve fibres and nerve 
ganglia appear localised between the acini, and a network of fine nerve fibres starts to form. 
In the later stages of development, the distribution of neural structures (nerve fibres, nerve 
ganglia and parenchymal network of fine nerve fibres) become sparser with increase in the 
size of the pancreas. Thus, innervation of the pancreas at this stage of development gradually 

becomes similar to the distribution structures of the nervous system in the adult pancreas.

In our studies, we demonstrated close integration between the structures of the nervous sys-

tem and endocrine cells in the human pancreas, which were more frequently observed during 

prenatal development. Thus, a dense network is formed in the developing human pancreas, 

in which the structures of the nervous system are associated with the islets of Langerhans. The 

close relationship between developing islets and structures of the nervous system suggests 

that neuroendocrine interactions can influence not only the secretion of hormones but also to 
participate in the morphogenesis of the islets, presumably due to the participation in migra-

tion of endocrine cells from ducts to islets. Understanding the role of NICs in islet formation 

can lead to new approaches to understanding the mechanisms and treatment of diabetes.

5. Conclusions

Thus, our knowledge about the peripheral nervous system in the human pancreas is limited. 

Importantly, human islet development has not been examined for the presence of classical 

markers of the parasympathetic and sympathetic nervous systems. Furthermore, the exact 

location where neuronal axons terminate within the human islets in adults was not shown 

until recently.

However, the human pancreas is abundantly innervated during the gestational period. The value 

of such an abundant innervation of the pancreas and pancreatic islets, in particular, in human 

development is not clear. The observed differences between the nervous apparatus of foetuses 
and adults may have functional significance for pancreatic morphogenesis. Interestingly, some 
authors have described similar dynamics of innervation development in other internal human 

organs. The close relationship between the nervous and endocrine systems makes it necessary 

to further study the role of innervation in the plasticity of the endocrine pancreas both during 

formation of endocrine function and disorders of carbohydrate metabolism.
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